Oral Teratology Study of FC-95 in Rats

Experiment No.:

٦

n of the state of the second second

Conducted At:

0680TR0008

Safety Evaluation Laboratory Riker Laboratories, Inc. St. Paul, Minnesota

Dosing Period:

July 14, 1980 through July 24, 1980

Study Director:

E. G. Gortner

12/17/80 Ε.

E. G. Gortner Date Senior Research Technologist Animal Reproduction-Teratology Study Director

Lampieit 12/17/50

E. G. Lamprecht Research Veterinary Pathologist

М.

M. T. Case, DVM, PhD Date Manager, Pathology-Toxicology Safety Evaluation Laboratory

Date

Summary

Oral administration of FC-95 at doses of 10, 5 and 1 mg/kg/day to pregnant Sprague-Dawley rats during days 6 through 15 of gestation (period of organogenesis) resulted in fetuses with teratogenic changes in the lens of the eye. The teratogenic effect was a developmental eye abnormality which appeared to be an arrest in development of the primary lens fibers forming the embryonal lens nucleus, followed by secondary aberrations of the secondary lens fibers of the fetal nucleus. The lens abnormality occurred in all FC-95 dose groups, but the proportion of fetuses with the lens changes was significantly higher than the control group only in the 10 mg/kg/day group.

FC-95 administration was maternally toxic only to the 10 mg/kg/day group. At gestation days 12 through 20 their mean maternal body weights were significantly lower than the controls. FC-95 was not maternally toxic to the 5 and 1 mg/kg/day groups.

FC-95 was not embryotoxic and did not affect the ovaries or reproductive tract contents of the dams. The compound did not produce an increase in the number or proportion of abnormal fetal skeleton aberrations.

1

1247.0002

Introduction

This teratology study a of FC-95 in rats was conducted to evaluate the embryotoxic and teratogenic effects of orally administered FC-95. The study was sponsored by 3M Commerical Chemical Division, St. Paul, Minnesota and was conducted by the Safety Evaluation Laboratory, Riker Laboratories, Inc., St. Paul, Minnesota. The compound administration period was from July 14 through July 24, 1980. The protocol and list of the principal participants and supervisory personnel can be found in Appendices I and II respectively.

All portions of this study were conducted according to the Good Laboratory Practice (GLP) regulations and the Safety Evaluation Laboratory Standard Operating Procedures (see Appendix III for Quality Assurance Unit statement). The storage location for specimens, raw data and a copy of the final report is maintained in the Safety Evaluation Laboratory's record archives.

Methods

Time mated Spraque-Dawley derived rats were obtained from Charles River Breeding Laboratory and assigned cages according to a computer-generated random numbers table. The rats were then divided into four groups of 22 animals weighing 175 to 261 grams. The rats were housed individually in hanging stainless steel cages with wire mesh floors and fronts in a temperature and humidity controlled room. Food— and water were available ad libitum. The lights were on a 12 hour light/dark cycle.

The animals were observed daily from day 3 through day 20 of gestation for abnormal clinical signs. Body weights were recorded on days 3, 6, 9, 12, 15 and 20 of gestation and the rats dosed accordingly using a constant dose volume of 5 ml/kg of body weight. The four groups were dosed with FC-95 (Lot 640) suspended daily in corn oil at 0, 10, 5 or 1 mg/kg/day. FC-95 was administered daily by oral intubation with a syringe equipped with a ball-tipped intubation needle to the rats on days 6 through 15 of gestation (day 0 indicated by sperm-positive vaginal smear). FC-95 analytical characterization (see Appendix IV) was provided by 3M Commercial Chemical Division, St. Paul, Minnesota.

All animals were sacrificed on day 20 by cervical dislocation and the ovaries and uterus, including its contents, were examined immediately to determine the following: number of corpora lutea, number of viable fetuses, number of resorption sites, pup weights and sex, and any gross fetal abnormalities. Approximately one-third of the fetuses were fixed in Bouin's solution for subsequent free-hand sectioning by the Wilson technique to determine visceral abnormalities. The remaining fetuses were preserved in alcohol for clearing and staining of the skeleton with alizarin red to detect skeletal abnormalities. Selected free-hand sections were processed for histological evaluation.

<u>a</u> Riker Experiment No. 0680TR0008 <u>b</u> Purina Laboratory Chow, Ralston Purina Company, St. Louis, MO

Results

1

FC-95 administered during the period of organogenesis was toxic to the high dose group (10 mg/kg/day) maternal rats. The mean body weights of all dose groups were similar at gestation days three through nine (Table 1, Appendix V). At gestation days 12 through 20 the high dose group rats weighed significantly less than controls (0 mg/kg/day). The mean maternal body weights of mid (5 mg/kg/day) and low (1 mg/kg/day) dose groups were not different from the controls throughout the study. Even though FC-95 was maternally toxic at the high dose level, no compound-related clinical signs were observed in any of the dose groups.

FC-95 was not embryotoxic and did not affect the ovaries or reproductive tract contents of the dams. The mean number of male, female, total and dead fetuses; the mean number of resorption sites, implantation sites, corpora lutea and mean fetus weights of the three FC-95 dose groups were not significantly different from the controls (Table 2, Appendix VI). The high dose group did have a lower mean number of viable male, female and total fetuses than the other three groups which resulted from a lower number of embryos at the start of the study. Contributing pieces of evidence to the lower number of high dose embryos are the low mean number of implantation sites, corpora lutea, resorption sites and the absence of dead fetuses.

