FINAL REPORT

PROTOCOL 418-011

ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-EtFOSE IN RATS

SPONSOR'S STUDY NUMBER: T-6316.7

FINAL REPORT DATE: 17 DECEMBER 1998

10 171181

Exhibit 2788

State of Minnesota v. 3M Co., Court File No. 27-CV-10-28862

3MA10083119

PROTOCOL 418-011

ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-EtFOSE IN RATS

SPONSOR'S STUDY NUMBER: T-6316.7

TABLE OF CONTENTS

	;	10 17118
A.6.	Study Design	II-1
A.5.	Purpose of the Study	II-1
A.4.	Sponsor's Study Number	II-1
A.3.	Study Number	II-1
A.2.	Testing Facility	II-1
A.1.	Sponsor	II-1
Α.	Conduct of Study	II-1
11.	DESCRIPTION OF TEST PROCEDURES	II-1
C.	Conclusion	I-4
B.	Results	I-2
A.	Methods	I-1
I.	SUMMARY AND CONCLUSION	I-1
<u>SUB.</u>	<u>JECT</u>	<u>PAGE</u>

	ii	10 171183
C.4.	Special Handling Instructions	11-4
C.3.	Date Received and Storage Conditions	11-4
C.2.	Lot Number	11-4
C.1.	Description	11-4
C.	Vehicle Information	11-4
B.5.	Analysis of Activity	11-4
B.4.	Special Handling Instructions	II-3
B.3.	Date Received and Storage Conditions	II-3
B.2.	Lot/Batch Number	II-3
B.1.	Description	II-3
В.	Test Article Information	II-3
A.17.	Records Maintained	II-3
A.16.	Dates of Technical Performance	II-3
A.15.	Date Protocol Signed	11-2
A.14.	Report Review	11-2
A.13.	Report Preparation	II-2
A.12.	Technical Performance	II-2
A.11.	Study Director	II-2
A.10.	Alternate Study Monitor	II-2
A.9.	Study Monitor	II-2
A.8.	Ownership of the Study	II-2
A.7.	Regulatory Compliance	II-1
SUBJ	<u>ECT</u>	PAGE

	iii	10 17118	4
F.8.	Water	11-8	
F.7.	Feed Analysis	II-7	
F.6.	Feed	II-7	
F.5.	Sanitization	II-7	
F.4.	Lighting	11-7	
F.3.	Housing	II-7	
F.2.	Study Room	II-7	
F.1.	Research Facility Registration	11-7	
F.	Husbandry	11-7	
E.9.	System of Identification	II-6	
E.8.	Method of Randomization	11-6	
E.7.	Breeder Male Rat Data	11-6	
E.6.	Test System Data	11-6	
E.5.	Rationale for Test System	11-6	
E.4.	Sex	II-5	
E.3.	Supplier (Source)	II-5	
E.2.	Strain	II-5	
E.1.	Species	II-5	
E.	Test System	II-5	
D.1.	Sample Information	II-5	
D.	Test Article Preparation	· II-4	
C.5.	Analysis of Purity	11-4	
SUBJ	JECT	<u>PAGE</u>	

iii

SUBJ	ECT	!	PAGE
F.9.	Water Analysis		11-8
G.	Methods	-	11-8
G.1.	Dosage Administration		II-8
G.2.	Rationale for Dosage Selection		II-9
G.3.	Route of Administration		II - 9
G.4.	Rationale for Route of Administration		11-9
G.5.	Frequency of Administration		II-9
G.6.	Length of Study		11-9
G.7.	Method of Study Performance		11-9
G.8.	Gross Necropsy		II-10
G.9	Statistical Analyses		II-12
111.	RESULTS		III-1
A.	Mortality, Clinical and Necropsy Observations		III-1
A.1.	Mortality		III-1
A.2.	Clinical Observations		III-1
A.3.	Necropsy Observations		111-1
В.	Maternal Body Weights and Body Weight Changes	;	III-1
C.	Maternal Absolute (g/day) and Relative (g/kg/day) Feed Consumption Values		III-2
D.	Caesarean-Sectioning and Litter Observations		III-2
E.	Fetal Alterations		III-3
E.1.	Summary of Fetal Alterations		III-3
E.2.	Fetal Gross External Alterations	10 171185	111-4

SUBJECT		PAGE
E.3. Fetal S	Soft Tissue Alterations	III-4
E.4. Fetal S	Skeletal Alterations	I II-5
REFERENCE	ΞS	III-7
APPENDIX A	A - REPORT FIGURE	
Figure 1.	Maternal Body Weights	A-1
APPENDIX E	3 - REPORT TABLES	
Table 1.	Clinical Observations – Summary	B-1
Table 2.	Necropsy Observations – Summary	B-2
Table 3.	Maternal Body Weights – Summary	B-3
Table 4.	Maternal Body Weight Changes – Summary	B-5
Table 5.	Maternal Absolute Feed Consumption Values (g/day) – Summary	B-6
Table 6.	Maternal Relative Feed Consumption Values (g/kg/day) – Summary	B-7
Table 7.	Caesarean-Sectioning Observations – Summary	B-8
Table 8.	Litter Observations (Caesarean-Delivered Fetuses) – Summary	B-9
Table 9.	Fetal Alterations – Summary	B-10
Table 10.	Fetal Gross External Alterations – Summary	B-11
Table 11.	Fetal Soft Tissue Alterations – Summary	B-12
Table 12.	Fetal Skeletal Alterations – Summary	B-13
Table 13.	Fetal Ossification Sites - Caesarean-Delivered Live Fetuses (Day 20 of Gestation) - Summary	B-16
Table 14.	Clinical Observations - Individual Data	B-17
		10 17118

<u>SUBJECT</u>			PAGE
Table 15.	Ne	cropsy Observations - Individual Data	B-23
Table 16.	Ma	ternal Body Weights - Individual Data	B-29
Table 17.	Ma	aternal Feed Consumption Values - Individual Data	B-44
Table 18.	Ca	esarean-Sectioning Observations - Individual Data	B-50
Table 19.		ter Observations (Caesarean-Delivered Fetuses) – Iividual Data	B-56
Table 20.	Fe	tal Sex, Vital Status and Body Weight - Individual Da	ta B-62
Table 21.	Fe	tal Alterations - Individual Data	B-74
APPENDIX C) -	PROTOCOL AND AMENDMENTS	C-1 to C-33
APPENDIX [O -	DEVIATIONS FROM THE PROTOCOL AND THE STANDARD OPERATING PROCEDURES OF THE TESTING	D-1
APPENDIX E	Ξ-	TEMPERATURE AND RELATIVE HUMIDITY REPORT	E-1
APPENDIX F	= _	PILOT REPORT	F-1 to F-87
APPENDIX (3 -	HISTORICAL CONTROL DATA	G-1 to G-16
APPENDIX H	-	STATEMENT OF THE STUDY DIRECTOR	H-1
APPENDIX	l -	QUALITY ASSURANCE UNIT FINAL REPORT STATEMENT	I-1 to I-5

TITI F

ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY

OF N-EtFOSE IN RATS

ARGUS RESEARCH LABORATORIES, INC.

PROTOCOL NUMBER: 418-011

SPONSOR'S STUDY NUMBER: T-6316.7

I. SUMMARY AND CONCLUSION

A. Methods^a

Twenty-five Crl:CD®BR VAF/Plus® (Sprague-Dawley) presumed pregnant female rats were assigned to each of five dosage groups (Groups I through V). Nineteen additional female rats were assigned to one of five dosage groups for the satellite study (three, five, three, three and five rats assigned to Groups I through V, respectively). The test article, N-EtFOSE, or vehicle, 2% Tween® 80 in Reverse Osmosis Membrane Processed Deionized Water (R.O. Deionized Water), was administered via gavage once daily to female rats on days 6 through 17 of presumed gestation (DGs 6 through 17). Dosages of 0 (Vehicle), 1, 5, 10 and 20 mg/kg/day were administered at a dosage volume of 5 mL/kg, adjusted daily on the basis of individual body weights.

The female rats were observed for viability at least twice each day of the study. The rats were also examined for clinical observations of effects of the test article, abortions, premature deliveries and deaths before and approximately one hour after dosage (DGs 6 through 17), and once daily during the postdosage period.

a. Detailed descriptions of all procedures used in the conduct of this study are provided in the appropriate sections of this report and in APPENDIX C (PROTOCOL AND AMENDMENT).

Body weights were recorded on DGs 0 and 4 and daily during the dosage and postdosage periods. Feed consumption values were recorded on DGs 0, 4, 6, 8, 10, 12, 14, 16, 18 and 20.

All rats in the main study were sacrificed by carbon dioxide asphyxiation on DG 20 and a gross necropsy of the thoracic, abdominal and pelvic viscera was performed. The number of corpora lutea in each ovary was recorded. The uterus of each rat was examined for pregnancy, number and distribution of implantations, live and dead fetuses and early and late resorptions. Each fetus was identified, weighed and examined for sex and gross external alterations. Approximately one-half of the fetuses in each litter were examined for soft tissue alterations and the remaining fetuses in each litter were examined for skeletal alterations.

Rats in the satellite study were sacrificed on DG 18. Blood samples were collected and centrifuged. The liver was excised, weighed and sectioned. Fetuses were examined grossly to the extent possible as described for rats assigned to the main study. Fetuses and placentae were pooled per litter. After completion of sample collection, serum, liver section, fetal and placental samples were shipped to the Sponsor for analysis.

B. Results

No deaths, abortions or premature deliveries occurred during the study. All rats survived until scheduled sacrifice on gestation day 20 (DG 20).

All clinical and necropsy observations were considered unrelated to the test article.

Maternal body weight gains were significantly reduced in groups administered 5 mg/kg/day and higher dosages of the test article. The effect was minimal and transient in the 5 mg/kg/day dosage group, occurring only on DGs 8 to 10. In the 10 mg/kg/day dosage group, significant reductions in maternal body weight gains occurred on DGs 6 to 8 and 10 to 12, followed by a significant increase in weight gain on DGs 14 to 16. The 20 mg/kg/day dosage group had significant weight loss followed by significant reductions in maternal body weight gain on DGs 8 to 14 and 16 to 18. These effects of the test article resulted in a tendency for reduced weight gain in the 10 mg/kg/day dosage group and significant reductions in the 20 mg/kg/day dosage group for the entire treatment period (DGs 6 to 10), the entire interval after initiation of treatment (DGs 6 to 20) and the entire gestation period (DGs 0 to 20). Maternal body weights were

significantly reduced in the 10 and 20 mg/kg/day dosage groups on DGs 11 through 13 and 8 through 20, respectively.

Body weights and body weight gains were unaffected by the 1 mg/kg/day dosage of the test article.

The absolute feed consumption value was significantly reduced in the 10 mg/kg/day dosage group on DGs 6 to 8 and absolute and relative feed consumption values were significantly reduced in the 20 mg/kg/day dosage group for the entire dosage period and at all intervals within this period. The absolute feed consumption value continued to be significantly reduced and the relative feed consumption value tended to be reduced in the 20 mg/kg/day dosage group during the postdosage interval. These effects of the 20 mg/kg/day dosage of the test article resulted in significantly reduced absolute and relative feed consumption values on DGs 6 to 20 and DGs 0 to 20.

Absolute and relative feed consumption values were unaffected by dosages of the test article as high as 5 mg/kg/day.

Fetal body weights (total, male and/or female) were significantly reduced in the 10 and 20 mg/kg/day dosage groups, as compared to the control group values. Dosages of N-EtFOSE as high as 20 mg/kg/day did not affect any other Caesarean-sectioning or litter parameters. The litter averages for corpora lutea, implantations, litter sizes, live fetuses, early resorptions, percent resorbed conceptuses and percent male fetuses, as well as the numbers of dams with any resorptions or with viable fetuses were comparable in the five dosage groups and did not significantly differ. No dams had litters with all conceptuses resorbed, and there were no dead fetuses or late resorptions. All placentae appeared normal. All of these values were within the ranges observed historically at the Testing Facility.

Reversible delays in fetal ossification associated with the significantly reduced fetal body weights in the 10 and 20 mg/kg/day dosage groups, were evident as significant reductions in the litter averages for ossified caudal vertebrae in the 10 and 20 mg/kg/day dosage groups and a significant increase in the fetal incidence of wavy ribs in the 20 mg/kg/day dosage group.

All other fetal gross external, soft tissue and skeletal alterations (malformations and variations) were considered unrelated to the test article because: 1) the incidences were not dosage-dependent; and/or 2) the incidences were within ranges observed historically at the Testing Facility.

C. Conclusion

On the basis of these data, the maternal no-observable-effect-level (NOEL) of N-EtFOSE is 5 mg/kg/day (the 10 and 20 mg/kg/day dosages caused biologically important and statistically significant reductions in body weight gains or weight losses, and the 20 mg/kg/day dosage also persistently reduced the absolute and relative feed consumption values). The developmental NOEL is also 5 mg/kg/day (the 10 and 20 mg/kg/day dosages significantly reduced fetal body weights and caused minimal, but statistically significant reversible delays in ossification of the caudal vertebrae; the 20 mg/kg/day dosage also significantly increased the incidence of wavy ribs, an additional reversible delay in ossification associated with the reduced fetal body weights).

> Mildred S. Christian, Ph.D., Fellow, ATS Date **Executive Director of Research**

Alan M. Hoberman, Ph.D., DABT.

Date

Director of Research

Raymond G. York, Ph.D., DABT

Date

17-DEZ-98

Associate Director of Research

and Study Director

II. DESCRIPTION OF TEST PROCEDURES

A. Conduct of Study:

A.1. Sponsor:

3M CorporateToxicology, 3M Center, Building 220-2E-02, St. Paul, Minnesota 55144-1000

A.2. <u>Testing Facility</u>:

Argus Research Laboratories, Inc., 905 Sheehy Drive, Building A, Horsham, Pennsylvania 19044-1297

A.3. Study Number:

418-011

A.4. Sponsor's Study Number:

T-6316.7

A.5. Purpose of the Study:

The purpose of this study was to detect adverse effects of N-EtFOSE on CrI:CD®BR VAF/Plus® presumed pregnant female rats and development of the embryo and fetus consequent to exposure of the dam from implantation to closure of the hard palate. This study evaluated ICH Harmonised Tripartite Guideline stages C and D of the reproductive process.

A.6. Study Design:

The requirements of the International Conference on Harmonisation (ICH) Harmonised Tripartite Guideline⁽¹⁾ were used as the basis of study design.

A.7. Regulatory Compliance:

The study was conducted in compliance with Good Laboratory Practice (GLP) regulations of the U.S. Food and Drug Administration (FDA)⁽²⁾, the Japanese Ministry of Health and Welfare (MHW)⁽³⁾ and the European Economic Community (EEC)⁽⁴⁾. There were no significant deviations from the GLP regulations that affected the quality or integrity of the study. Quality Assurance Unit findings derived from the inspections during the conduct of this study are documented

and have been provided to the Study Director and the Testing Facility Management.

A.8. Ownership of the Study:

The Sponsor owns the study. All raw data, analyses, reports and preserved tissues are the property of the Sponsor.

A.9. Study Monitor:

Marvin T. Case, D.V.M., Ph.D.

A.10. Alternate Study Monitor:

Andrew M. Seacat, Ph.D.

A.11. Study Director:

Raymond G. York, Ph.D., DABT (Associate Director of Research)

A.12. Technical Performance:

John F. Barnett, B.S. (Director of Laboratory Operations) Kristen landola Sherer, B.S. (Research Associate/Fetal Evaluation) Sharon Adamski (Laboratory Technician)

A.13. Report Preparation:

Raymond G. York, Ph.D., DABT Jo Ann Frazee, M.S. (Study Coordinator) Susan K. Bradshaw, B.S. (Data Management Specialist) Karen G. Parker, A.A. (Administrative Assistant)

A.14. Report Review:

Alan M. Hoberman, Ph.D, DABT (Director of Research)
Mildred S. Christian, Ph.D., Fellow, ATS (Executive Director of Research)

A.15. Date Protocol Signed:

29 July 1998

418-011:PAGE II-3

A.16. Dates of Technical Performance:

Rat Arrival Date
Cohabitation Period
Day 0 of Presumed Gestation (DG 0)
Dosage Period (DGs 6 through 17)
Toxicokinetic Sample Collection
and Caesarean-Sectioning Period
(DG 18) - Satellite Study
Caesarean-Sectioning Period Main Study (DG 20)

11 AUG 98 18 AUG 98 PM - 23 AUG 98 AM 19 AUG 98 - 23 AUG 98 25 AUG 98 - 09 SEP 98

10 SEP 98

08 SEP 98 - 12 SEP 98

A.17. Records Maintained:

The original report, raw data and reserve samples of the test article and vehicle are retained in the archives of Argus Research Laboratories, Inc. Any preserved tissues are retained in the archives of the Testing Facility for one year after the mailing of the draft final report, after which time the Sponsor will decide their final disposition. Prepared formulations were discarded at the Testing Facility. Unused bulk test article will remain at the Testing Facility until its disposition is decided by the Sponsor.

B. <u>Test Article Information</u>:

B.1. Description:

N-EtFOSE - a waxy solid

B.2. Lot/Batch Number:

FM-3929 [30035, 30037, 30039 (Expiration date: May 2000)]

B.3. Date Received and Storage Conditions:

The test article was received on 20 May 1998, and stored at room temperature. Prepared formulations were stored refrigerated.

B.4. Special Handling Instructions:

Standard safety precautions (use of protective clothing, gloves, dust-mist respirator, safety goggles or safety glasses and a face-shield) were taken when handling the bulk test article and prepared formulations.

B.5. Analysis of Purity:

Information regarding the identity, composition, strength, and purity of the test article is on file with the Sponsor.

C. Vehicle Information:

C.1. <u>Description</u>:

2% Tween® 80 in Reverse Osmosis Membrane Processed Deionized Water (R.O. Deionized Water).

C.2. Lot Number:

M03H05

C.3. Date Received and Storage Conditions:

The vehicle was received on 8 July 1998 from J.T. Baker, Phillipsburg, New Jersey, and stored at room temperature. R.O. Deionized Water is available from a continuous source at the Testing Facility and is maintained at room temperature.

C.4. Special Handling Instructions:

Standard safety precautions (use of protective clothing, gloves, dust-mist respirator, safety goggles or safety glasses and a face-shield) were taken when handling the vehicle.

C.5. Analysis of Purity:

Neither the Sponsor nor the Study Director was aware of any potential contaminants likely to be present in the vehicle that would interfere with the results of this study.

D. Test Article Preparation:

Suspensions of N-EtFOSE were prepared daily at concentrations of 0, 0.2, 1, 2 and 4 mg/mL. The test article was considered 100% pure for the purpose of dosage calculations.

D.1. Sample Information:

Sample Type	Components	Size	Date Retained	Storage Conditions	Shipped To	Date Shipped
Concentration (all levels)	N/A	2 mLª	25 AUG 98 ^b 09 SEP 98 ^c	Frozen	Sponsor	26 AUG 98 10 SEP 98
Bulk Test Article Reserve	N/A	1 g	25 AUG 98	Room Temperature	Testing Facility Archives	01 OCT 98
Vehicle Reserve	Tween ® 80	5 mL	25 AUG 98	Room Temperature	Testing Facility Archives	01 OCT 98
	R.O. Deionized Water	5 mL	25 AUG 98	Room Temperature	Testing Facility Archives	01 OCT 98

- a. Duplicate samples were taken from the first and last preparation on the day prepared. One sample of each set was shipped to the Sponsor for analysis. The remaining samples were retained at the Testing Facility as backup samples.
- First day of preparation.
- c. Last day of preparation.

