IEST SUBSTANCE

Identity: A mixture containing perfluorooctanesulfonate, which may also be referred to as PFOS, FC-95, or as a component of FC-600. (1-Octanesulfonic acid, 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluoro-, potassium salt, CAS \# 2795-39-3)

Remarks: The 3M production lot numiber was not noted. The test sample is FC-600. Current information indicates it is a mixture of 1.0% PFOS, 81.20% water, 12.00% diethylene glycol butyl ether, 1.00% sodium octyl sulfate, 2.00% propane Sultone foamer, 1.00% sodium decyl sulfate, 0.85% xanthan gum, $0.1 \% \mathrm{~N}$-(3-chloroallyl) hexaminium chloride, 0.80% starch, and 0.05% benzotriazole.

The following summary applies to a mixture with incompletely characterized concentration of impurities. Data may not accurately reflect the toxicity of the fluorochemical component of the test sample.

METHOD:
Method: Not noted
Test type: Static acute
GLP: No
Year Completed: 1975
Species: Lepomis macrochirus
Supplier: Not noted.
Analytical monitoring: Temperature, pH, DO
Exposure period: 96-hours
Statistical methods: Probit analysis.
Test fish age: Juveniles
Average Length and weight: Length $=1$ inch
Weight $=0.5$ grams
Loading: Not noted.
Pretreatment: Not noted.
Test conditions:
Dilution water: Carbon-filtered water, City of St. Paul, MN
Dilution water chemistry: Not noted.
Lighting: Not noted
Stock and test solution preparation: Test solutions were created by direct weights additions.
Concentrations dosing rate: Once
Stability of the test chemical solution: Not noted
Exposure vessels: Not noted.
Number of replicates: One
Number of fish per replicate: 20

Number of concentrations: 5 plus a blank control
Water chemistry during the study:
pH range ($0-96$ hours):
$7.1-7.2$ (control exposures)
$7.2-7.3$ (2,000 mg/L exposure)*
Dissolved Oxygen range ($0-96$ hours):
$5.6-7.0 \mathrm{mg} / \mathrm{L}$ (control exposures)
$4.5-6.0 \mathrm{mg} / \mathrm{L}(2,000 \mathrm{mg} / \mathrm{L} \text { exposure })^{*}$
Temperature ($0-96$ hours):
$72^{\circ} \mathrm{F}$

* Values for the $2,000 \mathrm{mg} / \mathrm{L}$ exposure (third highest concentration) were used because total mortality occurred in the highest concentrations tested.

RESULTS

Nominal concentrations: Blank control, 1,000, 1,500, 2,000, 3,000, and $4,000 \mathrm{mg} / \mathrm{L}$
Element value: $\quad 96$-hour $\mathrm{LC}_{50}=1,500(1,282-1,755) \mathrm{mg} / \mathrm{L}$
Element value based on nominal concentrations.
Remarks: Testing was conducted on the mixture as described in the Test Substance Remarks field. The value reported applies to that mixture and not the fluorochemical proportion alone.

CONCLUSIONS
The FC-600 96-hour $L C_{50}$ for Lepomis macrochirus was determined to be $1,500 \mathrm{mg} / \mathrm{L}$ with a 95% confidence interval of 1,282 to $1,755 \mathrm{mg} / \mathrm{L}$.

Submitter: 3M Company, Environmental Laboratory, P.O. Box 33331, St. Paul, Minnesota, 55133

DATA QUALITY

Reliability: Klimisch ranking 3. The study lacks documentation on methodology. The sample purity was not properly characterized and the study lacks analytical confirmation of the amount of fluorochemical proportion in the solutions.

REFERENCES
This study was conducted by 3M Company, Environmental Laboratory, St. Paul, MN, 1975.

740101
environmental engineering laboratory AQUATIC TOXICITY WORK SHEET

Type Test 96-Hour Static

Date Started
Time Started
 2:00 PM
material tested $F C-6 \infty 0$
 Size 1 Inch Date Completed \qquad $8-29-75$ Plot ed L_{50}

Dilution water carbonfilterod-city-water
Lepomis Macrochirus

ENVIRONMENTAL ENGINEERING LABORATORY

AQUATIC TOXICITY - PROBIT ANALYSIS WORK SHEET
Date Started: $\frac{8-25-75}{\text { Time Started: } 2: 00 \quad \text { (AM) (PM) }}$
Type Test: (Continuorefiow)(Static) Exposure Period:_96-Hour
Diluent: (carbon-filt.-St.P. City Wtr.)
Material Tested: $\quad F=-600$
Test Organism (Fathead minnow) Bluegills Avg. Wt. 5 (gram) Avg. Size 1 (inch) Date Completed: 8-29-75 Analysis by: MT Elnabaran)
(1)

C
Total Animals = \qquad 80 $80 \quad\left(\mathrm{chi}^{2}\right)=$ (2)
(3)

Expected Mortality	Corrected Values	OM Observed- Expected	Contribution to chi (from Nomograph
13		7	.043
50		-	-
78		8	.037
90	96.8	6.8	0.150

$\mathrm{chi}^{2}(\mathrm{P}-.05)$ for ($\mathrm{K}-2$)
$\begin{array}{r}(\mathrm{P}-.05) \text { for }(\mathrm{K}-2) \quad \text { 2 } \quad \text { degree } \\ 4.60 \quad \text { is less than } \quad 599 \\ \hline\end{array}$;
heterogenous.

Total number of animals used between 16% and 84% expected effects $\left(N^{\circ}\right)=$ \qquad $\mathrm{fLC}_{50}=(\mathrm{S})^{2.77 / \sqrt{N}}=-(1.4-5)^{44}=$ (from Homograph $\left.\% 2\right) \quad 1.1$ $\mathrm{LC}_{50} / \mathrm{ELC}_{50}=1$ oar limit $=1500 / 1.17=$ $L C_{50} \times \mathrm{fLC}_{50}=$ upper limit $=1500 \times 1.17$
 $L C_{50}=1,500$ (95% confidence limits

(1) Do not list more than two consecutive 0% effects or more than two consecutive 100\% effects.
(2) Expected value for any dose should be greater than 0.01% or less than 99.99%.
(3) Corrected value for each 0\% or 100% effect (from Table 1).

* There is a 95% chance that the true value of $L C_{50}$ lies within these limits.