FC-95 did not cause compound-related abnormal gross fetal findings (Table 3), nor did FC-95 treatment produce an increase in the number or proportion of abnormal fetal skeletal aberrations. Fetal skeleton results of the three compound treated groups were not significantly different from the control group (Table 4). The incidence and proportions of sternebrae nonossified and associated changes of sternebrae assymetrical, sternebrae bipartite and one sternebrae missing were unusually high in all dose groups of this study including the control group.

FC-95 was teratogenic in the rat at all dose levels administered in this study. The teratogenic effect was a developmental eye abnormality which appeared to be an arrest in development of the primary lens fibers forming the embryonal lens nucleus, followed by secondary aberrations of the secondary lens fibers of the fetal nucleus. All eye abnormalities were localized to the area of the embryonal lens nucleus although a variety of morphological appearances were present within that location. The range of morphological appearances as observed under the dissecting microscope varied from a slight discoloration of the lens near the anterior margin to a dark colored oval area, often containing a cleft, extending from beneath the lens epithelium to half-way through the lens posteriorly. Histologically the discolorations were due to presence of lens vesicle remnants surrounding the abnormal embryonal lens nucleus. One of the most severly affected eyes had most of the embryonal lens nucleus replaced by sinus spaces containing red blood cells. Also contributing to the discolorations were primary lens fibers which appeared to have not elongated. These lens fibers were tortuous and lacked nuclei in a normal lens bow of nuclei. Secondary lens fiber development progressed normally except immediately surrounding the abnormal embryonal nucleus. Secondary aberrations of secondary lens fibers included the bending of the fibers around the abnormal oval area, the subsequent formation of prominant anterior and posterior Y sutures of the converging fibers and lens vesicle remnants surrounding the embryonal nucleus.

The lens abnormality occurred in all dose groups except the control group. The proportion of fetuses with the lens abnormality in one or both lenses was significantly higher in the high dose group than the control (Table 5). The lens abnormality recorded for one control fetus under the dissecting microscope was an artifact when evaluated by transmission light microscopy. A no-effect dose level for the teratogenic lens abnormality was not established in this study.

Discussion

and a state of the state of the

Optimal visual functional requirements are met during embryonic development by the differentiation of highly specialized populations of cells from undifferentiated precoursers and by the coordinated morphogenesis of the resulting tissues. Both processes are controlled to a remarkable extent by interactions which occur among emerging tissues. Each tissue of the eye is brought to its final state of differentiation, its cell population size and its definitive geometry, not only by intrinsic processes, but also by extrinsic influences exerted by neighboring tissues¹.

The embryonal origin of the lens is undifferentiated ectoderm. The tip of the optic vesicle, presumably the neural retina, plays the final role in inducing lens from overlying ectoderm and in aligning the lens precisely with the rest of the eye. Alternative or sequential action of tissues derived from endoderm (foregut) and mesoderm (heart) on the same target tissue decreases the probability that lens formation would be aborted by accidents during the early phases of induction. While the nature of the inductive influence remains unknown, there are indications that substances may be transferred from the presumptive neural retina to the overlying ectoderm during induction. A prolonged period of inductive interaction not only increases the probabilility that lens induction will occur successfully in the face of interference, but provides a mechanism for continuously adjusting the size, shape, position and orientation of the lens to that of the retina².

During the early stages of the inductive process, the ectodermal cells immediately overlying the tip of the optic vesicle elongate prependicularly to the body surface to form a thickened disc (lens placode). The change in cell shape is accomplished without change in cell volume. The number of cells, however, continues to increase during this period. Toward the end of lens placode formation, acidophilic fibrils appear in the apices of the lens placode cells. At about this time, the placode invaginates to form the lens cup. This invagination is independent of the concomitant invagination of the underlying optic vesicle, and is probably due to forces operating within the lens ectoderm. As the lens cup deepens, its opening (lens pore) becomes progressively constricted until its lips meet and fuse, cutting off the lens vesicle internally and re-establishing continuity in the overlying ectoderm. Closure of the lens pore is attended by, and possibly accomplished by, a local and temporaty restricted wave of cell death. Following closure of the lens pore, the cells at the back of the lens vesicle continue to elongate, under the influence of the neural retina, to form the lens fibers. As the fibers grow the cavity of the lens vesicle is obliterated. The lens cells toward the ectoderm, which do not elongate further, form the lens epithelium².

The cuboidal lens epithelial cells which face the cornea continue to grow after the lens vesicle forms. As the cells rotate through the equator region, they take their places on the surface of the growing fiber mass. These cells differentiate into secondary lens fibers at the equator and elongate rapidly toward the poles of the lens where they meet with other fibers in planes of junction called sutures. As secondary fibers grow their nuclei become positioned at about the center of the fibers and form a convex lens bow outward. Since the newer fibers are always deposited superficially, the oldest fibers in the lens come to lie centrally and are referred to collectively as the lens nucleus. With time the lens cell nuclei in this region become pycnotic and finally disappear. The cell fibers, however, are not broken down and removed but remain in place. Thus the size and shape of the lens are controlled by factors which control the number, size and shape of lens cells².

The teratogenic effect of FC-95 probably occurred during the portion of organogenesis between differentiation of lens tissue from ectoderm and the formation of secondary lens fibers surrounding the embryonal lens nucleus. The exact time of the teratogenic insult and the morphogenesis of the abnormality were not determined in the study. The developmental lens abnormality appears to be unique because it has not been described as a compound-related abnormality³. • A similar-appearing structural lens abnormality has been reported to occur spontaneously in rat fetuses, but with a very low incidence of 1.2⁴. The abnormality resembles the Fraser developmental lens abnormality of a mutant mouse strain which results from degenerative primary lens cells⁵.