Homogeneity and stability of prepared formulations are on file with the Sponsor.

D.2. Analytical Results:

Concentration samples (2 mL) were taken on the first and last days of preparation for analyses by 3M Environmental Technology and Safety Services. The results of these analyses were not available at the time of this report.

E. Test System:

E.1. Species:

Rat

E.2. Strain:

Crl:CD®BR VAF/Plus® (Sprague-Dawley)

E.3. Supplier (Source):

Charles River Laboratories, Inc., Raleigh, North Carolina

E.4. Sex:

Female (Note: Male rats were used only for the purposes of breeding and are not considered part of the Test System.)

E.5. Rationale for Test System:

The Crl:CD®BR VAF/Plus® (Sprague-Dawley) rat was selected as the Test System because: 1) it is one mammalian species accepted and widely used throughout industry for nonclinical studies of developmental toxicity (embryo-fetal toxicity/teratogenicity); 2) this strain has been demonstrated to be sensitive to developmental toxins; 3) historical data and experience exist at the Testing Facility⁽⁵⁻⁷⁾; and 4) the test article is biologically active in this species and strain.

E.6. Test System Data:

Number of Rats	190
Approximate Date of Birth	08 AUG 98
Approximate Age at Arrival	64 days
Weight (g) on the Day after Arrival	195 - 234
Weight (g) at Study Assignment	210 - 251

E.7. <u>Breeder Male Rat Data</u> :	Shipment 1	Shipment 2
Number of Rats	110	120
Approximate Date of Birth	13 JAN 98	26 JAN 98
Approximate Age at Arrival	87 days	75 days
Weight (g) on the Day after Arrival	300 - 356	300 - 356
Weight (g) at Study Assignment	498 -	784

E.8. Method of Randomization:

Upon arrival, rats were assigned to individual housing on the basis of computergenerated random units. Female rats were assigned to one of five dosage groups (Groups I through V), 25 rats per dosage group, using a computergenerated (weight-ordered) randomization procedure based on body weights recorded on DG 0. Nineteen additional female rats were assigned to one of five dosage groups for the satellite study (three, five, three, three and five rats assigned to Groups I through V, respectively) using a computer-generated randomization based on body weights recorded on DG 0.

E.9. System of Identification:

Each rat was individually identified with a Monel® self-piercing ear tag (Gey Band and Tag Co., Inc., No. MSPT 20101) inscribed with the rat's designated unique permanent number. Cage tags were marked with the study number and permanent rat number.

F. Husbandry:

F.1. Research Facility Registration:

USDA Registration No. 23-R-099 under the Animal Welfare Act, 7 U.S.C. 2131 et seg.

F.2. Study Rooms:

The study rooms were maintained under conditions of positive airflow relative to a hallway and independently supplied with a minimum of ten changes per hour of 100% fresh air that had been passed through 99.97% HEPA filters (Airo Clean® room). Room temperature and humidity were monitored constantly throughout the study. Room temperature was targeted at 64°F to 79°F (18°C to 26°C); relative humidity was targeted at 30% to 70%. See APPENDIX E (TEMPERATURE AND RELATIVE HUMIDITY REPORT).

F.3. Housing:

Rats were individually housed except during the cohabitation period. During cohabitation, each pair of male and female rats was housed in the male rat's cage. All cage sizes and housing conditions were in compliance with the *Guide for the Care and Use of Laboratory Animals* (8).

F.4. Lighting:

An automatically-controlled fluorescent light cycle was maintained at 12-hours light: 12-hours dark, with each dark period beginning at 1900 hours EST.

F.5. Sanitization:

Cage pan liners were changed approximately three times each week. Cages were changed approximately every other week.

F.6. Feed:

Rats were given ad libitum access to Certified Rodent Diet® #5002 (PMI Nutrition International, St. Louis, Missouri) in individual feeders.

F.7. Feed Analysis:

Analyses were routinely performed by the feed supplier. No contaminants at levels exceeding the maximum concentration for certified feed or deviations from

expected nutritional requirements were detected by these analyses. Copies of the results of the feed analyses are available in the raw data.

Neither the Study Director nor the Sponsor was aware of any agent present in the feed that was known to interfere with the results of this study.

F.8. Water:

Local water that had been processed by passage through a reverse osmosis membrane (R.O. water) was available to the rats *ad libitum* from individual water bottles attached to the cages and/or from an automatic watering system. Chlorine was added to the processed water as a bacteriostat.

F.9. Water Analysis:

The processed water is analyzed twice annually for possible chemical contamination (Lancaster Laboratories, Lancaster, Pennsylvania) and monthly for possible bacterial contamination (Analytical Laboratories, Inc., Chalfont, Pennsylvania). Copies of the results of the water analyses are available in the raw data.

Neither the Study Director nor the Sponsor was aware of any agent present in the water that was known to interfere with the results of this study.

G. Methods:

G.1. Dosage Administration:

Dosage	Number of	Dosage	Concentration	Dosage	Assigned	Numbers
Group	Rats	(mg/kg/day)	(mg/mL)	Volume (mL/kg)	Main Study	Satellite Study ^a
1	25 + 3°	0 (Vehicle)	0	5	12801 - 12825	12573 - 12575
11	25 + 5°	1	0.2	5	12826 - 12850	12576 - 12580
111	25 + 3*	5	1	5	12851 - 12875	12581 - 12583
IV	25 + 3°	10	2	5	12876 - 12900	12584 - 12586
V	25 + 5°	20	4	5	12901 - 19295	12587 - 12591

The test article was considered 100% pure for the purpose of dosage calculations.

The test article was considered 100% pure for the purpose of dosage calculations.

a. Rats assigned to the satellite group for blood collection.

418-011:PAGE II-9

G.2. Rationale for Dosage Selection:

Dosages were selected on the basis of a dosage-range study (Argus Research Laboratories, Inc., Protocol 418-011P) that tested 0, 1, 5, 10, 25 and 35 mg/kg/day. In that study, body weight gain was decreased at 10 mg/kg/day and higher dosages, and feed consumption values were reduced at all dosages tested.

G.3. Route of Administration:

Oral (gavage)

G.4. Rationale for Route of Administration:

The oral (gavage) route was selected for use because: 1) in comparison with the dietary route, the exact dosage can be accurately administered; and 2) it is a proposed route of human exposure.

G.5. Frequency of Administration:

Appropriate dosages of the test article were administered orally (via gavage) once daily to female rats on DGs 6 through 17. Dosages of 0 (Vehicle), 1, 5, 10 and 20 mg/kg/day of the test article were administered at a dosage volume of 5 mL/kg, adjusted daily on the basis of the individual body weights recorded before dosage. The rats were dosed at approximately the same time each day.

G.6. Length of Study:

Approximately 4 weeks

G.7. Method of Study Performance:

After acclimation, 190 healthy virgin female rats were placed into cohabitation with 190 breeder male rats (one male rat per female rat in the male rat's cage). Female rats with spermatozoa observed in a smear of the vaginal contents and/or a copulatory plug *in situ* were considered to be at DG 0 and returned to individual housing.

The female rats were observed for viability at least twice each day of the study and for general appearance weekly during acclimation and on DG 0. The rats were also examined for clinical observations of effects of the test article,

abortions, premature deliveries and deaths before and approximately one hour after dosage (DGs 6 through 17^a), and once daily during the postdosage period.

Body weights were recorded weekly during acclimation, on DGs 0 and 4 and daily during the dosage and postdosage periods (DGs 6 through 20). Feed consumption values were recorded on DGs 0, 4, 6, 8, 10, 12, 14, 16, 18 and 20.

G.8. Gross Necropsyb:

Rats Assigned to the Main Study:

All rats were sacrificed by carbon dioxide asphyxiation on DG 20, Caesarean-sectioned and a gross necropsy of the thoracic, abdominal and pelvic viscera was performed. Uteri of apparently nonpregnant rats were stained with 10% ammonium sulfide to confirm the absence of implantation sites⁽⁹⁾. Tissues with gross lesions were preserved in neutral buffered 10% formalin for possible future evaluation; all other maternal tissues were discarded.

The number of corpora lutea in each ovary was recorded. The uterus of each rat was excised and examined for pregnancy, number and distribution of implantations, live and dead fetuses and early and late resorptions. An early resorption was defined as one in which organogenesis was not grossly evident. A late resorption was defined as one in which the occurrence of organogenesis was grossly evident. A live fetus was defined as a term fetus that responded to stimuli. Nonresponding term fetuses are considered to be dead (there were no dead fetuses). Dead fetuses and late resorptions are differentiated by the degree of autolysis present; marked to extreme autolysis indicated that the fetus was a late resorption.

Each fetus was removed from the uterus, placed in an individual container and identified with a tag noting the study number, litter number, uterine distribution and fixative. Each fetus was subsequently weighed and examined for sex and gross external alterations. Live fetuses were sacrificed by an intraperitoneal

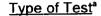
a. See APPENDIX D (DEVIATIONS FROM THE PROTOCOL AND STANDARD OPERATING PROCEDURES OF THE TESTING FACILITY), item 1.

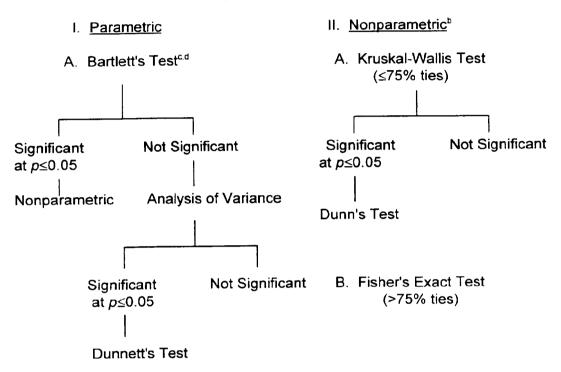
b. A table of random units was used to select one control group rat from which all tissues examined at necropsy were retained, in order to provide control tissues for any possible histopathological evaluations of gross lesions.

418-011:PAGE II-11

injection of Beuthanasia®-D Special (Schering-Plough Animal Health). Photographs of gross external fetal alterations are available in the raw data.

Approximately one-half of the fetuses in each litter were examined for soft tissue alterations using an adaptation of Wilson's sectioning technique⁽¹⁰⁾. The fetuses were initially fixed in Bouin's solution; sections were stored in alcohol. The remaining fetuses in each litter were eviscerated, cleared, stained with alizarin red $S^{(11)}$, fixed in alcohol and examined for skeletal alterations. Skeletal preparations were retained in glycerin with thymol added as a preservative.


Rats Assigned to the Satellite Study:


On DG 18, rats assigned to the toxicokinetic evaluation were sacrificed and the following samples collected. Blood samples (approximately 4 mL per rat) were collected from the inferior vena cava into serum separator tubes and centrifuged. The resulting serum (approximately 2 mL) was immediately frozen on dry ice and maintained frozen (-70°C) until shipment to the Sponsor for analysis. The liver was excised, weighed, and a sample section (lateral lobe) was frozen and retained at -70°C until shipment to the Sponsor for analysis.

Rats were Caesarean-sectioned and fetuses were examined grossly to the extent possible as described above for rats assigned to the main study. Fetuses and placentae were pooled per litter and retained frozen (-70°C) until shipment to the Sponsor for analysis. After completion of sample collection, serum, liver section (lateral lobe), fetal and placental samples were shipped (frozen on dry ice) to the Sponsor for analysis.

G.9. Statistical Analyses:

The following schematic represents the statistical analyses of data:

III. Test for Proportion Data

Variance Test for Homogeneity of the Binomial Distribution

a. Statistically significant probabilities are reported as either $p \le 0.05$ or $p \le 0.01$.

b. Proportion data are not included in this category.

c. Used only to analyze data with homogeneity of variance.

d. Test for homogeneity of variance.

Clinical observation and other proportion data were analyzed using the Variance Test for Homogeneity of the Binomial Distribution⁽¹²⁾.

Continuous data (e.g., maternal body weights, body weight changes, feed consumption values and litter averages for percent male fetuses, percent resorbed conceptuses, fetal body weights, fetal anomaly data and fetal ossification site data) were analyzed using Bartlett's Test of Homogeneity of Variances⁽¹³⁾ and the Analysis of Variance⁽¹⁴⁾, when appropriate [i.e., Bartlett's Test was not significant (p>0.05)]. If the Analysis of Variance was significant ($p\le0.05$), Dunnett's Test⁽¹⁵⁾ was used to identify the statistical significance of the individual groups. If the Analysis of Variance was not appropriate [i.e., Bartlett's Test was significant ($p\le0.05$)], the Kruskal-Wallis Test⁽¹⁶⁾ was used, when less than or equal to 75% ties were present. In cases where the Kruskal-Wallis Test was statistically significant ($p\le0.05$), Dunn's Method of Multiple Comparisons⁽¹⁷⁾ was used to identify the statistical significance of the individual groups. If there were greater than 75% ties, Fisher's Exact Test⁽¹⁸⁾ was used to analyze the data.

Count data obtained at Caesarean-sectioning of the dams were evaluated using the procedures described above for the Kruskal-Wallis Test⁽¹⁶⁾.

Dam 12868 (5 mg/kg/day dosage group) had a litter consisting of five live fetuses and two early resorptions and dam 12889 (10 mg/kg/day dosage group) had a litter consisting of three live fetuses. Because such occurrences can abnormally skew the distribution of data⁽¹⁹⁾, statistical analyses were made with and without the values for these rats and litters. Maternal body weights, feed consumption values and Caesarean-section data for these dams and litters were excluded from summarization and statistical analyses; all values are presented on the individual tables.

III. RESULTS

A. <u>Mortality, Clinical and Necropsy Observations (Summaries - Tables 1 and 2; Individual Data - Tables 14 and 15)</u>

A.1. Mortality

No deaths, abortions or premature deliveries occurred during the study. All rats survived until scheduled sacrifice on gestation day 20 (DG 20).

A.2. Clinical Observations

All clinical observations were considered unrelated to the test article because: 1) the incidences were not dosage-dependent; 2) the observations occurred in only one rat; and/or 3) the observations are common events in the laboratory environment. Clinical observations included localized alopecia on the underside, limbs and/or neck, ungroomed coat, cold to touch and fused second and third digits on the right forepaw.

A.3. Necropsy Observations

The only necropsy finding was a tan area (0.6 cm x 0.8 cm) on the median lobe of the liver in one 20 mg/kg/day dosage group dam (12913). This observation was considered unrelated to the test article because it occurred in only one rat.

B. <u>Maternal Body Weights and Body Weight Changes (Figure 1;</u> Summaries - Tables 3 and 4; Individual Data - Table 16)

Maternal body weight gains were significantly reduced ($p \le 0.05$ or $p \le 0.01$) in groups administered 5 mg/kg/day and higher dosages of the test article. The effect was minimal and transient in the 5 mg/kg/day dosage group, occurring only on DGs 8 to 10. In the 10 mg/kg/day dosage group, significant reductions ($p \le 0.05$) in maternal body weight gains occurred on DGs 6 to 8 and 10 to 12, followed by a significant increase ($p \le 0.05$) in weight gain on DGs 14 to 16. The 20 mg/kg/day dosage group had significant weight loss ($p \le 0.01$) on DGs 6 to 8 followed by significant reductions ($p \le 0.05$ or $p \le 0.01$) in maternal body weight gain on DGs 8 to 14 and 16 to 18. These effects of the test article resulted in a tendency for reduced weight gain in the 10 mg/kg/day dosage group and significant reductions ($p \le 0.01$) in the 20 mg/kg/day dosage group for the entire treatment period (calculated as DGs 6 to 18), the entire interval after initiation of treatment (DGs 6 to 20) and the entire gestation period (DGs 0 to 20). Maternal

body weights were significantly reduced ($p \le 0.05$ or $p \le 0.01$) in the 10 and 20 mg/kg/day dosage groups on DGs 11 through 14 and 8 through 20, respectively.

Body weights and body weight gains were unaffected by the 1 mg/kg/day dosage of the test article.

C. <u>Maternal Absolute (g/day) and Relative (g/kg/day) Feed Consumption Values (Summaries - Tables 5 and 6; Individual Data - Table 17)</u>

The absolute (g/kg/day) feed consumption value was significantly reduced ($p \le 0.05$) in the 10 mg/kg/day dosage group on DGs 6 to 8 and absolute (g/day) and relative (g/kg/day) feed consumption values were significantly reduced ($p \le 0.01$) in the 20 mg/kg/day dosage group for the entire dosage period (calculated as DGs 6 to 18) and at all intervals within this period. The absolute feed consumption value continued to be significantly reduced ($p \le 0.01$) and the relative feed consumption value tended to be reduced in the 20 mg/kg/day dosage group during the postdosage interval (DGs 18 to 20). These effects of the 20 mg/kg/day dosage of the test article resulted in significantly reduced ($p \le 0.01$) absolute and relative feed consumption values on DGs 6 to 20 (the entire interval after the first dosage was administered) and DGs 0 to 20 (the entire gestation period).

Absolute and relative feed consumption values were unaffected by dosages of the test article as high as 5 mg/kg/day. The significant reduction ($p \le 0.05$) in the relative feed consumption value in the 1 mg/kg/day dosage group on DGs 6 to 8 was considered unrelated to the test article because the value was not dosage-dependent.

D. <u>Caesarean-Sectioning and Litter Observations (Summaries -Tables 7 and 8; Individual Data - Tables 18 through 20)</u>

Pregnancy occurred in 24 (96%), 23 (92%), 24 (96%), 25 (100%) and 24 (96%) of the rats in the 0 (Vehicle), 1, 5, 10 and 20 mg/kg/day dosage groups, respectively. One 5 mg/kg/day dosage group litter consisted of five live fetuses and two early resorptions, and one 10 mg/kg/day dosage group litter consisted of three live fetuses. Because such occurrences can abnormally skew the distribution of the data⁽¹⁹⁾, values for these dams and litters were excluded from data summarization and statistical analyses. As a result, Caesarean-sectioning observations were based on 24, 23, 23, 24 and 24 pregnant dams.

Fetal body weights (total, male and/or female) were significantly reduced ($p \le 0.05$ or $p \le 0.01$) in the 10 and 20 mg/kg/day dosage groups, as compared to the control group values. The reduced fetal body weights in the 10 and 20mg/kg/day dosage groups were a reflection of body weight reduction of the dams at these higher dosage levels. Dosages of N-EtFOSE as high as 20 mg/kg/day did not affect any other Caesarean-sectioning or litter parameters. The litter averages for corpora lutea, implantations, litter sizes, live fetuses, early resorptions, percent resorbed conceptuses and percent male fetuses, as well as the numbers of dams with any resorptions or with viable fetuses were comparable in the five dosage groups and did not significantly differ. No dams had litters with all conceptuses resorbed, and there were no dead fetuses or late resorptions. All placentae appeared normal. All of these values were within the ranges observed historically at the Testing Facility^a.

E. <u>Fetal Alterations (Summaries - Tables 9 through 13; Individual Data - Table 21)</u>

Fetal alterations were defined as: 1) malformations (irreversible changes that occur at low incidences in this species and strain); and 2) variations (common findings in this species/strain, and reversible delays or accelerations in development). Litter averages were calculated for specific fetal ossification sites as part of the evaluation of the degree of fetal ossification.

Fetal evaluations were based on 342, 349, 347, 354 and 326 DG 20 Caesarean-delivered live fetuses in 24, 23, 24, 25 and 24 litters in the 0 (Vehicle), 1, 5, 10 and 20 mg/kg/day dosage groups, respectively. Each fetus was examined for gross external alterations. Of these respective fetuses 166, 167, 169, 170 and 158 were examined for soft tissue alterations and 176, 182, 178, 184 and 168 were examined for skeletal alterations and fetal ossification site averages.

E.1. <u>Summary of Fetal Alterations (Summary - Table 9; Individual Data - Table 21)</u>

In the five respective dosage groups, litters with fetuses with alterations present numbered 6 (25.0%), 8 (34.8%), 4 (16.7%), 7 (28.0%) and 8 (33.3%). The numbers of fetuses with any alteration observed were 15 (4.4%), 10 (2.9%), 6 (1.7%), 8 (2.2%) and 12 (3.7%), and the percentages of fetuses with any alteration were 4.4%, 2.8%, 1.6%, 2.1% and 4.0%, in these same respective dosage groups.

a. See APPENDIX G (HISTORICAL CONTROL DATA).

Reversible delays in fetal ossification^(20,21) associated with the significantly reduced ($p \le 0.05$ or $p \le 0.01$) fetal body weights in the 10 and 20 mg/kg/day dosage groups, were evident as significant reductions ($p \le 0.05$) in the litter averages for ossified caudal vertebrae in the 10 and 20 mg/kg/day dosage groups and a significant increase ($p \le 0.05$) in the fetal incidence of wavy ribs in the 20 mg/kg/day dosage group.

All other fetal gross external, soft tissue and skeletal alterations (malformations and variations) were considered unrelated to the test article because: 1) the incidences were not dosage-dependent; and/or 2) the incidences were within ranges observed historically at the Testing Facility.

E.2. Fetal Gross External Alterations (Summary - Table 10; Individual Data - Table 21)

E.2.a. Malformations

One 10 mg/kg/day dosage group fetus (12885-15) had a short trunk and absent tail. Subsequent skeletal examination of this fetus revealed that only four cervical vertebrae were present and that there were no thoracic, lumbar, sacral or caudal vertebrae, or ribs. This fetus also had a variation in pelvic ossification (the pubes were not ossified).

E.2.b. Variations

No gross external variations occurred in the fetuses in this study.

E.3. <u>Fetal Soft Tissue Alterations (Summary - Table 11; Individual Data - Table 21)</u>

E.3.a. Malformations

No fetal malformations were identified at visceral examination.

E.3.b. Variations

E.3.b.1. Vessels

Three control group fetuses (12801-10; 12810-10; 12821-6), one 1 mg/kg/day dosage group fetus (12834-14) and two 5 mg/kg/day dosage group littermates

(12860-5, -9) had the umbilical artery descending to the left of the bladder. These fetuses had no external findings and no other soft tissue alterations. Two 1 mg/kg/day dosage group fetuses (12826-12; 12837-9) had an absent innominate artery. No additional alterations occurred in these fetuses.

E.3.b.2. Lungs

One control group fetus (12822-4) had an absent apical lung lobe, and one 1 mg/kg/day dosage group fetus (12850-16) had an absent diaphragmatic lung lobe. No additional alterations occurred in these fetuses.

E.3.b.3. Kidneys

Two control group fetuses (12802-11; 12803-2) and one 10 mg/kg/day dosage group fetus (12877-14) had slight or moderate dilation of the pelvis of one or both kidneys, a reversible developmental delay⁽²²⁾. No additional alterations occurred in these fetuses.

E.4. Fetal Skeletal Alterations (Summaries - Tables 12 and 13; Individual Data - Table 21)

E.4.a. Malformations

Externally malformed 10 mg/kg/day dosage group fetus 12885-15 had only four cervical vertebrae and no thoracic, lumbar, sacral or caudal vertebrae or ribs, as well as a variation in pelvic ossification (not ossified pubes), as previously described.

E.4.b. Variations

E.4.b.1. Skull

A large nasal-frontal suture occurred in one 10 mg/kg/day dosage group fetus (12893-13). No additional alterations occurred in this fetus.

E.4.b.2. Ribs

A cervical rib at the 7th cervical vertebra, a common variation in this strain of rat ⁽²³⁾, occurred in 0, 3, 1, 3 and 4 fetuses from 0, 2, 1, 3 and 4 litters in the 0 (Vehicle), 1, 5, 10 and 20 mg/kg/day dosage groups, respectively. These fetuses had no other external or skeletal alterations.

Wavy ribs, a reversible delay in ossification⁽²¹⁾, occurred in one 1 mg/kg/day dosage group fetus (12848-1) and seven ($p \le 0.05$) 20 mg/kg/day group fetuses (12904-1; 12909-5, -7, -10, -12; 12919-3, -9). One 20 mg/kg/day dosage group fetus (12909-7) also had incompletely ossified ribs. The significant increase in the fetal incidence of wavy ribs in the 20 mg/kg/day dosage group was considered a treatment-related developmental delay, associated with the significantly reduced ($p \le 0.05$ or $p \le 0.01$) fetal body weights in this dosage group.

E.4.b.3. Sternum

Delayed sternal ossification (incompletely ossified or not ossified 1st sternebra) occurred in 7, 2**, 1**, 1** and 1** fetuses from 3, 2, 1, 1 and 1 litters in the 0 (Vehicle), 1, 5, 10 and 20 mg/kg/day dosage groups, respectively. Of these fetuses, one control group fetus (12802-1) had incompletely ossified pubes in addition to an unossified 1st sternal centrum.

E.4.b.4. Pelvis

The ischia and/or pubes were incompletely or not ossified in 3, 0, 2, 2 and 0 fetuses from 1, 0, 1, 2 and 0 litters in the 0 (Vehicle), 1, 5, 10 and 20 mg/kg/day dosage groups, respectively. One fetus in the control group (12802-1) and one 10 mg/kg/day dosage group fetus (12885-15) had additional skeletal alterations, as previously described.

E.4.b.5. Fetal Ossification Site Averages

The litter averages for ossified caudal vertebrae per fetus were significantly reduced ($p \le 0.05$) in the 10 and 20 mg/kg/day dosage groups. These delays in caudal vertebral ossification were considered effects of the test article associated with the significantly reduced ($p \le 0.05$ or $p \le 0.01$) fetal body weights in these dosage groups.

Analyses of the average numbers of fetal ossification sites per fetus did not reveal any other statistically significant differences among the five dosage groups. Ossification of the hyoid, vertebrae (cervical, thoracic, lumbar and sacral), ribs, sternum (manubrium, sternal centers and xiphoid), forelimbs (carpals, metacarpals and phalanges) and hindlimbs (tarsals, metatarsals and phalanges) occurred at similar incidences in litters in all dosage groups. All values were within the ranges observed historically at the Testing Facility.

^{**} Significantly different from the vehicle control group (p≤ 0.01). 10 171210


REFERENCES

- U.S. Food and Drug Administration (1994). International Conference on Harmonisation; Guideline on detection of toxicity to reproduction for medicinal products. *Federal Register*, September 22, 1994, Vol. 59, No. 183.
- U.S. Food and Drug Administration. Good Laboratory Practice Regulations; Final Rule. 21 CFR Part 58.
- 3. Japanese Ministry of Health and Welfare (1988). Good Laboratory Practice Standard for Safety Studies on Drugs, Pharmaceutical Affairs Bureau, April 1, 1983, amended October 5, 1988.
- 4. European Economic Community (1989). Council decision on 28 July 1989 on the acceptance by the European Economic Community of an OECD decision/recommendation on compliance with principles of good laboratory practice. Official Journal of the European Communities: Legislation. 32(No. L 315; 28 October): 1-17.
- Christian, M.S. and Voytek, P.E. (1982). In Vivo Reproductive and Mutagenicity Tests. Environmental Protection Agency, Washington, D.C. National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.
- 6. Christian, M.S. (1984). Reproductive toxicity and teratology evaluations of naltrexone (Proceedings of Naltrexone Symposium, New York Academy of Sciences, November 7, 1983), J. Clin. Psychiat. 45(9):7-10.
- 7. Lang, P.L. (1988). Embryo and Fetal Developmental Toxicity (Teratology) Control Data in the Charles River Crl:CD7BR Rat. Charles River Laboratories, Inc., Wilmington, MA 01887-0630. (Data base provided by Argus Research Laboratories, Inc.)
- 8. Institute of Laboratory Animal Resources (1996). Guide for the Care and Use of Laboratory Animals. National Academy Press, Washington, D.C.
- Salewski, E. (1964). Färbemethode zum makroskopischen Nachweis von Implantationsstellen am Uterus der Ratte. Arch. Pathol. Exp. Pharmakol. 247:367.

- 10. Wilson, J.G. (1965). Methods for administering agents and detecting malformations in experimental animals. *Teratology: Principles and Techniques*, Wilson, J.G. and Warkany, J.(eds.), University of Chicago Press, pp. 262-277.
- 11. Staples, R.E. and Schnell, V.L. (1964). Refinement in rapid clearing technique in the KOH-alizarin red S method for fetal bone. Stain Technol. 39:61-63.
- 12. Snedecor, G.W. and Cochran, W.G. (1967). Variance test for homogeneity of the binomial distribution. *Statistical Methods*, 6th Edition, Iowa State University Press, Ames, pp. 240-241.
- 13. Sokal, R.R. and Rohlf, F.J. (1969). Bartlett's test of homogeneity of variances. *Biometry*, W.H. Freeman and Co., San Francisco, pp. 370-371.
- 14. Snedecor, G.W. and Cochran, W.G. (1967). Analysis of Variance. *Statistical Methods*, 6th Edition, Iowa State University Press, Ames, pp. 258-275.
- 15. Dunnett, C.W. (1955). A multiple comparison procedure for comparing several treatments with a control. J. Amer. Stat. Assoc. 50:1096-1129.
- 16. Sokal, R.R. and Rohlf, F.J. (1969). Kruskal-Wallis Test. *Biometry*, W.H. Freeman and Co., San Francisco, pp. 388-389.
- 17. Dunn, O.J. (1964). Multiple comparisons using rank sums. Technometrics 6(3):241-252.
- 18. Siegel, S. (1956). *Nonparametric Statistics for the Behavioral Sciences*, McGraw-Hill, New York, pp. 96-104.
- 19. Zambrama, M.A. and Greenwald, G.S. (1971). Effects of fetal ovarian and placental weight of various number of fetuses in the rat. Biol. of Reprod. 4:216-223.
- Collins, T.F.X., Welsh, J.J., Black, T.N., Whitby, K.E. and O'Donnell, M.W., Jr. (1987). Potential reversibility of skeletal effects in rats exposed in utero to caffeine. Fd. Chem. Toxic. 25(9):647-662.
- 21. Nishimura, M., lizuka, M., Iwaki, S. and Kast, A. (1982). Repairability of Drug-induced "Wavy Ribs" in Rat Offspring. Arzneim.-Forsch./Drug Res. 32(II), Nr. 12., pp. 1518-1522.

- 22. Woo, D. and Hoar, R. (1972). "Apparent Hydronephrosis" as a Normal Aspect of Renal Development in Late Gestation of Rats: The Effect of Methyl Salicylate. Teratology 6:191-196.
- 23. Khera, K.S. (1981). Common fetal aberrations and their teratologic significance: a review. Fund. and Appl. Toxicol. 1:13-18.

APPENDIX A
REPORT FIGURE

APPENDIX B
REPORT TABLES

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 1 (PAGE 1): CLINICAL OBSERVATIONS - SUMMARY

DOSAGE (MG/KG/DAY)a MAXIMUM POSSIBLE INCIDENCE	0 (VEHICLE) 375/ 25	375/ 25	375/ 25	10	20
	. 0	. 0	. 0	. 0	. 0
LOCALIZED ALOPECIA: TOTAL UNDERSIDE	12/ 1 0/ 0	29/ 3 28/ 3	9/ 3	15/ 2 11/ 1	33/ 5 18/ 3
LIMBS	12/ 1 0/ 0	2/ 1 0/ 0	0/02/2/1	7/ 2	15/ 2 0/ 0
UNGROOMED COAT	0 /0	0 /0	0 /0	0 /0	3/ 1
согь то тоисн	0 /0	0 /0	0 /0	0 /0	3/ 1
RIGHT FOREPAM: SECOND AND THIRD DIGITS FUSED	0 /0	0 /0	4/ 1	0 /0	0 /0

STATISTICAL ANALYSES OF CLINICAL OBSERVATION DATA WERE RESTRICTED TO THE NUMBER OF RATS WITH OBSERVATIONS.

MAXIMUM POSSIBLE INCIDENCE = (DAYS x RATS)/NUMBER OF RATS EXAMINED PER GROUP ON DAYS 6 THROUGH 20 OF PRESUMED GESTATION.

N/N = TOTAL NUMBER OF OBSERVATIONS/NUMBER OF RATS WITH OBSERVATION.

a. Dosage occurred on days 6 through 17 of presumed gestation.

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 2 (PAGE 1): NECROPSY OBSERVATIONS - SUMMARY

DOSAGE GROUP DOSAGE (MG/KG/DAY) a	1 1 1 1 1 1 1 1 1	I 0 (VEHICLE)	II	III	IV 10	V 20
RATS EXAMINED	×	25	25	25	25	25
MORTALITY	z	0	0	0	0	0
APPEARED NORMAL	z	25	25	25	25	24
LIVER: MEDIAN LOBE, TAN AREA	z	0	0	0	0	1
a. Dosage occurred on days	9	through 17 of presumed gestation.	ation			

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RAIS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 3 (PAGE 1): MATERNAL BODY WEIGHTS · SUMMARY

DOSAGE GROUP DOSAGE (MG/K	DOSAGE GROUP DOSAGE (MG/KG/DAY) a		J 0 (VEHICLE)	11	III S	IV 10	V 20
RATS TESTED	TED	Z	25	255	55.27	25	25
PREGNANT		z	24	23	24	25	24
INCLUDED	INCLUDED IN ANALYSES	z	24	23	235	24c	24
MATERNAL	MATERNAL BODY WEIGHT (G)						
DAY	0	MEAN+S.D.	230.8 + 9.9	231.0 ± 9.6	230.1 ± 10.5	230.5 ± 10.0	231.0 ± 9.5
DAY	Q	MEAN+S.D.	267.1 ± 12.1	265.4 ± 14.0	265.4 ± 15.4	263.2 ± 12.5	263.4 ± 8.1
DAY	۲	MEAN+S.D.	271.3 ± 12.7	269.0 ± 14.2	271.5 ± 15.0	267.3 ± 12.2	263.2 ± 9.6
DAY	8	MEAN+S.D.	276.1 ± 12.6	273.8 ± 14.4	274.6 ± 16.1	268.1 ± 14.7	262.7 ± 9.3 * ★
DAY	6	MEAN+S.D.	280.8 ± 13.1	277.5 ± 13.8	277.6 ± 17.0	272.2 ± 14.1	264.4 ± 10.8**
DAY	10	MEAN+S.D.	285.2 ± 13.6	283.2 ± 15.4	281.6 ± 18.2	277.1 ± 13.6	266.7 ± 9.8**
DAY	11	MEAN+S.D.	290.8 ± 14.8	287.8 ± 15.8	287.9 ± 17.3	279.6 ± 13.4*	269.0 ± 10.8**
DAY	12	MEAN+S.D.	295.1 ± 15.3	291.6 ± 16.0	291.9 ± 17.7	283.5 ± 14.4*	271.0 ± 12.8**
DAY	13	MEAN+S.D.	300.7 ± 16.2	297.8 ± 17.1	296.5 ± 20.2	289.2 ± 17.1*	272.4 ± 13.1**
DAY	14	MEAN+S.D.	305.4 ± 17.1	304.0 ± 17.7	301.8 ± 21.0	293.3 ± 18.0*	276.4 ± 14.3**
DAY	15	MEAN+S.D.	313.0 ± 17.6	311.4 ± 17.8	309.5 ± 22.1	302.9 ± 16.5	282.1 ± 17.1**
DAY =	= DAY OF GESTATION = NUMBER OF VALUES AVERAGED Dosage occurred on days 6 through 17 of Excludes values for dam 12868, which ha Excludes values for dam 12889, which ha Excludes a value that was not recorded. Significantly different from the vehic! Significantly different from the vehic!	AVERAGED days 6 throug dam 12868, w dam 12889, w aat was not re vent from the	ges ges ada ada	tation. litter consisting of 7 con litter consisting of 3 con nitrol group value (p<0.05)	7 conceptuses. 3 conceptuses. 0.05).		
1	•						

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 3 (PAGE 2): MATERNAL BODY WEIGHTS - SUMMARY

DOSAGE GROUP DOSAGE (MG/K	DOSAGE GROUP DOSAGE (MG/KG/DAY)a	1	0 (VEHICLE)		III 5	1V 10	v 20
RATS TESTED	TED	Z	25	25	25	25	25
PREGNANT		z	24	23	24	25	24
INCLUDED	INCLUDED IN ANALYSES	z	2.4	23	23b	24c	24
MATERNAL	MATERNAL BODY WEIGHT (G)						
DAY	16	MEAN+S.D.	323.5 ± 19.3	321.3 ± 18.5	321.3 ± 22.7	314.4 ± 18.4	292.4 ± 18.5**
DAY	17	MEAN+S.D.	336.5 ± 19.6	333.3 ± 17.8	333.6 ± 23.4	325.2 ± 19.1	302.7 + 17.7**
DAY	18	MEAN+S.D.	350.3 ± 19.9	348.6 ± 19.3	348.5 ± 24.7	338.4 ± 20.9	314.2 ± 15.9**
DAY	19	MEAN+S.D.	364.8 ± 19.5	363.3 ± 20.6	363.9 ± 27.5	352.8 ± 20.3	327.8 ± 17.3**
DAY	20	MEAN+S.D.	388.7 ± 21.6	386.7 ± 23.2	386.6 ± 29.4	375.7 ± 23.0	34B.7 ± 19.6**
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				, , , , , , , , , , , , , , , , , , , ,		

DAY a. b. c.

= DAY OF GESTATION bosage occurred on days 6 through 17 of gestation. Excludes values for dam 12868, which had a litter consisting of 7 conceptuses. Excludes values for dam 12889, which had a litter consisting of 3 conceptuses. Significantly different from the vehicle control group value $(p_{\leq 0}.01)$.