References

- Coulombre AJ, Coulombre JL: Abnormal Organogenesis of the Eye, in Wilson J,, Fraser FC (eds): <u>Handbook of Teratology:2</u> <u>Mechanisms</u> and Pathogenesis. New York, Plenum Press, 1977, pp 329-341.
- Coulombre AJ: The Eye, in DeHaan RL, Ursprung H (eds): Organogenesis. New York, Holt Rinehart and Winston, 1965, pp 227-232.
- 3. Mann I: <u>Development Abnormalities of the Eye</u>, 2nd ed. Philadelphia, JB Lippincott Co., 1957.
- Weisse I, Niggeschulze A, Stotzer H: Spontaneous congenital cataracts in rats, mice and rabbits. Archiv Fuer Toxikologie 32: pp 199-207, 1974.

1247.0006

 Hamai Y, Kuwabara T: Early cytologic changes of Fraser cataract. An electron microscopic study. Investigative Ophthalmology <u>14</u> (7): pp 517-527, 1975.

Table 1

.

. .

. .

Oral Teratology Study of PC-95 in Rats Mean Maternal Body Weights with Standard Deviations

Dose				Gestat	ion Da	ıy	
Group		3	6	9	12	15	20
mg/kg/day	MERN	200	223	247	272	305	380
	STAN. DEV	16. 7	17.6	20. 9	20.5	24. 4	33.8
10 mg/kg/day	MEAN	199					<u>a</u> 343 a
	STAN. DEV	11. 8	13. 8	18. 2	16.2	18.6	34. 6
mg/kg/day	MEAN	205		249			
	STAN. DEV	20. 0	16.4	12.6	13, 2	17.8	23, 8
mg/kg/day	MEAN	205		252	272		
	STAN. DEV	18, 8	19. 1	19.7	19.5	24. 6	31.8

 $\frac{a}{2}$ Significantly lower than the controls (Dunnett's t test p < 0.05)

>

1247.0007

6

:

Table 2	Oral Teratology Study of FC-95 in Rats	Mean Litter Data and Pup Weights with	Standard Deviations ²

.

Dose Group	No. of Animals	AIAB VIAB		FETUSES TOTAL	DEHU FETUSES	RESORPTION	IMPCHNIHIIUN SITES	CORPORA LUTEA	MEAN WT. FETUS(6)
0 mg/kg/đay	20	था २२ इन्हें स	4. Vi 22 H	e N D T	ල ල බේ ල්	୦୦ ପ୍ରି	ាធ ភេខ ព	11. 2 2. 7	প ব ব হাঁ
10 mg/kg/day	17	oc oc Mi Ni	n u Mini	~ M 지국	ත ල ලේ න්	ହୁହୁ ବିଜ	ಈ M ಹಕ	രു പ ത്ത്	ন্দ হা বি
5 mg/kg/day	17	छ क छ सं	ഗയ ഗ്രി	19 19 19	ତ୍ର ତ୍ର୍	0 7 0 7	11. 2 2 2 2	11. 1 2. 0 2	4 Q 0 M
1 mg/kg/đay	19	רי רי אי ל	ಕನ ಖೆನು	10 10 10	ମ୍ ସ୍ତ୍ର	ସ୍ତ୍ ସ୍ଥ	10.6 2.7	6 19 19 19	4 Q V 4

 $\frac{a}{2}$ Treatment groups were not significantly different from controls (Dunnett's t test p < 0.05)

Table 3

•

 $\left(\cdot \right)$

Oral Teratology Study of FC-95 in Rats Number of Fetuses with Gross Findings^a

Finding	0 mg/kg/day	10 mg/kg/day	5 mg/kg/day	l mg/kg/day
No. of fetuses examined	201	131	178	192 .
Umbilical hernia	1		1	
Runted		l		1
Total Normal Fetuses	200	130 .	177	191
Total Abnormal Fetuses	l	1	1	l

 $\frac{a}{c}$ Treatment groups were not significantly different from the control (Chi-square p < 0.05)

Table 4

Oral Teratology Study of FC-95 in Rats Number and Percent of Fetuses with Skeleton Findings-

		0		10	1	5]	L
Skeleton Finding	mg/J	cg/day	mg/)	cg/day	mg/l	(g/day	mg/}	:g/day
Fontanelle not closed	10	(7)	10	(11)	7	(6)	5	(4)
Frontal nonossified	4	(3)	1	(1)			1	(1)
Parietal nonossified	2	(1)	1	(1)	1	(1)	1	(1)
Interparietal nonossified	3	(2)					1	(1)
Occipital nonossified	1	(1)	1	(1)				
Sternebrae nonossified	114	(81)	77	(85)	100	(81)	107	(81)
Sternebrae asymmetrical	53	(38)	23	(25)	36	(29)	39	(29)
Sternebrae bipartite	7	(5)	4	(4)	5	(4)	6	(5)
One sternebrae missing	30	(21)	13	(14)	26	(21)	26	(20)
Two sternebrae missing	10	(7)	2	(2)	4	(3)	6	(5)
13 ribs	5	(4)	2	(2)	2	(2)	6	(5)
13 ribs spurred	7	(5)	7	(8)	8	(7)	4	(3)
Wavy ribs	1	(1)	2	(2)			1	(1)
Protrusion on ribs	6	(4)	9	(10)	3	(2)	8	(6)
One body of the vertebrae bipartite	32	(23)	21	(23)	25	(20)	32	(24)
Two bodies of the vertebrae bipartite	18	(13)	7	(8)	11	(9)	9	(7)
Three bodies of the vertebra bipartite	e 4	(3)	1	(1)	1	(1)	3	(4)
Four bodies of the vertebrae bipartite		-					1	(1)
Total No. Normal Fetuses	7	(5)	3	(3)	10	(8)	10	(8)
Total No. Abnormal Fetuses	133	(95)	88	(97)	113	(92)	123	(92)
Total No. of Fetuses Examined	a)	140		91		123		133