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-EtFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 4 (PAGE 1): MATERNAL BODY WEIGHT CHANGES - SUMMARY

DOSAGE GROUP DOSAGE (MG/KG/DAY) a	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I I (VEHICLE)	HI	111	IV 10	20
RATS TESTED	N	25	25	25	25	25
PREGNANT	z	24	23	24	25	2.4
INCLUDED IN ANALYSES	z	24	23	23b	24c	24
MATERNAL BODY WEIGHT CHANGE (G)						
DAYS 0 - 6	MEAN+S.D.	+36.3 ± 8.7	+34.4 ± 12.0	+35.3 ± 10.9	+32.6 + 8.2	+32.5 ± 8.0
DAYS 6 - 8	MEAN+S.D.	+9.0 + 4.3	+8.4 + 3.0	8.9 ± 6.8+	+4.9 + 5.4*	-0.8 + 8.0-
DAYS 8 - 10	MEAN+S.D.	+9.1 ± 4.0	+9.4 + 3.4	+6.0 + 4.6*	+9.0 ± 5.3	+4.0 + 4.4*
DAYS 10 - 12	MEAN+S.D.	+9.9 ± 4.2	+8.4 + 5.0	+10.3 ± 5.6	+6.4 + 4.5*	+4.3 ± 9.0*
DAYS 12 - 14	MEAN+S.D.	+10,3 ± 4.4	+12.3 ± 4.8	+9.9 + 5.3	9.8 + 5.6	+5.3 + 8.6*
DAYS 14 - 16	MEAN+S.D.	+18.1 ± 6.6	+17.3 ± 4.7	+19.5 ± 4.5	+21.1 ± 3.9*	+16.1 + 6.9
DAYS 16 - 18	MEAN+S.D.	+26.8 ± 3.8	+27.3 ± 5.7	+27.3 ± 5.2	+24.0 ± 6.2	+21.7 + 7.5*
DAYS 6 - 18	MEAN+S.D.	+83.2 ± 11.4	+83.3 ± 11.2	+83.1 ± 11.9	+75.2 ± 12.0	+50.7 ± 15.8**
DAYS 18 - 20	MEAN+S.D.	+38.3 ± 6.3	+38.1 ± 7.3	+38.0 ± 7.9	+37.2 ± 6.0	+34.5 ± 6.7
DAYS 6 - 20	MEAN+S.D.	+121.5 ± 13.2	+121.3 ± 15.9	+121.1 ± 16.0	+112.5 ± 15.1	+85.2 ± 19.2**
DAYS 0 - 20	MEAN+S.D.	+157.9 ± 17.9	$+155.7 \pm 20.3$	+156.5 ± 24.3	+145.1 + 18.9	+117.7 ± 22.6**
DAYS = DAYS OF GESTATION [] = NUMBER OF VALUES AVERAGED a. Dosage occurred on days 6 through 17 of b. Excludes values for dam 12868, which ha c. Excludes values for dam 12889, which ha d. Excludes values that were not recorded. * Significantly different from the vehicl ** Significantly different from the vehicl	AVER ays dam dam wer wer	gestation d a litter d a litter e control	lestation. a litter consisting of 7 conca litter consisting of 3 concontrol group value (p≤0.05) control group value (p≤0.05)	conceptuses. conceptuses. 05).		10 1719

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 5 (PAGE 1): MATERNAL ABSOLUTE FEED CONSUMPTION VALUES (G/DAY) - SUMMARY

RATS TESTED PREGNANT INCLUDED IN ANALYSES MATERNAL FEED			•	S		20
NALYSES	Z	25	25	25	25	2.5
NALYSES	z	24	23	24	25	24
MATERNAL PEED	z	24	23	23b	24c	24
CONSUMPTION (G/DAY)						
DAYS 0 - 6 MEAN	MEAN+S.D.	21.5 ± 3.0	21.1 ± 3.3	21.6 ± 3.0	21.1 ± 3.3	21.2 ± 2.1
DAYS 6 - 8 MEAN	MEAN+S.D.	24.6 ± 3.1	23.0 ± 2.0	24.1 ± 3.6	22.4 ± 2.8*	19.4 ± 3.0**
DAYS 8 - 10 MEAN	EAN+S.D.	23.9 + 2.3	22.9 ± 1.9	22.6 ± 3.0	22.6 ± 2.4	19.2 ± 3.2**
DAYS 10 - 12 MEAN	EAN+S.D.	24.6 ± 3.2	23.5 ± 2.4	24.0 ± 2.5	23.6 ± 2.3	19.8 + 4.4**
DAYS 12 - 14 MEAN	EAN+S.D.	25.7 ± 2.8	24.5 ± 2.8	24.7 ± 3.4	23.9 ± 3.0	20.5 ± 4.2**
DAYS 14 - 16 MEAN	MEAN+S.D.	26.0 ± 3.4	25.2 ± 3.0	25.7 ± 3.6	26.1 ± 2.8	21.3 ± 4.3**
DAYS 16 - 18 MEAN	MEAN+S.D.	27.6 ± 2.3	26.6 ± 2.8	27.2 ± 3.3	26.2 ± 2.7	22.5 ± 2.5**
DAYS 6 - 18 MEAN	MEAN+S.D.	25.4 ± 2.3	24.3 ± 1.9	24.7 ± 2.7	24.2 ± 1.9	20.4 + 2.6**
DAYS 18 - 20 MEAN	MEAN S.D.	26.4 ± 2.4	25.2 ± 2.8	25.9 ± 3.1	24.9 ± 2.7	22.5 + 2.4**
DAYS 6 - 20 MEAN	(EAN+S.D.	25.5 ± 2.2	24.4 ± 1.9	24.9 ± 2.7	24.2 ± 1.9	20.7 + 2.4**
DAYS 0 - 20 MEAN	4EAN±S.D.	24.6 ± 2.4	23.4 ± 2.1	23.9 ± 2.7	23.3 ± 2.1	20.9 ± 2.0**
DAYS = DAYS OF GESTATION [] = NUMBER OF VALUES AVERAGED a. Dosage occurred on days 6 through 17 of gestation. b. Excludes values for dam 12868, which had a litter consisting of 7 conceptuses. c. Excludes values for dam 12889, which had a litter consisting of 3 conceptuses. d. Excludes values that were incorrectly recorded, as well as those associated with spillage * Significantly different from the vehicle control group value (ps0.05).	AGED 6 through 12868, whi 12889, whi e incorrection the v	17 of gestation. ch had a litter c ch had a litter c ct had a litter c itly recorded, as	AGED 6 through 17 of gestation. 12868, which had a litter consisting of 7 con 12889, which had a litter consisting of 3 con e incorrectly recorded, as well as those assofrom the vehicle control group value (p<0.05)	7 conceptuses. 3 conceptuses. associated with spillage.		

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 6 (PAGE 1): MATERNAL RELATIVE FEED CONSUMPTION VALUES (G/KG/DAY) - SUMMARY

		0 (VEHICLE)	1	S	10	20
RATS TESTED	Z	25	25	255	2.5	50
PREGNANT	z	24	23	24	25	24
INCLUDED IN ANALYSES	z	24	23	23b	24c	24
MATERNAL PEED CONSUMPTION (G/KG/DAY)						
DAYS 0 - 6	MEAN+S.D.	85.5 + 10.1	84.4 ± 11.4	86.4 ± 9.8	85.1 ± 12.1	85.3 ± 7.6
DAYS 6 - 8	MEAN+S.D.	90.3 ± 8.4	85.3 + 5.5*	89.0 ± 10.2	83.9 ± 8.5	73.7 ± 10.7**
DAYS 8 - 10	MEAN+S.D.	85.1 ± 6.4	82.3 ± 5.0	81.3 ± 8.5	82.9 ± 7.3	72.4 ± 10.2**
DAYS 10 - 12	MEAN+S.D.	84.4 ± 8.7	81.8 ± 6.5	83.5 ± 6.9	84.3 ± 6.2	73.2 ± 15.0**
DAYS 12 - 14	MEAN+S.D.	85.4 ± 6.3	82.3 ± 6.9	83.1 ± 8.6	82.5 ± 8.0	74.6 ± 14.0**
DAYS 14 - 16	MEAN+S.D.	82.7 ± 8.6	80.6 ± 7.2	82.7 ± 8.9	9.8 + 0.98	74.6 ± 12.9**
DAYS 16 - 18	MEAN+S.D.	82.0 ± 6.0	79.6 ± 8.2	81.5 ± 8.3	80.5 ± 7.7	74.3 ± 6.5**
DAYS 6 - 18	MEAN+S.D.	84.6 ± 4.5	81.7 ± 4.2	83.0 ± 5.8	83.1 ± 4.1	73.6 ± 7.5**
DAYS 18 - 20	MEAN+S.D.	71.6 ± 5.6	68.8 ± 6.2	70.6 ± 6.3	70.0 ± 6.1	68.2 ± 5.3
DAYS 6 - 20	MEAN+S.D.	82.2 + 4.2	79.3 ± 4.2	8.08 + 5.6	80.7 ± 4.2	72.6 ± 6.5**
DAYS 0 - 20	MEAN+S.D.	80.2 ± 4.3	77.8 ± 4.4	79.4 + 5.8	79.0 ± 4.9	74.3 ± 4.8**
DAYS = DAYS OF GESTATION [] = NUMBER OF VALUES AVERAGED a. Dosage occurred on days 6 through 17 of gestation b. Excludes values for dam 12868, which had a litter c. Excludes values for dam 12889, which had a litter d. Excludes values were incorrectly recorded, as well * Significantly different from the vehicle control * Significantly different from the vehicle control	AVERAGED days 6 throug r dam 12868, w r dam 12889, w re incorrectly erent from the	= DAYS OF GESTATION = NUMBER OF VALUES AVERAGED Dosage occurred on days 6 through 17 of gestation. Excludes values for dam 12868, which had a litter consisting of 7 Excludes values for dam 12889, which had a litter consisting of 3 Excludes values were incorrectly recorded, as well as those associsting of 3 significantly different from the vehicle control group value (p≤0. Significantly different from the vehicle control group value (p≤0.	= DAYS OF GESTATION = NUMBER OF VALUES AVERAGED Dosage occurred on days 6 through 17 of gestation. Excludes values for dam 12868, which had a litter consisting of 7 conceptuses. Excludes values for dam 12889, which had a litter consisting of 3 conceptuses. Excludes values were incorrectly recorded, as well as those associated with spillage significantly different from the vehicle control group value (p≥0.05). Significantly different from the vehicle control group value (p≥0.01).	conceptuses. conceptuses. ated with spillage. 05).		10 1712

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 7 (PAGE 1): CAESAREAN-SECTIONING OBSERVATIONS - SUMMARY

DOSAGE (MG/KG/DAY)a		0 (VEHICLE)	: -	S	10	20
RATS TESTED	N	25	25	25	25	25
PREGNANT	(%) N	24 (96.0)	23 (92.0)	24 (96.0)	25 (100.0)	24(96.0)
RATS PREGNANT AND CAESAREAN SECTIONED ON DAY 20 OF GESTATION	z	2.4	23	24	25	24
INCLUDED IN ANALYSES	Z	24	23	23b	24C	24
CORPORA LUTEA	MEAN S.D.	17.1 ± 1.8	17.2 ± 1.9	17.2 ± 2.1	16.8 ± 2.0	16.5 ± 1.8
IMPLANTATIONS	MEAN+S.D.	15.1 ± 1.8	15.6 ± 2.0	15.6 ± 1.4	15.1 ± 1.3	14.5 ± 1.7
LITTER SIZES	MEAN+S.D.	14.2 ± 1.8	15.2 ± 2.1	14.9 ± 1.9	14.6 ± 1.6	13.6 ± 1.9
LIVE FETUSES	N MEAN+S.D.	342 14.2 ± 1.8	349 15.2 ± 2.1	342 14.9 ± 1.9	351 14.6 ± 1.6	327 13.6 ± 1.9
DEAD FETUSES	z	0	0	0	0	o
RESORPTIONS	MEAN+S.D.	0.9 ± 1.2	0.4 + 0.6	0.8 ± 1.2	0.5 ± 0.8	0.9 ± 1.0
EARLY RESORPTIONS	N MEAN+S.D.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 10 \\ 0.4 \pm 0.6 \end{array}$	18 0.8 ± 1.2	12 0.5 ± 0.8	0.9 ± 1.0
LATE RESORPTIONS	z	0	٥	0	0	0
DAMS WITH ANY RESORPTIONS	(8) N SN	12(50.0)	9(39.1)	11 (47.8)	9(37.5)	14 (58.3)
DAMS WITH ALL CONCEPTUSES RESORBED	ES N(%)	0.0 0.0)	(0.0)0	(0.0)0	0.0 0.0)	0.0 00
DAMS WITH VIABLE FETUSES	(%) N S	24(100.0)	23(100.0)	23 (100.0)	24 (100.0)	24 (100.0)
PLACENTAE APPEARED NORMAL	(AL N(%)	24 (100.0)	23 (100.0)	23 (100.0)	24(100.0)	24 (100.0)

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N.ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

1); LITTER OBSERVATIONS (CAESAREAN-DELIVERED FETUSES) - SUMMARY TABLE 8 (PAGE

LITTERS WITH ONE OR MORE LIVE PETUSES INCLUDED IN ANALYSES IMPLANTATIONS LIVE FETUSES MEAN_S.D. LIVE MALE FETUSES * LIVE MALE FETUSES/LITTER * LIVE MALE FETUSES/LITTER	24 24 15.1 ± 1.8 342 14.2 ± 1.8	23			
NALYSES N MEAN + S. D. N MEAN + S. D. USES N TER MEAN + S. D.			24	25	24
MEAN+S.D. N MEAN+S.D. USES N TER MEAN+S.D.		23	23b	24c	24
N MEAN ₁ S.D. N MEAN ₂ S.D.		15.6 ± 2.0	15.6 ± 1.4	15.1 ± 1.3	14.5 ± 1.7
N MEAN <u>+</u> S.D.		349 15.2 ± 2.1	342 14.9 ± 1.9	351 14.6 ± 1.6	327 13.6 ± 1.9
ITTER MEAN±S.D.	166	171	165	180	172
	48.8 ± 13.1	48.8 ± 12.2	48.6 ± 11.8	51.7 ± 10.6	52.4 ± 13.0
LIVE FETAL BODY WEIGHTS (GRAMS)/LITTER MEAN±S.D.	3.50 ± 0.50	3.36 ± 0.22	3.39 ± 0.20	3.32 ± 0.20*	3.16 ± 0.17**
MALE FETUSES MEAN+S.D.	3.61 ± 0.50	3.48 ± 0.23	3.50 ± 0.22	3.38 ± 0.20**	3.26 ± 0.19**
FEMALE FETUSES MEAN S.D.	3.38 ± 0.52	3.25 ± 0.24	3.30 ± 0.19	3.25 ± 0.23	3.05 ± 0.16*
* RESORBED CONCEPTUSES/LITTER MEAN±S.D.	5.5 ± 7.2	2.8 ± 3.7	5.1 ± 7.7	3.4 ± 5.0	8.9 + 0.9

Dosage occurred on days 6 through 17 of gestation. Excludes values for dam 12868, which had a litter consisting of 7 conceptuses. Excludes values for dam 12889, which had a litter consisting of 3 concpetuses. Significantly different from the vehicle control group value $(p \le 0.05)$. Significantly different from the vehicle control group value $(p \le 0.01)$.

[.] * + C iù in

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 9 (PAGE 1): FETAL ALTERATIONS - SUMMARY

DOSAGE GROUP DOSAGE (MG/KG/DAY)a		I 0 (VEHICLE)	11 1	III S	1V 10	V 20
LITTERS EVALUATED FETUSES EVALUATED LIVE		24 342 342	3.49 3.49 3.49	24 347 347	3 2 5 3 5 4 4 5 5 5 4 4 5 5 5 6 4 6 6 6 6 6 6 6	24 326 326
LITTERS WITH FETUSES WITH ANY ALTERATION OBSERVED		6 (25.0)	8 (34.8)	4 (16.7)	7(28.0)	8 (33.3)
FETUSES WITH ANY ALTERATION OBSERVED	(*) N	15 (4.4)	10 (2.9)	6(1.7)	8 (2.2)	12(3.7)
* FETUSES WITH ANY ALTERATION/LITTER ME	MEAN+S.D.	4.4 + 10.3	2.8 + 4.4	1.6 ± 3.9	2.1 ± 3.9	4.0 ± 7.6

a. Dosage occurred on days 6 through 17 of gestation.

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 10 (PAGE 1): FETAL GROSS EXTERNAL ALTERATIONS - SUMMARY

DOSAGE GROUP DOSAGE (MG/KG/DAY)a		I 0 (VEHICLE)	1	ហ	10	20
LITTERS EVALUATED FETUSES EVALUATED LIVE		24 342 342	3 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	24 347 347	3.5.4 3.5.4 3.5.4	326 326 326
BODY: TRUNK SHORT	(%) N	(0.0)0	0 0 0		1 (4.0)	
FETAL INCIDENCE	(%) ≥	0 0 0 0	0.0 00	0.0 00	1(0.3)	0.0)0
TAIL: ABSENT LITTER INCIDENCE	(%) N	0.0)0	0.0 0	0.0 0	1(4.0)	0.0.0
FETAL INCIDENCE	(*) N	0 0 0 0				

³MA10083165

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 11 (PAGE 1): FETAL SOFT TISSUE ALTERATIONS - SUMMARY

DOSAGE GROUP DOSAGE (MG/KG/DAY)a		0 (VE	I 0 (VEHICLE)		11 1	F	111 5		IV 10	2	20
LITTERS EVALUATED FETUSES EVALUATED LIVE	222		24 166 166		23 167 167	, , ,	24 169 169	17	25 170 170	24 158 158	4, 80 60
VESSELS: UMBILICAL ARTERY DESCENDS LITTER INCIDENCE N(%) PETAL INCIDENCE N(%)	DESCENDS N(8) N(8)	3()	THE LEFT OF URINARY BLADDER 3 (12.5) 1 (4.3) 3 (1.8) 1 (0.6)	IARY BLA 1 (DDER 4.3) C.6)	1 (4.2)	0	0.0)) 0	0.0)
VESSELS: INNOMINATE, ABSENT LITTER INCIDENCE FETAL INCIDENCE	r N (\$) N (\$)) 0	0.0)	2 (8.7) 1.2)	0	0.0)	0	0.0)	00	0.0
LUNGS: DIAPHRAGMATIC LOBE, LITTER INCIDENCE FETAL INCIDENCE	ABSENT N(%) N(%)	0	0.0)	1(4.3)	00	0.0)) 0	0.0)	0	0.0)
LUNGS: APICAL LOBE, ABSENT LITTER INCIDENCE PETAL INCIDENCE	(*) Z Z	1(4.2)	0	0.0)	00	0.0)	0	0.0)	00	0.0)
KIDNEYS: PELVIS, SLIGHT DI LITTER INCIDENCE FETAL INCIDENCE	DILATION N(%) N(%)	2(8.3) 1.2)) 0	0.0)	00	0.0)	00	0.0)	00	0.0)
KIDNEYS: PELVIS, MODERATE LITTER INCIDENCE FETAL INCIDENCE	DILATION N(%) N(%))0	0.0))0	0.0)	0	0.0)	1 (4.0)	000	0.0)

Dosage occurred on days 6 through 17 of gestation.

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 12 (PAGE 1): FETAL SKELETAL ALTERATIONS - SUMMARY (See footnotes on the last page of this table.)