 $\frac{a}{p}$ Treatment groups were not significantly different from the control (Chi-square p < 0.05)

() = percent of total examined

Internal Finding	0 mg/kg/day	10 mg/kg/day	5 mg/kg/day	l mg/kg/day
Eye abnormality Thoracic cavity full	1 <u>a</u> (2)	$14^{b}(35)^{c}$ 1 (3)	4 ^b (7)	2 ^b (3)
of blood Enlarged atria Enlarged renal pelvis area in the kidney Abdominal cavity full of blood	1 (2) 3 (5) 4 (7)	 2 (5)	 5 (9)	3 (5) 2 (3)
Total No. Normal Fetuses	52 (85)	23 (57)	47 (85)	53 (90)
Total No. Abnormal Fetuses	9 (15)	17 (43)	8 (15)	6 (10)
Total No. of Fetuses Examine	ed 61	40	55	59

Oral Teratology Study of FC-95 in Rats Number and Percent of Fetuses with Internal Findings

Table 5

<u>a</u> Eye abnormality was an artifact and was not considered for statistical b evaluations

Eye abnormalities were developmental lens abnormalities with secondary lens aberrations

<u>C</u> Significantly higher than the control (Chi-square p < 0.05)

() = percent of total examined

. 🤇

Appendix I

Oral Teratology Study of FC-95 in Rats Protocol

Objective

A teratology study will be used to evaluate the embryotoxic and teratogenic effects of orally administered FC-95 to pregnant rats during the period of organogenesis. The procedure complies with the general recommendations of the FDA issued in January, 1966 ("Guidelines for Reproduction Studies for Safety Evaluation of Drugs for Human Use"). The study will be conducted according to the 1978 Good Laboratory Practice regulations and Safety Evaluation Laboratory's Standard Operating Procedures.

Sponsor

3M Commercial Chemical Division, St. Paul, Minnesota.

Testing Facility

Safety Evaluation Laboratory, Riker Laboratories, Inc., St. Paul, Minnesota.

Study Director

E. G. Gortner

Start of Dosing

Mid July, 1980.

Test System

Eighty-eight sexually mature, time mated Sprague-Dawley derived female rats from Charles River Breeding Laboratory will be housed in hanging stainless steel cages with wire mesh floors and fronts in a temperature and humidity controlled room. This strain of rats will be used because of historical control data and time mated females are readily available. Purina Laboratory Chow and water will be available ad libitum. The lights will be on a 12 hour light/dark cycle.

Test System Identification

Each animal will be ear tagged and that number will be indicated on the outside of the cage.

Appendix I (Continued)

Randomization

Sector and the

The animals will be assigned cages according to a computer-generated random numbers table.

Control Article

Corn oil.

Test Article

FC-95.

Analytical Specifications

The test article, composition and purity will be determined by the Sponsor (3M Commercial Chemical group) prior to the start of the study and at the end of dosing.

Dosage Levels and Experiment Design

The test article will be suspended in corn oil daily. The test article suspension and control article will be administered by oral intubation to the rats on days 6 through 15 of gestation according to the following:

Dose Group	Dose Level	Group Size
High	10 mg/kg/day	. 22 Ş
Mid	5 mg/kg/day	22 ¥
Low	l mg/kg/day	22 Ş
Control	0 mg/kg/day	22 Ş

The oral route of administration will be used because of metabolism studies showed radiolabeled FC-95 was well absorbed. No dietary contaminants are known to interfere with the test article.

The animals will be observed daily from day 3 through day 20 of gestation for abnormal clinical signs. Body weights will be recorded on days 3, 6, 9, 12, 15 and 20 of pregnancy and the rats dosed accordingly using a constant dose volume of 5 ml/kg of body weight.

The females will be killed on day 20 and the ovaries, uterus and its contents will be examined to determine: number of corpora lutea, number of fetuses (live and dead), number of resorption sites, number of implantation sites, pup weight and gross abnormalities. Approximately one-third of the pups will be fixed in Bouin's solution for subsequent free-hand sectioning by the Wilson technique to determine any visceral abnormalities using a dissecting

Appendix I (Concluded)

microscope. The remaining approximately two-thirds of the pups will be fixed in ethyl alcohol for subsequent skeletal examination after clearing and staining with alizarin red.

Data Analysis and Final Report

The proposed statistical methods to be used for analysis of the data are: Dunnett's t test for dam and pup weights, number of fetuses, number of resorption sites, number of implantation sites and number of corpora lutea; Chi square for percent abnormalities. The proposed date for the final report is 2-3 months after detailed pup examinations have been completed (approximately fourth quarter, 1980).

Appendix II

Oral Teratology Study of FC-95 in Rats List of Principal Participating Personnel

NAME

FUNCTION

Edwin G. Gortner Study Director Elden G. Lamprecht Veterinary Pathologist Cathy E. Ludemann Coordinator-Histology Gary C. Pecore Supervisor-Animal Care Loren O. Wiseth Technician

Appendix III

STATEMENT OF QUALITY ASSURANCE

STUDY NUMBER: 0680TR0008

ŝ

٠,

÷.,

TITLE: Oral Teratology Study of PC-95 in Rats

Audits and/or inspections were performed by the Riker Quality Assurance Unit for the above titled study, and reported to the study director and to management as follows:

Date Performed

Date Reported

18 July 1980 28 July 1980 15 December 1980 17 December 1980 21 July 1980 28 July 1980 17 December 1980 17 December 1980

AN Ellen U tustion

d. E. Orterstrom Laboratory Quality Assurance Riker Laboratories, Inc.