DOSAGE (MG/KG/DAY) a	0		(VEHICLE)		1		S.		10	1 3 3 1 1	20
LITTERS EVALUATED	Z	2	4		33	1	24		25		24
FETUSES EVALUATED	z	176	9	7	182	-	178		184		168
LIVE	z	17	9	Ã	82		178		184	1	9
SKULL: NASAL - FRONTAL,	L, SUTURE LARGE										
LITTER INCIDENCE) (0.0)	0	0.0)	0	0.0)	1	4.0}	0	0.0
FETAL INCIDENCE	N (%)) (0.0)	0 (0.0)	0 (0.0)	1 (0.5)	0 (0.0
CERVICAL VERTEBRAE: C	CERVICAL RIB PRESENT AT	r AT	7TH CERVICAL VERTEBRA	VERTE	3RA						
ω		0	0.0)	2 ((7.8	1 (4.2)	3 (3 (12.0)	4 (16.7)
FETAL INCIDENCE	(%) N) 0	0.0)	3 (1.6)	1 (0.6)	3 (1.6)	4	2.4)
CERVICAL VERTERRAR: 4	PRESENT										
ы	•	0	0.0)	0	0.0)	0	0.0)	7	4.0)	0	0.0)
FETAL INCIDENCE	(#) Z	0	0.0)	0 (0.0)	0 (0.0)	1 (0.5)b	0	0.0
O SERBERT VERBERT	DRESENT										
60		0	0.0)	0	0.0)	0	0.0)	1 (4.0)	0	0.0
FETAL INCIDENCE	N(\$)	0	0.0)	0	0.0)	0 (0.0	7	0.5)b	0	0.0
THORACIC VERTEBRAE: A	ARCH, NOT OSSIFIED	ò	6	,	(6)	ō	(0.0) [4.0)	0	0.0
PETAL INCIDENCE	(*) N	<u> </u>	0.0)	, o	0.0)	0	0.0)	Ä	0.5)b	0	
THORACTC VERTERBAR:	CENTRIM NOT OSSIFIED	E									
(+1		ŏ	0.0)	0	0.0)	0	0.0)	<u>.</u>	4.0)	0	0.0
FETAL INCIDENCE	N (%)	0	0.0)	ŏ	0.0)	ŏ	0.0)	1 (0.5)b	ō	0.0
LUNBAR VERTEBRAE: 0 F	0 PRESENT										
LITTER INCIDENCE	N (%)	0 (0.0)	ŏ	0.0)	0	(0.0)	1	4.0)	0	0 .
FETAL INCIDENCE	N (%)	0	0.0)	ŏ	(0.0)	ŏ	0.0)		0.5)b	0	0.0
TIMBAR VERTEBRAE: ABCH.	CH, NOT OSSIFIED										
		0	0.0)	0	0.0)	0	0.0)	1	4.0)	Õ	0.0
FETAL INCIDENCE	(#) N	0	0.0)	0	0.0)	ò	0.0	1	0.5)b	Õ	0.0
LUMBAR VERTEBRAE: CEN	CENTRUM, NOT OSSIFIED							,	;	·	
LITTER INCIDENCE	(#) N	0	0.0	0	0.0)	ŏ i	(0.0	7;	4.0)	0	6 6
FETAL INCIDENCE	(%) N	0	0.0)	0	0.0)	ō	0.0)	7	a (c. o	Ď	0.0

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

DOSAGE GROUP DOSAGE (MG/KG/DAY) a		0 (VE	I (VEHICLE)		II 1	H	111 5		10 10		2 o
LITTERS EVALUATED FETUSES EVALUATED LIVE	ZZZ	744	24 176 176		23 182 182		24 178 178	ि लिली ! ! !	25 184 184	1	24 168 168
SACRAL VERTEBRAE: 0 PRESENT LITTER INCIDENCE FETAL INCIDENCE	N (%) N (%)	0	0.0)) 0	0.0)	0	0.0)	, i	4.0) 0.5)b) 0	0.0)
SACRAL VERTEBRAE: ARCH, NOT LITTER INCIDENCE FETAL INCIDENCE	OSSIFIED N(%) N(%)	0	0.0)	0	0.0)	0	0.0)	i i	4.0) 0.5}b	0	0.0)
SACRAL VERTEBRAE: CENTRUM, N LITTER INCIDENCE FETAL INCIDENCE	NOT OSSIFIED N(%) N(%)	БD 0 (0.0)	0	0.0)	0	0.0)	ñ	4.0) 0.5)b	0 0	0.0
CAUDAL VERTEBRAE: 0 PRESENT LITTER INCIDENCE FETAL INCIDENCE	N (#) N (#)	0	0.0)	0	0.0)	0	0.0)), (4.0) 0.5)b	00	0.0)
RIBS: WAVY LITTER INCIDENCE FETAL INCIDENCE	(*) N N	0	0.0)	1 (4.3) 0.5))0	0.0)	00	0.0)	3(12.5) 4.2) **C
RIBS: 0 PRESENT LITTER INCIDENCE FETAL INCIDENCE	(#) Z) o	0.0)	0	0.0)	0	0.0)	1(4.0) 0.5)b)0	0.0)
RIBS: NOT OSSIFIED LITTER INCIDENCE FETAL INCIDENCE	(*)N	0	0.0)	0	0.0)	000	(0.0)	1(4.0) 0.5)b) 0	0.0
RIBS: INCOMPLETELY OSSIFIED LITTER INCIDENCE FETAL INCIDENCE	(HYPOPLASTIC) N(%) O(%)	TIC) 0(0(0.0	00	0.0)	00	0.0)	0	0.0)	1(4.2) 0.6)c

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N.ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 12 (PAGE 3): FETAL SKELETAL ALTERATIONS - SUMMARY

DOSAGE (MG/KG/DAY)a	Ü	0 (VEH	(VEHICLE)		7		2		10		20
LITTERS EVALUATED FETUSES EVALUATED LIVE	222	24 176 176	. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		23 182 182		24 178 178		25 184 184		24 168 168
STERNAL CENTRA: SUMMARIZAT	SUMMARIZATION (Includes	1	1	1	1 1 1 1 1 1 1 1	1 3 5 1 1	1 1 4 1 1 1 1 1 1) ; ; ; ;	; ; ; ; ; ; ;	1 1 1 1 1 1	1 1 1 1 1
BLEIMAI CENCIA) LITTER INCIDENCE FETAL INCIDENCE	N(#) N(%)	3 (12	12.5)	2 (8.7)	1, 1	4.2)	1 (4.0)	1(4.2)
STERNAL CENTRA: 1ST, INCOMPLETELY	APLETELY OSSIFIED					•	į	,	;	Š	ć
LITTER INCIDENCE FETAL INCIDENCE	N (%) N (%)	2 4) 4) 8	8.3)	1 (4.3) 0.5)	1 (4.2) 0.6)	1,	4.0) 0.5)	0 0	0.0
STERNAL CENTRA: 1ST, NOT C	OSSIFIED N(%)) (4.2)	1 (4.3)	0 (0.0)) 0	0.0)	1 (4.2)
FETAL INCIDENCE	(*) Z	3(1.7)d	1 (0.5)	0	0.0)	0 (0.0)	1 ((9.0
PELVIS: SUMMARIZATION (Include incompletely ossified pubes and ischaid and not ossified pubes)	cludes s and ubes)	-	í	č	â	=	(7	2 (0	,0	0.0
FETAL INCIDENCE	(%) N		1.7)	0	(0.0)	2 (1.1)	2 (1.1)	0	0.0
PELVIS: PUBIS, INCOMPLETE LITTER INCIDENCE FETAL INCIDENCE	ILY OSSIFIED N(%) N(%)	1 (4 3 ()	1.2) 1.7) d	0	0.0)	00	(0'0)	1 (4.0) 0.5)	00	0.0)
OSSIFI	ED N(8)	0	0.0)	0	(0.0)	0	(0.0	1 (4.0)	000	(0.0)
FEIAL INCIDENCE PELVIS: ISCHIUM, INCOMPLETELY OSSIFIED LITTER INCIDENCE N(\$) FETAL INCIDENCE	N(%) TELY OSSIFIED N(%) N(%)		(0.0)		(0.0	5 1 5	1.1)	000			0.0
a. Dosage occurred on days b. Fetus 12885-15 had other c. Fetus 12909-7 had other d. Fetus 12802-1 had other	6 through r skeletal skeletal a	17 of gestal alterations.	station. ons.	1 1 1 1	, , , , , , , , ,	1 5 1 1 1				F	171

10 171232

PROTOCOL 418 011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N.ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7) TABLE 13 (PAGE 1): FETAL OSSIFICATION SITES - CAESAREAN-DELIVERED LIVE FETUSES (DAY 20 OF GESTATION) - SUMMARY

LITTERS EXAMINED FETUSES EXAMINED 1.TUF		de l'approprie	(111)	•		,		•			
	. 222	24 176 176	1 1 1 1 1 1 1	23 182 182	: : : : : :	23 178 178	 	24 184 184		24 168 168	
OSSIFICATION SITES PER FETUS PER	S PER LITTER	ER			• • • • • • • • • • • • • • • • • • •))))))	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		F 6 1 1 1 1 1 1	1 1 1 1 1 1	- - - - -
HYOID MEA	MEAN+S.D.	0.97 ±	80.0	1 86.0	90.0	0.98 +	90.0	+ 16.0	90.0	1.00 ±	0.02
VERTEBRAE											
	MEAN + S.D.		00.00		00.00	7.00 ±	00.00		00.00		00.0
THORACIC MEA	AN+S.D.		0.14		60.0	. 07	0.17		0.19		0.16
	AN+S.D.		0.14		60.0	5.92 ±	0.17	5.89 +	0.20	5.84 +	0.16
	AN+S.D.	3.00 +	00.00	3.00 +	00.00	00.	00.0	3.00 +	00.00	3.00 +	00.0
CAUDAL	MEAN+S.D.	4.96 +	1.08		0.41	4.74 +	0.37	4.70 ±	0.23*	4.59 +	0.43
RIBS (PAIRS) MEA	MEAN+S.D.	13.06 ±	0.10	13.03 ±	90.0	13.04 ±	0.10	13.09 ±	0.17	13.12 ±	0.14
STERNUM	MEAN+13.D	+ 66 0	0.04	1.00 +	00.0	1.00 +	00.00	1.00 +	0.02	1.00 +	0.00
ENTERS	AN+S.D.	.70	0.55		0.33		0.24		0.25	3.74 +	0.32
	MEAN+S.D.	+ 86.0	0.08	1.00 +	00.00	1.00 +	00.00	1.00 +	0.02		00.0
FORELIMB D											
ST	MEAN+S.D.		00.00	0.00	00.0		00.0		00.0		00.0
METACARPALS MEA	AN+S.D.		0.27		0.29		0.31		0.27		0.28
	AN+S.D.		00.0		00.0		00.0	5.00 +	00.0	5.00 +	0
ES	MEAN S.D.	5.20 +	0.73	5.12 +	0.30	5.04 +	0.18	5.09 ±	0.28	5.01 ±	0.03
				;	,	,			,		6
TARSALS MEA	MEAN+S.D.		00.0	00.0	00.0	00.0	00.0	+1 00.0	00.0	+1 00.0	00.0
METATARSALS	MEAN+S.D.	3.99 +	0.28		00.0		0.00		0.02		0.04
DIGITS	AN+S.D.		00.00	5.00 +	00.0	5.00 +		5.00 +	00.00	5.00 ±	0
PHALANGES MEA	AN+S.D.	4.82 +	06.0	5.00 +	00.0	5.00 +	00.0		0.12		0.20

DG = DAY OF PRESUMED GESTATION

1-6316.7)

E IN RATS (SPONSOR'S STUDY NUMBER: T-																													
ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-	CLINICAL OBSERVATIONS - INDIVIDUAL DATA	DESCRIPTION	0 (VEHICLE) MG/KG/DAY	NO ADVERSE FINDINGS	ADVERSE	NO ADVERSE FINDINGS	LOCALIZED ALOPECIA: LIMBS	ALOPECIA NO LONGER APPARENT	NO ADVERSE FINDINGS	NO ADVERSE FINDINGS	NO ADVERSE FINDINGS																		
PROTOCOL 418-011: ORAL (GAVAGE)	TABLE 14 (PAGE 1): CLINICAL OB	RAT #	DOSAGE GROUP I	12801	12802	12803	12804	12805	12806	12807	12808	12809	12810	12811	12812	12813	12814	12815	12816	12817	12818	12819	12820	12821	12822 DG(8-19)	DG(20)	12823	12824	12825

3MA10083171

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

RAT #	DESCRIPTION	
DOSAGE GROUP II	1 MG/KG/DAY	
12826	NO ADVERSE FINDINGS	
12827	NO ADVERSE FINDINGS	
12828	NO ADVERSE FINDINGS	
12829	NO ADVERSE FINDINGS	
12830	NO ADVERSE FINDINGS	
12831 DG(9- 19)	LOCALIZED ALOPECIA: UNDERSIDE	
DG(19 20)	LOCALIZED ALOPECIA: LIMBS a	
12832	NO ADVERSE FINDINGS	
12833	NO ADVERSE FINDINGS	
12834 DG(14-19)	LOCALIZED ALOPECIA: UNDERSIDE	
DG (20)	ALOPECIA NO LONGER APPARENT	
12835	NO ADVERSE FINDINGS	
12836	NO ADVERSE FINDINGS	
12837	NO ADVERSE FINDINGS	
12838	NO ADVERSE FINDINGS	
12839	NO ADVERSE FINDINGS	
12840		
12841	NO ADVERSE FINDINGS	
12842	NO ADVERSE FINDINGS	
12643	NO ADVERSE FINDINGS	
12844	NO ADVERSE FINDINGS	
12845	NO ADVERSE FINDINGS	
12846	NO ADVERSE FINDINGS	
12847	NO ADVERSE FINDINGS	
12848		
12849 DG(10- 20)	LOCALIZED ALOPECIA: UNDERSIDE	D
13050	CONTONIO COGGICA CIA	

DG = DAY OF PRESUMED GESTATION
a. Observation confirmed at necropsy.

STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

RAT #			DESC	DESCRIPTION			
DOSAGE GROUP	III dr		5 MG	5 MG/KG/DAY	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
12851	1	1	Y ON	NO ADVERSE FINDINGS	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	• • • • • • • • • • • • • • • • • • •	
12852			NO A	NO ADVERSE FINDINGS			
12853			NO A	ADVERSE FINDINGS			
12854			NO A	ADVERSE FINDINGS			
12855			NO A	ADVERSE FINDINGS			
12856			NO A	NO ADVERSE FINDINGS			
12857			NO A	NO ADVERSE FINDINGS			
	DG (18	- 20)		LOCALIZED ALOPECIA:	UNDERSIDE a		
12859			W ON	NO ADVERSE FINDINGS			
12860			M ON	NO ADVERSE FINDINGS			
12861			a on	NO ADVERSE FINDINGS			
12862			NO A	NO ADVERSE FINDINGS			
	DG (17-	- 20)		LOCALIZED ALOPECIA:	UNDERSIDE a		
12864			NO A	NO ADVERSE FINDINGS			
12865			4 ON	NO ADVERSE FINDINGS			
12866 DO	DG (19-	- 20)		LOCALIZED ALOPECIA:	NECK a		
			NO A	NO ADVERSE FINDINGS			
12868 D	G(17	DG (17- 20)		RIGHT FOREPAW: SECO	SECOND AND THIRD DIGITS	ITS FUSED a	
12869			NON	NO ADVERSE FINDINGS			
12870			NO	NO ADVERSE FINDINGS			
12871			NON	ADVERSE FINDINGS			
12872			NO	ADVERSE FINDINGS			
12873			NO	ADVERSE FINDINGS			
12874			NO P	NO ADVERSE FINDINGS			
			r OM	SOUTHWISE GORDANA			

DG = DAY OF PRESUMED GESTATION
a. Observation confirmed at necropsy.

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N.ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 14 (PAGE 4): CLINICAL OBSERVATIONS - INDIVIDUAL DATA

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	UNDERSIDE A LIMBS A LIMBS A	
1	1		
×.	AY	E FINDINGS	
DESCRIPTION	10 MG/KG/DAY	O ADVERSE FINDINGS TO ADVE	
a a	10	O O O O O O O O O O O O O O O O O O O	
	1	10- 20) 16- 20) 17- 20)	
1	GROUP IV	DG(10 DG(10	r i I j i i i
RAT #	DOSAGE	12876 12877 12878 12880 12880 12881 12882 12882 12885 12886 12889 12890 12891 12892 12894 12893 12894 12895 12895 12895 12895	
1			1 1 1 1

DG = DAY OF PRESUMED GESTATION a. Observation confirmed at necropsy.

(GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-Et FOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)	NOIL	G/DAY		FINDINGS FINDINGS FINDINGS	<u>-</u>	NO ADVERSE FINDINGS LOCALIZED ALOPECIA: UND ADVERSE FINDINGS NO ADVERSE FINDINGS NO ADVERSE FINDINGS NO ADVERSE FINDINGS	NO ADVERSE FINDINGS LOCALIZED ALOPECIA: UNDERSIDE LOCALIZED ALOPECIA: UNDERSIDE LOCALIZED FINDINGS NO ADVERSE FINDINGS NO ADVERSE FINDINGS NO ADVERSE FINDINGS	NO ADVERSE FINDINGS LOCALIZED ALOPECIA: LIMBS a LOCALIZED TO TOUCH UNGROOMED COAT	
DEVELOPMEN ;ERVATIONS	DESCRIPTION	20 MG/KG/DAY	NO ADVERSE NO ADVERSE NO ADVERSE NO ADVERSE	NO ADVERSE NO ADVERSE NO ADVERSE	NO ADVENCE LOCALIZED A NO ADVERSE NO ADVERSE	NO ADVERSE LOCALIZED A NO ADVERSE NO ADVERSE NO ADVERSE	NO ADV LOCALI LOCALI NO ADV NO ADV	NO AD LOCAL COLD UNGRO UNGRO	nectoral.
ORAL		DOSAGE GROUP V	01 02 03	04 105 106	12908 12909 12910	12911 12912 DG(13 - 20) 12914 12915	12916 12917 DG(16- 20) 12918 DG(16- 20) 12920 12921	12922 12923 DG (17- 20) 12924 DG (15- 17) 12925 DG (15- 17) DG (15- 17)	Observation confirmed at necropsy
PROTOCOL 418-011: TABLE 14 (PAGE 5)	RAT	POOS	12901 12902 12903	12904 12905 12906	125	12 12 12 12 12	ддаааа	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•

DEVELOPMENTAL TOXICITY STUDY OF N ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7) SERVATIONS INDIVIDUAL DATA DESCRIPTION 0 (VEHICLE) MG/KG/DAY	MG/KG/DRY	5 MG/KG/DAY	IDE a 10 MG/KG/DAY	20 MG/KG/DAY	
011: ORAL (GAVAGE) 3E 6): CLINICAL OB	NO ADVERSE FINDINGS NO ADVERSE FINDINGS NO ADVERSE FINDINGS	LITE DOSAGE GROUP II NO ADVERSE FINDINGS	SATELLITE DOSAGE GROUP III NO ADVERSE FINDINGS UNDERSIDE LOCALIZED ALOPECIA: LOCALIZED ALOPECIA: 12581 DG(17-18) NO ADVERSE FINDINGS 12582	SATELLITE DOSAGE GROUP IV NO ADVERSE FINDINGS NO ADVERSE PINDINGS 12584 NO ADVERSE PINDINGS 12585	12587 12587 12587 NO ADVERSE FINDINGS 12588 NO ADVERSE FINDINGS 12589 12589 12590 12590 12590 12590 12590 12590 a. Observation confirmed at necropsy.

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

DATA
INDIVIDUAL
٠
NECROPSY OBSERVATIONS
NECROPSY
1):
(PAGE
15
TABLE 15

DOSAGE GROUP	RAT	DAY OF	PREGNANCY	DOSAGES	
DOSAGE (MG/KG/DAY)	NUMBER	NECROPSY	STATUS	ADMINISTERED	OBSERVATIONS
•					
(BILLETE)	12801	DG 20	Ω.	12	TISSUES APPEARED
(Venicue)	12802	DG 20	ď	12	TISSUES APPEARED
	12803	DG 20	c.	12	APPEARED
	12804	DG 20	d.	12	TISSUES APPEARED
	12805	DG 20	Δ,	12	TISSUES APPEARED
	12806	DG 20	ď	12	TISSUES APPEARED
	12807	DG 20	ቤ	12	TISSUES APPEARED
	12808	DG 20	Q,	12	TISSUES APPEARED
	12809	DG 20	Δı,	12	TISSUES APPEARED
	12810	DG 20	Δ	12	TISSUES APPEARED
	12811	DG 20	o.	1.2	TISSUES APPEARED
	12812	DG 20	а	12	TISSUES APPEARED
	12813	DG 20	a Z	12	TISSUES APPEARED
	12814		М	12	TISSUES APPEARED
	12815	DG 20	۵۰	12	TISSUES APPEARED
	12816		d.	1.2	TISSUES APPEARED
	12817	DG 20	Д	12	TISSUES APPEARED
	12818		ď	12	TISSUES APPEARED
	12819		Δ.	12	TISSUES APPEARED
	12820		۵.	12	TISSUES APPEARED
	12820		۵.	12	APPEARED
	12821	DG 20	ď	12	TISSUES APPEARED
	12822	DG 20	۵.	12	TISSUES APPEARED
	12823	DG 20	ď	12	TISSUES APPEARED
	12824		Δ.	12	TISSUES APPEARED
	1 4 4	000	-	1.7	ALL TISSUES APPEARED NORMAL.

P = PREGNANT NP = NOT PREGNANT DG = DAY OF GESTATION

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T 6316.7)

TABLE 15 (PAGE 2): NECROPSY OBSERVATIONS - INDIVIDUAL DATA

DOSAGE GROUP DOSAGE (MG/KG/DAY)	rat number	DAY OF NECROPSY	PREGNANCY	DOSAGES ADMINISTERED	OBSERVATIONS
II	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
; 	12826	DG 20	գ	12	ALL TISSUES APPEARED NORMAL.
1	12827	DG 20	£.	12	
	12828	DG 20	ů,	12	_
	12829	DG 20	ů,	12	APPEARED
	12830	DG 20	<u>a</u>	12	
	12831	DG 20	ď	12	ALL TISSUES APPEARED NORMAL.
	12832	DG 20	ď	12	APPEARED 1
	12833	DG 20	cu.	12	_
	12834	DG 20	Ф	12	ALL TISSUES APPEARED NORMAL.
	12835	DG 20	ρ	12	ALL TISSUES APPEARED NORMAL.
	12836	DG 20	ď	12	ALL TISSUES APPEARED NORMAL.
	12837	DG 20	d.	12	_
	12838	DG 20	ď	12	TISSUES APPEARED
	12839	DG 20	a.	12	ALL TISSUES APPEARED NORMAL.
	12840	DG 20	Δ,	12	
	12841	DG 20	Ь	12	ALL TISSUES APPEARED NORMAL.
	12842	DG 20	Δ,	12	
	12843	DG 20	۵.	12	ALL TISSUES APPEARED NORMAL.
	12844	DG 20	۵۰	12	ALL TISSUES APPEARED NORMAL.
	12845	DG 20	МP	12	ALL TISSUES APPEARED NORMAL.
	12846	DG 20	۵۰	12	APPEARED
	12847	DG 20	Ф	12	APPEARED
	12848	DG 20	c.	12	ALL TISSUES APPEARED NORMAL.
	12849	DG 20	Q,	12	ALL TISSUES APPEARED NORMAL.
	1 1		,		I WOOM CHARGE CONTOCKED

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 15 (PAGE 3):	NECROPSY OBSERVATIONS - INDIVIDUAL DATA	TIONS - IND	IVIDUAL DA	ГA	
DOSAGE GROUP DOSAGE (MG/KG/DAY)	RAT	DAY OF NECROPSY	PREGNANCY	DOSAGES ADMINISTERED	OBSERVATIONS
III		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		
S	12851	DG 20	Δ.	12	ALL TISSUES APPEARED NORMAL.
	12852	DG 20	Δ ,	12	ALL TISSUES APPEARED NORMAL.
	12853	DG 20	а	12	ALL TISSUES APPEARED NORMAL.
	12854		Q.	12	ALL TISSUES APPEARED NORMAL.
	12855	DG 20	ďN	12	ALL TISSUES APPEARED NORMAL.
	12856		ሴ	12	ALL TISSUES APPEARED NORMAL.
	12857	DG 20	Δ,	12	ALL TISSUES APPEARED NORMAL.
	12858	DG 20	М	12	ALL TISSUES APPEARED NORMAL.
	12859		Q.	12	ALL TISSUES APPEARED NORMAL.
	12860	DG 20	<u>α</u>	12	ALL TISSUES APPEARED NORMAL.
	12861	DG 20	ď	12	ALL TISSUES APPEARED NORMAL.
	12862	DG 20	Δ,	12	ALL TISSUES APPEARED NORMAL.
	12863	DG 20	ፈ	12	ALL TISSUES APPEARED NORMAL.
	12864		Ф	12	ALL TISSUES APPEARED NORMAL.
	12865		۵.	12	ALL TISSUES APPEARED NORMAL.
	12866	DG 20	Q,	12	ALL TISSUES APPEARED NORMAL.
	12867		ם	12	ALL TISSUES APPEARED NORMAL.
	12868	DG 20	Д	12	ALL TISSUES APPEARED NORMAL.
	12869	DG 20	ď	12	ALL TISSUES APPEARED NORMAL.
	12870	DG 20	ሲ	12	ALL TISSUES APPEARED NORMAL.
	12871		а	12	ALL TISSUES APPEARED NORMAL.
	12872	DG 20	А	12	ALL TISSUES APPEARED NORMAL.
	12873	DG 20	۵٠	12	ALL TISSUES APPEARED NORMAL.
	12874	DG 20	d	12	ALL TISSUES APPEARED NORMAL.
	12875	DG 20	ď	12	ALL TISSUES APPEARED NORMAL.
P = PREGNANT NP =	= NOT PREGNANT	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N.ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 15 (PAGE 4): NECROPSY OBSERVATIONS - INDIVIDUAL DATA

OBSERVATIONS		ALL TISSUES APPEARED NORMAL.	ALL TISSUES APPEARED NORMAL.	ALL TISSUES APPEARED NORMAL.		TISSUES	ALL TISSUES APPEARED NORMAL.		TISSUES APPEARED	TISSUES APPEARED	TISSUES APPEARED	TISSUES APPEARED	APPEARED	TISSUES APPEARED	APPEARED	TISSUES APPEARED	TISSUES APPEARED			APPEARED	APPEARED	ALL TISSUES APPEARED NORMAL.				
DOSAGES ADMINISTERED		12	12	12	1.5	: 2	1.2	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
PREGNANCY STATUS		۵	۵ ،			∟ ن	, ρ.	. 0.	G.	<u>a</u>	۵	ď	ď	ů,	ď	Ф	۵.	۵.	ሲ	c.	Q	Δ.	. a.	O.	<u>a</u>	۵.
DAY OF NECROPSY	1	טיי טע	94 6	2000	02 50	DG 50	02 50 20 20	02 00	DG 20	DG 20	DG 20	DG 20	DG 20	DG 20	DG 20	DG 20	DG 20	DG 20		DG 20	DG 20	ng 20			DG 20	DG 20
RAT	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20001	17976	17871	12878	12879	12881	12001	12883	12884	12885	12886	12887	12888	12889	12890	12891	12892	12893	12894	12895	12006	12097	12021	12899	12900
DOSAGE GROUP DOSAGE (MG/KG/DAY)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ν	10																							

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N.ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7) TABLE 15 (PAGE 5): NECROPSY OBSERVATIONS . INDIVIDUAL DATA

		APPEARED APPEARED	, APPEARED NORMAL.			S APPEARED NORMAL.	S APPEARED NORMAL.	TISSUES APPEARED NORMAL		MEDIAN LOBE, TAN AREA (0.6 CM X 0.8 CM).	ALL OTHER TISSUES APPEARED NORMAL.	TISSHES APPEARED NORMAL.	ES APPEARED NORMAL	APPEAKED	APPEARED	JES APPEARED NORMAL.	APPEARED	APPEARED	UES APPEARED NORMAL.	UES APPEARED NORMALI.	TISSUES APPEARED NORMAN	
SNOTTAWGGGGG	OBSERVALLON	ALL TISSUES		ALL TISSUES ALI, TISSUES	ALL TISSUES	ALL TISSUES	ALL TISSUES	ALL IISSUE	TIS	A TOOD .	ALL OTHER		ALL TISSUES	ALL TISSUES	ALL IISSU			ALL TISSUES			ALL TISS	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
DOSAGES	ADMINISTERED	12	12	12	12	12	12	12	12		12		12	12	12	12	12	12	12	12	12	,
PREGNANCY	STATUS	<u>a</u> .	c. c	ν <u>σ</u> •	മമ	. a.	a. a	ď	<u>с</u> . (.	Ĉ.		۵۰	ው ¤	. a.	ρ. (ሷ በ		ď	<u>о</u> .	<u>а,</u> ғ	
1	NECROPSY	00004	•	DG 20		DG 20		DG 20		DG 20	DG 20		DG 20		DG 20		DG 20	DG 20			DG 20	DG 5(
1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RAT NUMBER	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12901	12903	12904	12906	12907	12909	12910	12912	12913		,	12915	12916	12917	12919	12920	12921	12922	12924	12925
1	DOSAGE GROUP	DOSAGE (MG/KG/DAT)	20																			

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N.ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 15 (PAGE 6): NECROPSY OBSERVATIONS - INDIVIDUAL DATA

OBSERVATIONS	ALL TISSUES APPEARED NORMAL. ALL TISSUES APPEARED NORMAL. ALL TISSUES APPEARED NORMAL.	ALL TISSUES APPEARED NORMAL.	ALL TISSUES APPEARED NORMAL. ALL TISSUES APPEARED NORMAL. ALL TISSUES APPEARED NORMAL.	ALL TISSUES APPEARED NORMAL. ALL TISSUES APPEARED NORMAL. ALL TISSUES APPEARED NORMAL.	ALL TISSUES APPEARED NORMAL.
DOSAGES ADMINISTERED	12 12 12	12 12 12 13	12 12 12	12 12 12	12 12 12 12 12
PREGNANCY STATUS	ביי ביי ביי	c. a. a. a. a.	ር ር ር	ል ል ል	g, Q, Q, Q, Q,
DAY OF NECROPSY	DG 18 DG 18 DG 18	DG 18 DG 18 DG 18 DG 18	DG 18 DG 18 DG 18	DG 18 DG 18 DG 18	DG 18 DG 18 DG 18 DG 18
RAT	12573 12574 12575	12576 12577 12578 12578	12581 12582 12583	12584 12585 12586	12587 12588 12589 12590
SATELLITE DOSAGE GROUP DOSAGE (MG/KG/DAY)	I (VEHICLE)	11	III 5	10	V 20

P = PREGNANT NP = NOT PREGNANT DG = DAY OF GESTATION

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T 6316.7)

TABLE 16 (PAGE 1): MATERNAL BODY WEIGHTS - INDIVIDUAL DATA

				1 1 1 1 1 1 1 1 1									
PREGNANCY	DAY 0	4	9	7	æ	6	10	11	12	13	14	15	16
RAT #	DOS	DOSAGE GROUP I	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1		0 (УЕН)	(VEHICLE) MG/KG/DAY	KG/DAY					
12801 P	226	1	272.	277.	284.	286.	297.	304.	312.	316.	325.	329.	335.
12802 P	212		250.	254.	262.	263.	270.	274.	280.	282.	288.	297.	303.
12803 P	236		285.	292.	292.	301.	310.	317.	319.	327.	331.	345.	357.
12804 P	221.	245.	255.	256.	261.	262.	269.	273.	269.	279.	281.	289.	300.
12805 P	242		276.	278.	281.	286.	288.	294.	299.	310.	316.	315.	333.
12806 P	229		256.	266.	270.	275.	283.	285.	288.	292.	299.	302.	314
12807 P	224		273.	284.	285.	290.	293.	300.	304.	309.	314.	314.	326.
12808 P	244		277.	290.	293.	299.	299.	308.	317.	317.	321.	333.	345.
12809 P	228		276.	280.	287.	288.	297.	301.	308.	308.	318.	332.	357.
12810 P	247		283.	284.	291.	295.	292.	298.	307.	316.	320.	323.	328.
12811 P	238		257.	265.	276.	281.	289.	289.	291.	295.	303.	308.	314.
12812 P	232		266.	270.	273.	277.	278.	289.	291.	298.	294.	308	313.
12813 NP	228		267.	273.	279.	283.	285.	290.	287.	286.	288.	288.	289.
12814 P	240		288.	284.	292.	293.	299.	303.	312.	316.	325.	330.	344
12815 P	226		271.	274.	279.	286.	287.	294.	298.	303.	310.	317.	327.
12816 P	230		275.	277.	279.	285.	292.	297.	301.	307	304.	316.	323.
12817 P	220	ro	249.	256.	259.	262.	. 566	272.	281.	288.	289.	298.	306.
12818 P	237	ro -	277.	280.	283.	295.	. 396	309.	309.	316.	323.	331.	338.
12819 P	234	rs ·	256.	261.	. 366	268	268.	273.	279.	283.	287.	292.	300
12820 P	242	ro.	265.	272.	274.	276.	281.	287.	288.	295	299.	306.	317
12821 P	222	ro	260.	266.	271.	277.	283.	285.	287.	299.	302.	309.	318
12822 P	245	ro	280.	283.	291.	298	299.	305.	309.	322.	322.	334.	352
12823 p	215	ns	249.	248.	249.	258.	259.	266.	268.	270.	276.	280.	296
12824 P	219	· •	253.	249.	256.	264	262.	261.	270.	268.	270.	281.	289
12825 P	230	246.	262.	265.	272.	273.	287.	294.	295.	301.	312.	322.	329
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
					20111	<u></u>							

P = PREGNANT NP = NOT PREGNANT (VALUES EXCLUDED FROM AVERAGES)

ALL WEIGHTS WERE RECORDED IN GRAMS (G).

a. Value was not recorded.

PREGNANCY	Y ven	ď	6	00	
RAT #	DOSAGE	GRC			0 (VEHICLE) MG/KG/DAY
12801 P	354.	367.	379.	400.	
	309.	323.	340.	356.	
	373.	387.	401.	429.	
	312.	323.	337.	367.	
12805 P	345.	366.	374.	393.	
	326.	338.	350.	376.	
12807 P	333.	353.	365.	385.	
	354.	367.	378.	402.	
12809 P	367.	383.	387.	421.	
12810 P	342.	350.	366.	391.	
	325.	343.	354.	382.	
12812 P	322.	341.	351.	378.	
12813 NP	292.	293.	295.	311.	
12814 P	360.	366.	387.	420.	
12815 P	343.	357.	373.	402.	
	341.	353.	365.	388.	
12817 P	323.	336.	350.	375.	
12818 P	354.	370.	382.	399.	
	313.	329.	347.	367.	
12820 P	328.	340.	357.	382.	
12821 P	334.	346.	363.	394.	
12822 P	360.	374.	396.	419.	
12823 P	308.	323.	334.	355.	
12824 P	306.	315.	336.	347.	

P = PREGNANT NP = NOT PREGNANT (VALUES EXCLUDED FROM AVERAGES)
DAY = DAY OF PRESUMED GESTATION
ALL WEIGHTS WERE RECORDED IN GRAMS (G).

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 16 (PAGE 3): MATERNAL BODY WEIGHTS . INDIVIDUAL DATA

	1 1 1 1 1 1	1 1 1 1 1						1		1 1 1 1 1 1 1 1			: 1
PREGNANCY	DAY 0	4	9	7	80	6	10	11	12	13	14	15	16
RAT #	SOC	DOSAGE GROUP II	II	1 1 1 1 1 1 1 1		1 MG/KG/DAY	3/DAY	! ! !					
12826 P	224		1	280.	284	288.	293.	295.	309.	314.	322.	330.	340
12827 P	236	248.	261.	264.	264.	272.	274.	279.	286.	291.	291.	304.	303.
12828 P	212		.,	277.	276.	286.	284.	293.	302.	298.	312.	314.	331.
12829 P	212		.,	245.	243.	241.	244.	248.	257.	257.	259.	272.	278.
12830 P	228		. •	264.	275.	275.	277.	280.	287.	291.	292.	305.	315.
12831 P	238		.,	273.	274.	284.	286.	296.	292.	302.	311.	316.	323.
12832 P	227		•	260.	264.	268.	277.	279.	284.	287.	295.	299.	312.
12833 P	239		•	275.	281.	284.	292.	290.	289.	292.	298.	302.	306.
12834 P	225		.,	252.	253.	257.	265.	267.	274.	279.	284.	292.	305.
12835 P	230		•••	298.	302.	291.	310.	311.	316.	326.	333.	338.	347.
12836 P	220		••	265.	264.	273.	275.	281.	282.	292.	296.	303.	306.
12837 P	240		.,	249.	268.	269.	275.	282.	282.	284	296.	298.	315.
12838 P	228		••	253.	261.	266.	267.	270.	274.	288.	290.	297.	306.
12839 P	243		•	286.	292.	292.	300.	308.	315.	321.	325.	332.	341.
12840 P	230). a	263.	268.	270.	278.	283.	288.	292.	302.	309.	319.	329.
12841 P	222		272.	273.	279.	205.	292.	295.	303.	312.	320.	330.	342.
12842 P	234		278.	280.	289.	293.	302.	304.	303.	308.	314.	325.	339.
12843 P	222	ю.	241.	246.	252.	256.	262.	266.	264.	270.	276.	278.	291.
12844 P	242	а э	281.	282.	287.	290.	294.	304.	303.	311.	314.	326.	340.
12845 NP	21.7	7.	233.	232.	228.	227.	232.	234.	234.	230.	239.	239.	238.
	230	J. a	257.	258.	263.	266.	269.	268.	269.	272.	277.	267.	266
	236	ĵ.	263.	261.	270.	275.	277.	284.	285.	289.	303.	306.	318.
12848 P	240			268.	272.	274.	284.	288.	288.	298.	305.	314.	327.
12849 P	237			282.	284.	290.	298.	301.	303.	317.	322.	333.	335.
12850 P	248	8. 272.		287.	293.	296.	302.	310.	317.	320.	324.	330.	341.
		1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1					1 1 1 1 1

P = PREGNANT NP = NOT PREGNANT (VALUES EXCLUDED FROM AVERAGES)
DAY = DAY OF PRESUMED GESTATION
ALL WEIGHTS WERE RECORDED IN GRAMS (G).
a. Value was not recorded.