December 17, 1980

APPENDIX IV

Test and/or Control Article Characterization

for FC - 95, Lot 640

- 1. The identity strength, uniformity, composition, purity or other pertinent characterizations of the test and/or control substances have been determined and documented as of $M_{4y} \leq 1960$.
- 2. The method of synthesis or origin of the test and control substances, including their amount and the method of bioassay (if applicable) is documented. yes 🔨 no
- The stability of the test and/or control substances have been deter-mined or will be determined as of <u>Completion of Tex Tex</u>ting If Mecessian 3.

The above information and documentation are located in the sponsor's records.

D-Ricken <u>S/21</u>180

 \bigcirc

3MA00356546

16

.

Appendix V

Oral Teratology Study of FC-95 in Rats Individual Body Weights (g)

.

Dose Group			Study	y Day			
and Rat No.	3	6	9	12	15	20	•

0 MGZKGZDAY

G

r

. (.

NØR	12596	186	212	235	254	287	357	
NOR	12997	224	261	239	306	345	424	
NØF.	12998	216	238	240	277	315	397	
NØR	12999	212	232	271	274	302	373	
NOR	13000	224	250	245	307	335	435	
NØR	13016	182	207	284	255	284	342	
NØR	13018	175	201	259	246	277	354	
N6R	13019	193	219	237	277	309	378	
NØR	13020	194	221	236	277	319	400	
NØR	13036	205	228	222	284	322	408	
NØR	13040	186	208	233,	261	293	381	
NØR	13041	195	219	285	258	289	355	
NOR	13043	220	239	253	295	340	426	
NØR	13044	262	228	284	273	296	359	
NØR	13060	230	248	235	310	349	442	
NØR	13061	195	212	212	259	297	366	
NØR	13062	210	229	222	272	302	362	
NØR	13063	185	208	247	257	289	342	
NØR	13064	188	211	250	256	289	368	
NØR	13080	179	194	258	238	256	321	
, t	1EAN	200	223	247	272	305	380	
STAN	i. DEV	16.7	17.6	20. 9	20.5	24.4	33.8	

NON PREGNANT ANIMALS

NØR	13017	186	198	243	217	234	253
NØR	13042	188	209	260	247	255	272

:

17

• •

Appendix V (Continued)

Oral Teratology Study of FC-95 in Rats Individual Body Weights (g)

Dose Group			Study	y Day			
and Rat No.	3	6	9	12	15	20	

10 MG/KG/DRY

•

•...

C1/2E1	13001	189	222	239	253	281	347	
OØR								
OØR	13002	190	217	230	256	283		
CICIR:	13003	192	222	224	265	290	381	
UØR	13004	192	212	218	233	255	319	
OØR	13005	201	225	260	261	285	369	
OØR	13021	227	257	247	278	293	360	
OØR	13022	212	244	243	288	311	402	
00R	13023	180	206	258	227	245	285	
OØR	13025	208	237	251	268	297	382	
OØR	13037	187	214	229	250	274	357	
OØR	13045	195	216	228	259	289	361	
00R	13048	186	205	226	236	248	311	
00R	13065	204	223	274	263	279	304	
OØR	13066	207	226	275	263	262	358	
OØR	13067	210	234	222	268	278	322	
OØR	13069	203	228	262	262	283	338	
OØR	13081	194	209	238	237	251	281	
						•		
M	IEAN	199	223	243	257	277	343	
STAN	DEV	11. 8	13.8	18. 2	16.2	18.6	34. 6	

NON PREGNANT ANIMALS

DØR	13024	195	217	233	230	242	252
OØR:	13046	187	209	242	228	232	231
00R	13047	184	201	244	221	233	235
09R	13049	213	237	243	256	251	266
00R	13068	216	232	236	239	250	261

Appendix V (Continued)

Oral Teratology Study of PC-95 in Rats Individual Body Weights (g)

Dose Group			Study	7 Day			
and Rat No.	3	6	9	12	15	20	

5 MGZKGZDAY

6

1 3 - Co

.: .:

F6P 1	3665	192	218	233	258	272	340	
	3062	226	249	272	264	304	388	
	3668	197	225	262	262	288	394	
	3069	188	212	274	254	283	361	
	3010	194	226	245	263	282	343	
	3027	212	232	251	269	288	369	
		215	235	228	274	294	383	
	3028							
F0F 1	3029	199	229	241	272	288	366	
POR 1	3030	176	210	260	276	294	379	
FOR 1	3038	198	219	235	263	288	366	
FUE 1	2056	188	204	239	246	265	333 (
FOF 1	3051	222	243	256	283	323	407	
POR 1	3053	235	248	242	291	325	468	
	3654	197	224	238	259	279	349	
	3070	254	266	245	297	327	410	
	3071	200	223	250	274	304	378	
	3072	188	211	260	256	292	363	
FOR 1	.2012	TOO	277	200	200	<u> </u>		
M		new.	etera de	044	92 O	294	773	
	ĤΝ.							
STHN	DEV	20. Ü	16.4	12.6	13.2	17.8	23 8	

NUN PREGNANT ANIMALS

POR	13626	217	235	294	252	252	261
F'ØE:	13052	218	237	252	248	254	262
FØR.	13073	286	231	250	250	244	259
POR	13074	207	234	244	257	272	287.
POR	13082	195	214	240	225	232	240

Appendix V (Concluded)

Oral Teratology Study of FC-95 in Rats Individual Body Weights (g)