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N.ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

GROUP II 364. 37 364. 37 366. 33 366. 34 366. 36 366. 36 36	396. 362. 402. 331. 378. 373. 373. 373. 357. 361. 391. 359. 372.
26 P 352. 364. 27 P 352. 366. 28 P 350. 366. 366. 370. 366. 370. 366. 370. 370. 370. 370. 370. 370. 370. 370	
26 P 352. 364. 329. 364. 329. 329. 366. 306. 306. 306. 307. 306. 307. 310. 327. 340. 327. 335. 335. 335. 337. 337. 337. 337. 33	396. 402. 402. 331. 378. 394. 373. 381. 391. 391. 392. 372.
P 352. 364. P 317. 323. P 250. 366. P 293. 366. P 323. 346. P 322. 346. P 318. 335. P 354. 365. P 354. 362. P 354. 362. P 354. 362. P 313. 327.	362. 402. 331. 378. 374. 373. 357. 381. 391. 359. 372.
P 317. 323. P 350. 366. P 2293. 306. P 322. 346. P 322. 346. P 312. 335. P 323. 335. P 354. 362. P 354. 362. P 354. 362.	402. 331. 378. 378. 394. 373. 357. 381. 391. 359. 372.
P 350. 366. P 293. 366. P 323. 346. P 322. 346. P 322. 340. P 323. 337. P 354. 362. P 354. 362. P 319. 319.	331. 378. 394. 373. 357. 381. 391. 359. 372.
P 293. 306. P 323. 346. P 322. 346. P 322. 340. P 323. 335. P 323. 337. P 354. 362. P 354. 362. P 319. 319.	378. 394. 373. 357. 381. 391. 372. 372.
P 323. 346. P 340. 356. P 322. 340. P 323. 337. P 354. 362. P 313. 327. P 327. 341.	394. 373. 357. 381. 391. 359. 372.
740. 355. 340. 322. 340. 323. 337. 523. 377. 523. 377. 527. 527. 341. 527. 533. 533.	373. 357. 381. 391. 359. 372.
P 322. 340. P 318. 335. P 323. 337. P 354. 362. P 313. 327. P 319. 333.	357. 381. 391. 359. 372. 418.
P 318. 355. P 323. 337. P 354. 362. P 313. 327. P 327. 341. P 319. 333.	381. 391. 359. 383. 418.
P 323. 357. p 354. 362. p 313. 327. p 327. 341. p 319. 333.	391. 359. 383. 372. 418.
354. 352. 313. 327. 327. 341. 327. 333. p 319.	359. 383. 372. 418.
p 313. 327. p 327. 341. p 319.	383. 372. 418.
p 327, 341. p 319. 333.	372. 418.
319. 333.	418.
1.1.6	
э57.	408.
p 343. 362.	402.
. 40.0	414.
p 346. 300.	352.
306. 358	412.
342.	245.
	265.
265. 265.	387.
р 326. 346.	405.
p 340. 363.	407.
р 350, 365.	
p 354. 367.	411.

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N. ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 16 (PAGE 5): MATERNAL BODY WEIGHTS - INDIVIDUAL DATA

STATUS	DAY 0	4	vo	7	ю	6	10	11	12	13	14	15	16
RAT #	DOSA	DOSAGE GROUP III		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 MG/KC	MG/KG/DAY	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1	
	1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				305		310.	314.	325.	330.	340.	350.
12851 P	225.	. 268	. B/ Z	. 222			. 0	283	285	292.	298.	305.	315
12852 P	223.	253.	265.	267.	7.16.	197	. 0 7 7				308	318	328
12853 P	222.	259.	274.	273.	278.	280.	288	. 062	. 667	. 206			000
12854 P	232.	267.	267.	289.	290.	294.	302.	300.	. 667	300.	312.		
12855 ND	244	259.	269.	275.	282.	283.	285.	285.	286.	. 082	271.	677	0 0
10000 NF	228	249	256.	259.	256.	266.	271.	279.	278	279.	283.	288.	305
1 2000	. 074		276	281	282.	287.	291.	300.	306.	312.	320.	329.	344
12851	. 0 7 7	. 736		244	260.	260	263.	273.	269.	268.	273.	273.	287.
12858 P	219.	. 520	. 197	. 900	292	297	. 362	303.	301.	316.	320.	333.	344.
12859 P	233.	. 154	. 197			- 180	296	300.	306.	312.	317.	328.	339.
12860 P	230.	. 797		. 707	. 177	0.70	267	268	268.	274.	273.	281.	290.
12861 P	227.	238.	236.	254.	. 200	. 60 0	7.00	265.	269.	276.	282.	286.	301.
12862 P	210.	238.	248.	. 157				203	290	288.	290.	289.	307.
12863 P	221.	247.	260.	265.	. 70.					303	316.	320.	331.
12B64 P	228.	ros	272.	275.	279.	. 184	. 0 10 10 10 10 10 10 10 10 10 10 10 10 1	. 127		. 990	271	289.	299.
12865 P	220.	то	246.	256.	. 552	740				325	333	348	359.
12866 P	247.	ю.	289.	296.	301.	301.	307.		341.	. 250	. 996	275	284
12867 P	214.	ю.	245.	247.	246.	246.	. 649	. 200		. 697	. 667	508	315.
12868 P b		ro	278.	279.	279.	281.	. 787	. 167	. 767			312	325
12869 P	236.	ros	270.	268.	281.	281.	283.	. 767	. 249	302.			
12870 P	238	264	278.	284.	285.	284.	290	298.	. 662	310.	. 115	. 226	1
20101	220	249	252.	261.	258.	261.	261.	272.	275.	274	279.	. 290	. 44.
7 1/271			. 180	286	т	302.	304	310.	318.	327.	327.	326.	348.
1 7/87T	707			97.0	284	286.	290.	294	298.	301.	314.	317.	324.
12873 P	233	. 202		.072	203	297.	305	304	311.	318	321.	334.	347.
12874 P	247		. 707		. 622	765	266	282	281.	284	290.	299.	304
12875 P	236		765.	. / 97					1				

P = PREGNANT NP = NOT PREGNANT (VALUES EXCLUDED FROM AVERAGES)
 DAY = DAY OF PRESUMED GESTATION
 ALL WEIGHTS WERE RECORDED IN GRAMS (G).
 a. Value was not recorded.
 b. Dam 12868 had a litter consisting of 7 conceptuses; values excluded from group averages and statistical analyses.

ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7) MATERNAL BODY WEIGHTS INDIVIDUAL DATA	DAY		p 364 381 397 416. p 3134 362 381 397 416. p 314 362 384 400. g P 314 362 384 399. g P 320 313 367 309. g P 320 314 389. g P 320 314 389. g P 361 313 300 318 361. g P 361 318 318 318 318 318 318 318 318 318 31	
JF N-EtFO	5 MG/KG/DAY	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PERAGES)	
TAL TOXICITY STUDY C	20	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7. 416. 7. 490. 18. 399. 14. 282. 18. 399. 20. 420. 89. 420. 180. 341. 180. 341. 180. 341. 180. 341. 318. 353. 318. 353. 318. 353. 318. 354. 403. 317. 349. 317. 349. 317. 349. 317. 349. 317. 349. 317. 349. 317. 349. 317. 349. 318. 405. 318. 405. 319. 400. 383. 422. 400. 383. 422. 368. 405. 317. 349. 318. 368. 318. 368.	
ELOPMENTA	19	1	397. 367. 368. 348. 348. 389. 389. 389. 389. 318.	sistina *
AL (GAVAGE) DEVELOPMEN' MATERNAL BODY WEIGHTS	18	DOSAGE GROUP III	381. 353. 362. 368. 268. 313. 374. 313. 374. 361. 361. 361. 361. 371. 352. 352. 352. 373. 373. 373. 373.	litter con
_	DAY 17	DOSAGE C	364. 364. 347. 274. 320. 320. 320. 358. 296. 361. 310. 318.	Mene 1888
PROTOCOL 418-011:	PREGNANCY ETATUS DA	# E40	RAT # 12851 P 12852 P 12853 P 12854 P 12855 NP 12856 P 12869 P 12860 P 12862 P 12862 P 12862 P 12863 P 12865 P 12865 P 12867 P 12875 P 12875 P	ALL WEIGHTS WEN a. Dam 12868 h

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T 6316.7)

	TABLE 16 (PAGE 7): MATERNAL BODY WEIGHTS - INDIVIDUAL DATA	
	WEIGHTS	
	вору	
	MATERNAL	
	7):	
PROTOCOL *10 ST.	(PAGE	
707	E 16	
PKOI	TABLI	

PREGNANCY	c >	4	9	7	80	מ	0.1	***				1 1 1	1
STATUS			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1	10 MG/KG/DAY	3/DAY						
RAT #	DOSAGE GR	GROUP IV		1			000	296.	300.	312.	324.	324.	341.
12876 P 219. 266. 278. 12878 P 230. 262. 273. 12878 P 228. 244. 254. 12880 P 230. 248. 254. 12881 P 211. 234. 254. 12884 P 244. 254. 274. 12884 P 244. 254. 274. 12887 P 244. 254. 274. 12886 P 244. 254. 276. 12888 P 244. 237. 248. 276. 12889 P 249. 237. 248. 276. 12890 P 228. 247. 263. 12890 P 242. 242. 256. 12893 P 228. 242. 256. 12895 P 221. 236. 254. 12895 P 221. 236. 256. 12899 P 221. 276. 12899 P 221. 276. 12899 P 220. 244. 256. 256. 256. 256. 256. 256. 256. 256	219. 220. 228. 228. 230. 211. 244. 244. 244. 244. 231. 235. 237. 236. 236. 236. 231. 221. 221. 221. 220. 220. 220. 220. 22	266. 257 262. 264. 284. 284. 2854. 2854. 2864. 2	278. 273. 247. 254. 258. 236. 274. 276. 256. 270. 263. 270. 270. 270. 270. 270. 270. 270. 270	286. 274. 253. 258. 242. 242. 277. 270. 274. 273. 273. 272. 272. 272. 272. 272. 272	290. 297. 297. 258. 258. 259. 267. 269. 267. 289. 288. 288. 288. 273. 273. 273. 273. 277. 277. 277. 277	297. 282. 264. 262. 264. 263. 288. 288. 273. 287. 287. 287. 286. 260. 266. 256. 256. 256. 266. 266.	200. 200. 268. 268. 247. 291. 292. 285. 279. 279. 279. 263. 263. 263. 264. 259. 267. 267. 267. 267. 267. 267. 267.	186. 290. 297. 300. 297. 500. 294. 594. 526. 258. 270. 266. 258. 270. 266. 270. 266. 270. 267. 268. 270. 266. 270. 267. 268. 270. 274. 258. 231. 239. 247. 250. 250. 284. 286. 271. 296. 274. 284. 286. 291. 294. 306. 274. 274. 274. 274. 274. 274. 274. 274	294. 266. 275. 274. 250. 306. 298. 290. 290. 291. 274. 274. 277. 274. 277. 277. 277. 277	298. 275. 274. 279. 246. 313. 308. 297. 297. 281. 297. 282. 313. 282. 297. 287. 287. 287. 287. 287. 287. 287. 28	296. 306. 313 275. 277. 291 274. 277. 292 246. 246. 246. 293 313. 318. 327 308. 331. 32 298. 294. 30 298. 294. 30 297. 297. 297. 297. 297. 297. 297. 297.	313. 291. 291. 291. 263. 321. 321. 304. 310. 310. 286. 295. 295. 295. 295. 296. 296. 296.	3.00 3.00 3.00 3.00 3.30 3.12 3.12 3.11 3.11 3.11 3.10 3.00 3.00 3.00 3.00

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-EtFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

DATA
INDIVIDUAL
WEIGHTS
BODY
MATERNAL BODY WEIGHTS
68
(PAGE
9
TABLE 16

RAT # DOSAGE GROUP IV 10 MG/KG/DAY 12876 P 358 36. 375. 390. 12877 P 319 344. 354. 378. 12878 P 313 344. 354. 378. 12878 P 313. 346. 374. 12880 P 313. 341. 372. 12881 P 280. 378. 385. 12882 P 358. 378. 386. 12884 P 320. 334. 358. 12885 P 310. 344. 379. 12889 P 329. 312. 379. 12889 P 329. 313. 369. 12891 P 319. 354. 369. 12891 P 319. 354. 374. 12891 P 319. 311. 344. 374. 12891 P 319. 328. 347. 374. 12892 P 319. 328. 347. 374. 12893 P 319.<	PREGNANCY STATUS	DAY 17	18	19	20	
į ā.		DOSAGE	GROUP IV			10 MG/KG/DAY
ia.	12876 P	358.	360.	375.	390.	
ā.	12877 P	329.	344.	354.	378.	
ā.	12878 P	313.	329.	346.	374.	
<u>ā</u> .	12879 P	309.	326.	342.	367.	
<u>.</u>	12880 P	314.	333.	341.	372.	
<u> </u>	12881 P	280.	282.	298.	310.	
	12882 P	358.	378.	385.	420.	
	12883 P	348.	365.	373.	392.	
<u> </u>	12884 P	320.	334.	344.	371.	
<u> </u>	12885 P	330.	344.	358.	378.	
<u> </u>	12886 P	315.	332.	344.	379.	
<u> </u>	12887 P	349.	360.	373.	396.	
<u> </u>	12888 P	329.	337.	351.	369.	
<u> </u>	12889 P a	289.	301.	309.	321.	
<u> </u>	12890 P	328.	339.	354.	3.74 .	
=	12891 P	306.	318.	331.	349.	
<u> </u>	12892 P	319.	328.	347.	371.	
<u> </u>	12893 P	348.	369.	383.	412.	
<u> </u>	12894 P	309.	321.	341.	364	
<u> </u>	12895 P	307.	313.	328.	343.	
<u>.</u>	12896 P	331.	345.	355.	380.	
2	12897 P	326.	335.	344.	374.	
; 5	12898 P	350.	365.	390.	414	
; <u>a</u>	12899 P	314.	327.	352.	364.	
_ E	12900 P	314.	338.	359.	375.	
AAX = DAY OF PRESUMED GESTATION	PREGNANT	i	r PREGNANT	(VALUES	EXCLUDED FROM AVI	ERAGES)
	AY = DAY OF	PRESUMED G	SESTATION			

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

STATIS	DAY 0	4	9	7	60	Ď.	01			1 1 1 1 1 1 1		1	
	IIOGD GEVEOU	V dilogo	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	: : : : :	20 MG/KG/DAY	:G/DAY			1	1	1 1 1	1 1 1
RAT # 12901 P 12902 D 12903 P 12904 P 12906 P 12906 P 12910 NP 12911 P 12912 P 12913 P 12914 P 12915 P 12915 P 12916 P 12917 P 12917 P 12918 P 12919 P	219. 229. 229. 221. 222. 228. 228. 239. 212. 212. 214. 248. 248. 248. 228. 228. 228. 228. 22	2000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	254. 251. 251. 259. 259. 258. 258. 253. 257. 272. 272. 272. 272. 274. 275. 275. 275. 275. 275. 275. 275. 275	254. 260. 263. 263. 253. 253. 268. 268. 268. 278. 279. 279. 279. 279. 279. 279. 279.	264. 263. 263. 263. 259. 261. 276. 276. 276. 276. 277. 277. 277. 278. 278. 278. 278. 278	269. 256. 256. 261. 261. 276. 276. 2775. 2775. 2776. 2776. 2777. 2777. 2777. 2777. 2777. 2777. 2777. 2777. 2777. 2777. 2777. 2777.	266. 258. 264. 264. 269. 272. 272. 272. 271. 256. 282. 282. 282. 282. 282. 283. 258. 258. 258. 258. 258. 258. 258. 258	273. 264. 271. 266. 267. 267. 267. 283. 271. 271. 289. 289. 289. 289. 289. 289. 289. 289	277. 265. 266. 269. 269. 274. 283. 274. 260. 292. 292. 292. 294. 294. 297. 297. 297. 298. 298.	282. 271. 264. 264. 277. 269. 288. 288. 287. 287. 287. 286. 276. 276. 276. 276. 278. 278.	286. 274. 256. 256. 279. 286. 286. 287. 292. 301. 292. 264. 264. 264. 264. 264. 276. 281. 281. 281.	292. 275. 276. 283. 270. 285. 287. 294. 275. 297. 275. 277. 277. 266. 293. 266. 293. 266. 293.	306. 284. 2284. 294. 298. 302. 303. 308. 318. 285. 285. 285. 285. 285. 285.

P = PREGNANT NP = NOT PREGNANT (VALUES EXCLUDED FROM AVERAGES)
DAY = DAY OF PRESUMED GESTATION
ALL WEIGHTS WERE RECORDED IN GRAMS (G).
a. Value was not recorded.

SPONSOR'S STUDY NUMBER: T-6316.7)			
MONTAIN STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)	SOURCE A18-011: ORAL (GAVAGE) DEVELOPMENTAL TOATCATE	PROJUCION TO MANDENNAL BODY WEIGHTS - INDIVIDUAL DATA	TABLE 16 (PAGE 10): "MALLING"

306. 310. 328. 310. 310. 310. 310. 310. 310. 310. 323. 245. 245. 245. 327. 310. 310. 310. 317. 318. 310. 325. 318. 310. 327. 294. 305. 325. 325. 294. 305. 325. 325. 325. 325. 325. 325. 325. 32	337. 359. 350. 352. 352. 352. 343. 252. 344. 354. 379. 352. 343.	
P 315. 322. 335. P 311. 312. 322. 298. 313. 325. 298. P 283. 292. 298. P 328. 346. 325. P 303. 272. 284		

15 16 16 16 317 317 328 334 334 334
12 13 14 14 296. 309. 310. 318. 309. 320. 320. 320. 320. 320. 320. 320. 320
F N-ELFOSE IN RATS (SPONSOR 9 10 11 0 (VEHICLE) MG/KG/DAY 290. 299. 395. 299. 296. 299. 305.
ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF M-EL MATERNAL BODY WEIGHTS INDIVIDUAL DATA NATERNAL BODY WEIGHTS INDIVIDUAL DATA 6 7 8 9 7 0 (VEI 7 271. 279. 290. 290. 290. 290. 290. 296. 296. 296. 296. 296. 296. 296. 296
ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY MATERNAL BODY WEIGHTS INDIVIDUAL DATA 0 4 6 7 8 5 7 8 0 4 6 7 8 10 271. 271. 271. 271. 271. 271. 271. 271.
PROTOCOL 418-011: ORAL (GANAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELEOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7) TABLE 16 (PAGE 11): MATERNAL BODY WEIGHTS INDIVIDUAL DATA PREGNANCY PREGNANCY RAT # 546 12573 P 235 12574 P 248 12574 P 248 12574 P 248 12575 P DAY 17 12575 P DAY 17 PREGNANT PRE

T-6316.7)	1	286. 293.			
ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7) HATERNAL BODY WEIGHTS INDIVIDUAL DATA 14	1 1		294. 302. 302. 305.		
RATS (SPONS)		301.	271. 292. 296.	, , , ,	
Et FOSE IN	9 10 1 MG/KG/DAY		2. 288. 2. 288. 0. 291.		
ITY STUDY OF N UAL DATA	8 E	•	284. 250. 260. 282. 282. 287. 280	TOWN AVERAGES	= NOT PREGNANT (VALUES EXCLUDED FROM UND GESTATION RECORDED IN GRAMS (G).
AL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY MATERNAL BODY WEIGHTS - INDIVIDUAL DATA	7	1	282. 257. 271. 272.		ES EXCLUDED
DEVELOPME	6 I allow re	JOHN CHARLES	253. 280. 258. 258. 269. 273.		NANT (VALUE ION GRAMS (G)
AL (GAVAGE)	egi 1	SATELLITE DOSAGE GROC	5. 259. 5. 259. 11. 253. 2. 253. 8. 261.	339. 58. 382. 14. 343. 443. 367.	NOT PREGNANT (VALU) UMED GESTATION RECORDED IN GRAMS (G)
PROTOCOL 418-011: OR. TABLE 16 (PAGE 12):	PREGNANCY STATUS DAY 0	RAT # SAT	12576 P 227. 12577 P 245. 12578 P 221. 12579 P 232. 12580 P 248.	12576 P 31 12577 P 31 12578 P 31 12579 P 34	NT NP OF PRES

310. 337. 335. 325. 325.