Dose Group			Study	Day			
and Rat No.	3	6	9	12	15	20	

1 MG/KG/DAY

00K 13011 198 224 250 261 2	88 367
QUER 13012 217 235 248 282 3	10 386
006 13013 183 204 230 267 3	00 379
00F 13014 198 221 224 272 3	01 376
QOR 13015 200 228 253 284 3	26 413
WOR 13031 234 258 241 300 3	32 411
068 13032 195 220 246 255 2	76 322
QUE 13033 204 236 244 289 3	20 407
00K 13034 193 226 254 262 2	86 355
00F 13030 185 201 236 251 2	71 352
00R 13039 225 252 302 301 3	34 416
QOF 13055 201 220 232 261 3	:03 379
ROK 13056 204 223 259 263 2	86 371
00F 13057 196 211 236 250 2	68 333
00R 13059 201 224 264 270 3	01 375
Q0R 13075 185 206 283 257 2	91 362
QOR 13077 198 215 263 262 2	96 363
(JOR 13078 208 226 243 262 2	97 374
QOR 13083 261 279 278 323 3	68 459
MEHN 205 226 252 272 3	03 379
STHN DEV 18 8 19 1 19 7 19 5 24	631.8

NON PREGNANT ANIMALS

QØR	13058	183	205	247	226	238	253
00R	13076	192	213	236	254	278	270
00F:	13079	196	218	228	244	255	266

Appendix VI

.

Oral Teratology Study of FC-95 in Rats Individual Litter Data with Pup Weights

Dose Group and Rat No.	VI ME M	BLE F F	ETUSES TOTAL	DEAD FEIUSES	RESOR PTION SITES	IMPLAN TATION SITES	CORPRA LUTEA	MEHN AVG	FETUS M	WT (G) F
0 mg/kg/day										
NØR 12996	5	4	9	Ø	1	10	9	4. 9	5.1	4. 7
NOR 12997	4	9	13	0	1	14	16	3.6	3.8	3.5
NØR 12998	7	4	11	9	Ü	11	12	4.3	4. 3	4.2
NOR 12999	7	4	11	0	2	13	13	4. 6	4.1	3.9
NOR 13000	7	7	14	Ø	0	14	17	4.1	4, 2	4.0
NOR 13016	4	5	9	0	1	10	9	3.7	3.3	4. 0
NOR 13017	NOT	PREG	NEINT							
NOR 13018	7	3	10	0	1	11	11	4.5	4. 5	4. 3
NOR 13019	6	1	7	Ø	0	7	6	5.1	5.1	4. 9
NOR 13020	4	8	12	Ø	6	12	12	4. 7	4, 8	4. 7
NOR 13036	5	5	10	0	1	11	8	4.1	4. 3	3.9
NGR 13040	6	7	13	0	Ŭ.	13	12	4 4	4. 5	4. 2
NOR 13041	6	3	9	0	1	10	12	4. 2	4.3	4. 1
NØR 13042	NOT	PREG	NANT							
NØR 13043	4	6	10	0	3	13	15	4. 2	4.4	4. 1
NOR 13044	5	2	7	0	0	7	11	3.9	3.8	3.9
NØR 13060	8	5	13	0	1	14	12	4. 1	4.1	3, 9
NOR 13061	4	6	10	0	2	12	11	4. 2	4.3	4.1
NOR 13062	3	4	7	0	0	7	ų.	4. 1	4.4	3.8
NOR 13063	1	5	6	0	Ø	6	9	4.3	4.3	4.3
NØR 13064	5	7	12	Ø	Ø	12	12	4, 2	4. 2	4. 2
NØR 13080	6	2	8	0	1	9	9	4. 4	4.4	4. 2
MEAN	5. 2	4. 9	10. 0	0.0	0.7	10.8	11. 2	4.3		
STAN. DEV.	1.7	2.1	2.3	0.0	0.9	2. 5	2. 7	0.4		

•

Appendix VI (Continued)

C

•

Oral Teratology Study of FC-95 in Rats Individual Litter Data with Pup Weights

	Group Rat No.	VIAB M	LE FE F	TUSES TOTAL	DEAD FETUSES	RESOR PTION SITES	IMPLAN TATION SITES	CORPRA LUTEA	MEAN F AVG	ETUS M) (년) (년) (년)
10 m	g/kg/day										
10R	13001	4	6	10	0	1	11	10	4, 5	4. €	4. 5
NOR	13002	3	e	9	Θ	2	11	11	3, 9	4.1	3.8
DØR.	13003	4	7	11	ы	0	11	12	4. 2	4.4	4. 1
10R	13004	7	2	9	Ø	0	9	9	4. 2	4. 2	4. 0
DØR	13005	5	- 7	12	9	0	12	12	4.3	4. 3	4.2
10R	13021	1	3	4	0	0	4	7	4.4	ৰ. ন	4.4
DØR	13022	11	2	13	0	0	13	14	4. 2	4. 2	3.8
JØR		2	Ø	2	0	6	2	5	4. 8	4. 8	6. 6
JØR	13024	NOT.	PREG			_					
DØR	13025	6	6	12	9	0	12	12	4.4	4. 5	4. 4
DØR	13037	5	5	10	Ø	0	10	12	4. 3	4.4	4. 2
16R	13045	4	6	10	0	1	11	11	4, 5	4. 6	4.4
	13046	NOT	PREG								
	13047	NOT	PREG		~		.	-			
10R	13048	5	3	8	0	1	9	8	4. 2	4. 3	3.9
	13049	NOT	PREG		0	6		6	4. 3	0.0	4.3
	13065	0	1	1	0	0	1	11	4.0 4.0	4.2	4. s 3. 9
DØR DØR	13066	4	8 1	12 2	0	0 1	12 3	11 8	4.6 4.6	4.8	3. 7 4. 5
	13067 13068	1 NOT	PREG		6	1	⇒	0	7 . O	7.0	п. С
	13068	NOT 2	FREG	100000 5	Ø		6	6	3, 5	3. 3	3.7
	13069	2 0	د 1	5 1	9 19	1 0	5 1	3	4. 1	0.0	3.1 4.1
NOR.	12001	9	1	*	5	ย	7	ت	¬ , ⊥	0. 0	⊐.⊥
	MEAN	3.8	3. 9	7.7	0.0	0.4	8. 1	9.2	4. 3		
51	AN. DEV.	2.8	2.6	4.3	0.0	0.6		3.1	0.3		

ų,

,

3MA00356552

Appendix VI (Continued)

÷ 😤

Oral Teratology Study of FC-95 in Rats Individual Litter Data with Pup Weights

Dose Group and Rat No.	V16 P		ETUSES TOTAL	DEAD FETUSES	RESOR PTION SITES		CORPRA LUTEA	MEAN AVG	FETUS M	HIKG) F
5 mg/kg/day			•						-	
POR 12006	3	3	6	0	3	9 12	9	4. 6	4. S	4. 4
PUH: 13007	9	2 2	12	Ø	0		12	4. 🗈	4.4	4. 0
POK 13008	5	7	12	0	0	12	12	3.9	4. 6	3.8
P0R 13009	· 5	4	9	0	Ø	9	8	3, 8	4.1	3.5
PGR 13010	4	7	11	Ø	0	11	12	3.9	4. 0	3.8
PØR 13026	NOT	PREG	AHM1				_			
P0R 13027	8	3	11	Ø	2	13	10	4.0	4:1	3.8
POR 13028	4	8	12	0	Ø	12	13	4. 3	4.4	4.3
PØR 13029	4	3	. 7	ଡ	Ø	7	10	4. 8	5.2	4.3
P0R 13030	4	9	13	Ø	1	14	14	4.5	4.5	4.5
PØR 13038	5	5	10	Ø	Ø	10	10	4.4	4. 7	4. 2
PUR 13050	4	5	9	ø	1	10	9	4.0	4.2	3.9
PGR 13051	- 4	. 7	11	6	2	13	12	4. ≩	4.4	4. 2
PGR 13052	NUT	PREG								
PØR 13053	9	5	14	Ø	0	14	14	3.6	3.7	3.5
PØR 13054	4	6	10	0	0	10	11	4.2	4.3	4.1
POR 13070	535	8	13	0	2	15	14	4. 2	4.2	4.2
POR 13071	3	6	9	0	1	10	9	4.4	4. 7	4.3
PØK 13072	-	4	9	0	0	9	9	4. 3	4, 4	4. 2
POR 13073	NŨŤ	PREG								
POR 13074	NOT	PREG								
POR 13082	NOT	PREG	INNT							
MEAN	5. 0	5. 5	10.5	0.0	0.7	11. 2	11. İ	4. 2		
STAN. DEV.	1. 9	2.0	2.2	0.0	1.0	2.2	2.0	0.3		

:

1

3MA00356553

. .

Appendix VI (Concluded)

. .--

. . .

· •

••••

Oral Teratology Study of FC-95 in Rats Individual Litter Data with Pup Weights

Dose Group and Rat No.	V1AE M	LE FE F	ETUSES TOTAL	DEAD FETUSES		IMPLAN TATION SITES	CORPRH LUTEA	MEAN AVG	FERUS M	Nika: F
l mg/kg/day			۹				•			
20F 13011	7	З	10	0	0	10	8	4.4	4. 5	સ.સ
20F 13012	5	6	11	0	9	11	12	4.1	4.1	4.6
208 13013	3	÷	9	0	0	é	11	4.4	ન. ન	4. 2
20K 13014	5	7	12	0	0	12	13	3.4	3.8	2.2
X0R 13015	4	6	10	6	0	10	9	3, 8	3. 8	3.8
268 13031	7	6	13	<u>ю</u>	0	13	14	4.0	3.9	4.1
20R 13032	1	1	2	Ø	9	2	4	3, 8	4. 3	3.3
00K 13033	4	9	13	Ø	0	13	14	4. 5	4, 6	4. 5
0R 13034	2	4	6	0	3	9	8	5.0	5. 1	4. 9
20K 13035	2 5	5	19	Ū	1	11	11	4.6	4.7	ન ન
20R 13039	6	6	12	0	0	12	12	4.3	4. 1	4.2
00R 13055	7	4	11	Ø	1	12	12	4. 3	4.2	4.3
908 13056	5	6	11	1	1	13	11	4. 1	4. 3	4.6
QOK 13057	4	5	9	Ø	1	10	12	3. 9	3, 8	3.9
0R 13058	NOT-	PREG	NANT							
0R 13059	6	4	10	0	0	10	11	4. 1	4.3	3, 8
0R 13075	6	4	10	0	0	10	11	4, 2	4, 2	4.1
20K 13076	NOT	PREG	NHNT							
WR 13077	3	5	8	Ø	1	9	9	4.4	4.4	4.4
00R 13078	5	5	10	0	Ø	10	10	4, 6	4. 9	4.4
00R 13079	NOT	PREG	NANT							
QOR 13083	4	11	15	0	Ø	15	15	4. 1	4, 2	4.0
MEAN	4. 7	5.4	10. 1	0.1	0.4	10.6	16. 9	4. 2		
STAN. DEV.	1.7	2. 1	2. 8	0.2	0.8	2.7	2.6	0.4		

:

DISTRIBUTION LIST

0

•

1

K. L. Ebbens + J. D. Henderson + G. R. Steffen + M. T. Case

E. G. Gortner (original +1)

F. Keller (QA file)

E. G. Lamprecht

A. C. McCornick (2)

R. A. Nelson + E. L. Mutsch + R. E. Ober

1247.0026

cc: M. T. Case E. G. Gortner (original + 1) F. Keller (QA File) E. G. Lamprecht

E. L. Mutsch \rightarrow R. A. Nelson \rightarrow R. E. Ober W=C. McCornick \rightarrow F. D. Griffith (2) W. H. Pearlson H. Pearlson G. R. Steffen + J. D. Henderson + K. L. Ebbens

Amendment to the Final Report of the Oral Teratology Study of FC-95 in Rats

> Experiment No.: 0680TR0008 Issued: 12/18/80

Please add the amended summary, the amended table 5, and the amendment to the results and discussion sections to the above report. The study conclusions were changed by this amendment to the report.

E. G. Gortner

E. G. Lamprecht, DVM, PhD Date Research Veterinary Pathologist

Μ. T. Case. DVM. PhD Manager, Pathology-Toxicology Safety Evaluation Laboratory

Senior Research Technologist Animal Teratology Reproduction 25 ."

Amended Summary (p. 1) to the Oral Teratology Study of FC-95 in Rats Experiment No. 0680TR0008

Oral administration of FC-95 at doses of 10, 5 and 1 mg/kg/day to pregnant Sprague-Dawley rats during days 6 through 15 of gestation (period of organogenesis) was not teratogenic.

FC-95 administration was maternally toxic only to the 10 mg/kg/day group. At gestation days 12 through 20 the maternal body weights of the high dose females were significantly lower than the controls. FC-95 was not maternally toxic to the 5 and 1 mg/kg/day groups.

FC-95 was not embryotoxic and did not affect the ovaries or reproductive tract contents of the dams. The compound did not produce an increase in the number or proportion of fetal skeleton variations.

Amendment to the Results and Discussion Sections (p. 3-5) of the Oral Teratology Study of FC-95 in Rats

Experiment No. 0680TR0008

(This amendment addresses the last two paragraphs of the results section and the entire discussion section.)

FC-95 was labeled a teratogen of the lens because apparent lens abnormalities were observed at the 10, 5 and 1 mg/kg/day dose levels. Based on subsequent studies, particularly Riker Experiment No. 0681TR0362, the interpretations of these observations have been extensively modified. The lens findings observed under the dissecting microscope are now known to be either freehand sectioning artifacts or a normal area of lens cell degeneration. The fetal rat lens findings were incorrectly interpreted as a teratogenic change in this study.

The gross finding of a lens cleft was an artifact created by freehand sectioning. It represents a separation between the embryonal nucleus lens cells and the lens epithelium. The gross finding of a lens dark streak was a normal observation of the embryonal nucleus. The embryonal nucleus is an area of normal lens cell degeneration in the gestation day 20 fetus.

The gross appearance of the rat lens at day 20 of gestation is determined by the region of the lens which is transected by freehand sectioning. In a subsequent study (Riker Experiment No. 0681TR0362) the compound-related occurence of the lens findings could not be repeated when the fetuses were coded before freehand sectioning and gross evaluation. The range of gross lens observations and the differences among the dose group incidences were due to the manner and frequency in which the lens cleft artifact was created by freehand sectioning and the limitations inherent in visualizing the embryonal nucleus.

In summary, FC-95 in utero exposed fetuses did not have compound-related changes in their lenses.

Amended Table 5 (p. 10)

Oral Teratology Study of FC-95 in Rats Number and Percent of Fetuses with Internal Findings

Internal Finding	0 mg/kg/day	10 mg/kg/day	5 mg/kg/day	1 mg/kg/day
Lens findings ^a	1 (2)	14 (35) <u>b</u>	4 (7)	2 (3)
-		1 (3)		·
Thoracic cavity full of blood		. (3)		
Enlarged atria	1 (2)			
Enlarged renal pelvis	3 (5)			3 (5)
Abdominal cavity full of blood	4 (7)	2 (5)	5 (9)	2 (3)
No. of Fetuses Examined	61	40	55	. 59

 $\frac{a}{-}$ The lens findings observed under the dissecting microscope were either freehand sectioning artifacts or a normal area of lens cell degeneration Significantly higher than the control (chi-square with Yates correction p < 0.05)

() = percent of total examined

and the second sec

2

DISTRIBUTION LIST

K. L. Ebbens

A shirt and the second

E. G. Gortner (original + 1)

F. D. Griffith \rightarrow F. A. Ubel

F. Keller (QA File)

E. G. Lamprecht

R. E. Ober \rightarrow R. A. Nelson \rightarrow E. L. Mutsch

W. H. Pearlson

G. R. Steffen \rightarrow J. D. Henderson \rightarrow M. T. Case

W. C. McCormick

• •

Amended Appendix VII

STATEMENT OF QUALITY ASSURANCE

STUDY NUMBER: Amendment to 0680TR0008

É

1

TITLE: Amendment to the Final Report of the Oral Teratology Study of FC-95 in Rats

Audits and/or inspections were performed by the Riker Compliance Audit unit for the above titled study, and reported to the study director and to management as follows:

Date Performed	Date Reported
•	•
July 16 and 19, 198	2 July 21, 1982
July 22, 1982	July 23, 1982

Compliance Audit Riker Laboratories, Inc.

23, 1982 Date

1247.0032

DISTRIBUTION LIST

K. L. Ebbens + J. D. Henderson + G. R. Steffen + M. T. Case

E. G. Gortner (original +1)

F. Keller (QA file)

E. G. Lamprecht

CONTRACTOR CONTRACTOR

R. A. Nelson \rightarrow E. L. Mutsch + R. E. Ober

7.¥