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 16 (PAGE 13): MATERNAL BODY WEIGHTS - INDIVIDUAL DATA

1 1 1 1 1	1	1 1 1 1 1	1				1 1 1 1	1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1
PREGNANCY STATUS DAY 0	Y DAY	0	4	9	7	80	6	10	11	12	13	14	15	16
RAT #	SA	SATELLITE	OSAGE	GROUP III	: !		5 MG/KG/DAY	3/DAY	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
12581 P 12582 P 12583 P	22 24 24 25	228. 243. 251.	244. 260. 275.	257. 271. 296.	258. 274. 306.	258. 279. 309.	256. 283. 313.	258. 290. 319.	267. 291. 322.	272. 295. 328.	282. 306. 338.	287. 305. 344.	297. 314. 356.	301. 325. 373.
1 1 1 1 1 1 1 1 1	DAY 17	7	18	1	1	1		1		1	; ; ; ;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
12581 P 12582 P 12583 P	31 33 38	316. 338. 389.	334. 360. 412.									1 2 4 1 1		:

P = PREGNANT NP = NOT PREGNANT (VALUES EXCLUDED FROM AVERAGES)
DAY = DAY OF PRESUMED GESTATION
ALL WEIGHTS WERE RECORDED IN GRAMS (G).

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6116.7)

TABLE 16 (PAGE 14): MATERNAL BODY WEIGHTS - INDIVIDUAL DATA

						111111111				, , , , , , ,				
PREGNANCY STATUS	Y DAY 0	0	₹	9	۲	œ	6	10	1	12	13	14	15	16
RAT #	SA	SATELLITE DOSAGE GROUP IV	OSAGE	SROUP IV			10 MG/KG/DAY	CG/DAY		1	1	; ; ; ;	; ; ; ;	1
12584 P	22	228. 25	252.	265.	269.	272.	270.	274.	275.	281.	290.	290.	297.	309.
12585 P	24		55.	276.	273.	277.	283.	287.	290.	. 362	303.	308.	310.	322.
12586 P	25		52.	273.	275.	277.	282.	283.	290.	289.	294.	296.	306.	316.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DAY 17	7	81	, 1 4 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						,			
12584 P	31		.01											
12585 P	33	334. 35 323. 33	351.											
		, , , , , , , , , , , , , , , , , , , ,			1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1				

P = PREGNANT NP = NOT PREGNANT (VALUES EXCLUDED FROM AVERAGES)
DAY = DAY OF PRESUMED GESTATION
ALL WEIGHTS WERE RECORDED IN GRAMS (G).

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N. ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 16 (PAGE 15): MATERNAL BODY WEIGHTS - INDIVIDUAL DATA

TABLE 10 (PAGE 10): MAIERWAID BOOK MEIGHT AND	ro 1 3.5	MALERN	AL BOUT	METCHTS.	INDIAL	מינים האסמ	1		1		1			
PREGNANCY	Y DAY		₹	٠	7	æ	6	10	11	12	13	14	15	16
RAT #		SATELLITE	DOSAGE GROUP V	ROUP V	1 1		20 MG/KG/DAY	cG/DAY	1	1			1	
12587 P	22	1 1 1 1	32.	249.	232.	243.	241.	243.	258.	260.	249.	255.	266.	285.
12588 P	24		62.	282.	286.	289.	288	287.	291.	289.	294	305.	318.	328
12589 P	22		40.	252.	258.	262.	267.	. 528	246.	254.	267.	268.	. 687	787
12590 P	23		56.	270.	266.	268.	268.	268.	274.	279.	280.	284.	292	304
12591 P	24	249. 20	67.	288.	292.	293.	295.	300.	306.	302.	297.	295.	316.	327.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DAY 17	1 1	18	1 1	1		1	1	1	1		1	1	
12587 P	29		19.											
12588 P	34		.09											
12589 P	25	299. 3	21.											
12590 P	31		36.											
12591 P	34		62.											
							1							

P = PREGNANT NP = NOT PREGNANT (VALUES EXCLUDED FROM AVERAGES)
DAY = DAY OF PRESUMED GESTATION
ALL WEIGHTS WERE RECORDED IN GRAMS (G).

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T 6316.7)

PREGNANCY STATUS DAYS	0 - 4	4 - 6	8 - 9	8 - 10	10 - 12	12 - 14	14 - 16	16 - 18	18 - 20
RAT #	DOSAGE	GROUP I	1 4 4 4 1 1 1	1 4 6 1 1 1	1 1 1 1 1	0 (VEH	O (VEHICLE) MG/KG/DAY	KG/DAY	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12801 P	56.	48.	52.	50.	58.	.09	50.	. 09	59.
12802 P	54.	40.	43.	44	47.	49.	50.	49.	52.
12803 P	82.	51.	55.	53.	57.	59.	62.	63.	.09
804 P	. 98	44.	42.	41.	32.	44.	50.	58.	52.
12805 P	79.	47.	51.	49.	55.	52.	. 46	55.	54.
12806 P	53.	41.	49.	48.	47.	51.	45.	54.	53.
12807 P	71.	51.	52.	50.	49.	51.	45.	50.	53.
808 P	. 96	45.	61.	49.	51.	47.	52.	63.	. 96
809 P	91.	47.	57.	49.	53.	61.	64.	50.	51.
12810 P	103.	45.	53.	47.	50.	. 26.	. 46	58.	58.
811 P	. 88	35.	51.	44.	40.	44.	40.	52.	48.
812 P	190.a	В	48.	48.	49.	47.	46.	48	48.
813 NP	.68	45.	49.	53.	41.	44.	51.	54.	43.
	102.	54.	48.	. 05	50.	54.	58.	61.	59.
815 P	94.	49.	50.	47.	49.	49.	53.	. 09	. 96
	97.	.98	56.	53.	57.	53.	58.	59.	53.
817 P	74.	43.	45.	45.	46.	48.	53.	52.	45.
818 P	104	61.	58.	62.	62.	63.	65.	. 19	.09
819 P	. 88	39.	43.	41.	44.	47.	46.	49.	45.
820 P	81.	42.	44.	42.	4.8	50.	54.	55.	57.
12821 P	84.	44.	49.	51.	48.	52.	54.	51.	53.
12822 P	85.	47.	53.	52.	54.	55.	62.	55.	51.
12823 P	. 17	45.	41.	44.	42.	43.	47.	54.	48.
12824 P	81.	46.	35.	45.	47.	45.	48.	54.	20.
ח שנפנו	6	;	;	•					

P = PREGNANT NP = NOT PREGNANT (VALUES EXCLUDED FROM AVERAGES)

DAYS = DAYS OF PRESUMED GESTATION

ALL WEIGHTS WERE RECORDED IN GRAMS (G).

a. Value appeared incorrectly recorded and was excluded from group averages and statistical analyses.

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-EtFOSE IN RATS (SPONSOR'S STUDY NUMBER: T 6316.7)

2): MATERNAL FEED CONSUMPTION VALUES - INDIVIDUAL DATA TABLE 17 (PAGE

RAT #	DOSAGE	GROUP II	1	1 1 1 1		1 MG/KG/DAY	3/DAY			1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			0 4	47	48.	56.	55.	57.	. 55	
12826 P	. 78				45	47	4.1	50.	45.	
12827 P	71.	41.	. 7 4			- r		ď	57.	
12828 P	91.	47.	49.	. 5	. 50	4 ·	· ·		44	
12829 P	14.	41.	44.	33.	. 04	43.	4		; ;	
0 00001	06	38	48.	45.	43.	45.	46.	د	. 75	
	. 0	40	49.	50.	. 05	54.	52.	. 09	57.	
12831 F			. 00	46.	44	48.	46.	46.	46.	
12832 F	. , 0				36	43.	40.	50.	. 04	
12833 P	90.						4.7	60.	55.	
12834 P	73.	44	40.	4.5					ני	
12815 P	101.	57.	55.	47.	52.	. 79				
1 2836 P	91.	47.	46.	50.	49.	52.	49.	. 05		
	α τ	30.	39.	47.	46.	40.	40.	28.	. 44	
ת טרטנו		0.4	. 64	43.	41.	50.	44.	50.	48.	
12836 P				4.8	50.	51.	54.	55.	52.	
12839 F					r,	. 26	62	62.	. 09	
2840 P	. 0.8	44. V	V			u u	5.6	4.2	47.	
12841 P	. 98	47.	45.	4. 0	0) •		77	
12842 P	93.	20.	51.	51.	47.	. 75	1			
17843 D	76.	36.	41.	43.	45.	42.	47.	4 .	ο (1 Ο (
0 77071	46	52.	48.	47.	.98	49.	57.	54.	57.	
	. 0	2.5	77	47.	42.	. 99	ns	40.	43.	
		1 5		46	45.	45.	32.	33.	30.	
12846 NP	•				3.5	43	51.	52.	49.	
12847 P	77.	. 65	. 04	r	:		ı u	0.8	44	
12848 P	82.	43.	44.	42.	4	 	n i			
0 0490	82.	45.	49.	47.	51.	26.	52.	. 4.0	. 75	
1 (107)	•				•	٠			5	

P = PREGNANT NP = NOT PREGNANT (VALUES EXCLUDED FROM AVERAGES)
DAYS = DAYS OF PRESUMED GESTATION
ALL WEIGHTS WERE RECORDED IN GRAMS (G).
a. Spilled feed precluded the calculation of this value.

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T:6316.7) MATERNAL FEED CONSUMPTION VALUES - INDIVIDUAL DATA TABLE 17 (PAGE 3):

					71		14 - 16	16 - 18	18 - 20	
RAT #	DOSAGE	GROUP III	1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S MG/k	MG/KG/DAY	1	2 1 1 1 2 2 2 4 4 4 4	
12851 P	97.	48.	53.	52.	55.		59		5.4	
12852 P	48.	45.	47.	44.	43.	49.	48			
12853 P	. 69	49.	49.	48.	. 02	54.			. 6	
12854 P	103.	39.	. 09	51.	41.	48.	84	. 69		
12855 NP	81	40.	47.	41.	38.	32.	37.		. 44	
	. 88	38.	39.	47.	41.	47.	50	1 00 1 L/		
12857 P	103.	49.	50.	49.	50.	55.	. 99	52.		
	78.	32.	42.	41.	43.	39.	40.	45.	. T	
12859 P	101	57.	63.	55.	52.	58.	58.		. [
12860 P	103.	57.	58.	49.	56.	63.	67.	62.		
12861 P	78.	33.	47.	47.	45.	47.	4	52.		
2862 P	82.	44.	47.	47.	47.	48.	46.			
2863 P	. 08	42.	46.	45.	48.	42.	40.		. 77	
.2864 P	. 96	54.	53.	46.	58.	58.	61.	9	. 09	
2865 P	. 96	54.	41.	29.	39.	37.	53.	51.		
2866 P	95.	52.	57.	51.	52.	53.	. 09	57.	5.5	
	76.	43.	36.	38.	45.	45.	49.	. 84	. 44	
2868 Pa	. 48	50.	48.	48.	49.	46.	58.	54.	52.	
2869 P	. 9/	43.	48.	46.	53.	46.	51.	50.	. 64	
12870 P	87.	44.	45.	42.	44.	52.	54.	53.	. 4	
12 87 1 P	71.	35.	40.	37.	46.	38.	45.	. 64 		
12872 P	90.	44.	46.	45.	49.	50.	43.	48	5.2	
12873 P	83.	52.	52.	42.	50.	59.	55	. 26		
12874 P	. 96	46.	51.	52.	50.	50.	59.	45	. 4	
2875 D	ć									

P = PREGNANT NP = NOT PREGNANT (VALUES EXCLUDED FROM AVERAGES)

DAYS = DAYS OF PRESUMED GESTATION

ALL WEIGHTS WERE RECORDED IN GRAMS (G).

a. Dam 12868 had a litter consisting of 7 conceptuses; values excluded from group averages and statistical analyses.

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N.ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

L DATA
INDIVIDUAL
1
VALUES
CONSUMPTION VALUES
FEED
MATERNAL FEED C
(PAGE
1,1
PARIE 1

2010			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
	DOSAGE	GROUP IV				10 MG	10 MG/KG/DAY	1	
		92	5.4	52.	50.	54.	. 96	46	. 05
<u>a.</u>	101				0	5.0	50.	47.	48
<u>م</u>	88	47.	49	. 50				9	54.
Δ,	20.	36.	42.	. 46	41.	•		. 4	7.
_	94.	45.	49.	43.	53.	41.	0 (
	0	43	43.	45.	44.	47.	40	. 40	
7, 1		. 96	יני	38	37.	31.	43.	43.	38.
_		. 07		6 7	54.	53.	45.	57.	54.
Δ.	86.	20 i	n			ŭ.	56.	52.	49
۵,	98.	52.	. ,			. 0		5.	54.
12884 P	84.	43,	49.	52.	. 0	• •		, ir	44
Д	70.	43.	45.	47.	. / 4	- (. 0
2886 P	100.	50.	. 05	54.	53.	20.			
۵.	86.	47.	53.	50.	53.	54.	. 69		. 00
	L C	51	46.	46.	50.	54.	. 96	57.	د د
74 H			4 5	42.	41.	46.	43.	. 05	48.
12889 га	7			45	51	49.	53.	55.	4.
م.				. 4	87	50.	48.	52.	45.
<u>а</u>	94.	4	. 0	5 (u	6 V	56.	55
۵,	91.	40.	42.		· /		. 0	62.	26
12893 P	. 7.8	51.	45.	4. 20	a :				
۵	74.	47.	32.	43.	44	. 65			
ء .		2,5	37.	45.	39.	44.	45.	43.	
)			٠,٠	37.	49.	47.	50.	52.	48.
12896 P		D (4.5	4.4	47.	40.	45.
۵,	78.	. 64.3			. 44	5.5	.09	.09	57.
۵.	92.	51.	. 84.	. 69				0.4	46.
12899 P	17.	47.	47.	43.			. 45		<u>.</u>
۵	77.	38.	41.	36.	41.	. 00			4

P = PRECNANT NP = NOT PREGNANT (VALUES EXCLUDED FROM AVERAGES)
DAYS = DAYS OF PRESUMED GESTATION
ALL WEIGHTS WERE RECORDED IN GRAMS (G).
a. Dam 12889 had a litter consisting of 3 conceptuses; values excluded from group averages and statistical analyses.
b. Spilled feed precluded the calculation of this value.

(GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

PREGNANCY STATUS DAYS	. 0	9 - 6	- 9	8 - 10	10 - 12	12 14	14 14 16	16 - 18	18 - 20
RAT #	DOSAGE GROUP V	GROUP V	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1		20 MG/	20 MG/KG/DAY	1	1
10401 B	49.	45.	46.	42.	44.	.05	49.	45.	46.
7 7067L	83	43.	41.	37.	41.	44.	40.	50	40.
	71.	48.	45.	43.	46.	42.	35.	46	52.
	. 89	44.	38.	41.	34.	31.	35.	37.	6. 6
	83.	45.	39.	43.	40.	46.	45.	8 6	4. 4 V (
12906 P	81.	42.	38.	37.	45.	47.	40.	. 85	. 0
12907 P	97.	52.	49.	40.	39.	. 64	43.	40.	4 4 V C
12908 P	98.	49.	50.	47.	47.	49.	45.	4.	. 7
12909 P	92.	46.	38.	47.	40.	33.	33.	4 /	
	84.	44	38.	37.	36.	31.	32.	31.	
	84.	46.	39.	39.	39.	4 3.	. B	O .	7 1
	81.	43.	41.	41.	47.	50.	49.	51.	51.
	87.	45.	39.	47.	40.	46.	. 64	40.	9 6
	90.	51.	42.	45.	55.	50.	53.	45.	4. 1
0 21621	101	44	45.	44	51.	46.	53.	. 96	54.
	.08	44	29.	31.	6	42.	53.	52.	47.
d 71901	76.	40.	37.	30.	33.	39.	39.	44	. 5
Q 81601	98	52.	26.	30.	39.	37.	34.	40.	46
	79.	44	39.	45.	31.	41.	52.	48	E
	74	43.	34.	29.	45.	42.	38.	41.	40
		46.	4.	. 68	39.	35.	48.	48.	44.
	76.	42.	33.	33.	37.	35.	37.	42.	41.
	. 68	49.	35.	34.	39.	41.	48.	49.	. 20
	75.	42.	34.	30.	37.	33.	41.	42.	37.
									•

P = FREGNANT NP = NOT PRECNANT (VALUES EXCLUDED FROM AVERAGES)
DAYS = DAYS OF PRESUMED GESTATION
ALL WEIGHTS WERE RECORDED IN GRAMS (G).

P = PREGNANT NP = NOT PREGNANT (VALUES EXCLUDED FROM AV DAYS = DAYS OF PRESUMED GESTATION ALL WEIGHTS WERE RECORDED IN GRAMS (G).

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N.ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T 6316.7)

1	TARDARY	AN-SECTION	GCAREAN-SECTIONING OBSERVATIONS	ERVATION	VIUNI - 8	- INDIVIDUAL DATA	4				1	1		
TABLE 18 (PAGE	T): Cursum:	į				1	1	ONO TOTAL		IMPLANTATION	SITES	CORPORA LUTEA	LUTEA	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SESTITED CARA		EARLY RES	EARLY RESORPTIONS LATE RESORPTIONS	LATE RE	SORPTIONS			1			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	VIABLE FET	FETUSES	DEMO.				RIGHT LEFT	LEFT		F.I	TOTAL	RIGHI LEFT OVARY	TOTAL	
SEX	RICHT LEFT	T TOTAL	RIGHT LEFT HORN	T TOTAL	RIGHT EE HORN	TOTAL	- 1	N TOTAL	1	HOKIN		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
RAT # M F	HOKN		OM VITTO STATE	MC/KG/DAY) 1 1 1 1 1 1			1	1	1	1		1.7	
DOSAGE GROUP	1	0	O (VEHICLE) PO	/ Yes			0	0	8 0	91	14	10 9	19	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5 5 13 8 8 13 7 7 15 6 15 9 10 9 14 9 16 9 18 7 7 12 7 7 12 9 16 9 16 9 17 9 18 9 18 9 18 9 18 9 18					000000000000000000000000000000000000000			111 110 100 100 100 100 100 100 100 100	15 13 15 15 16 17 10 10 11 10 11 11 11 11 11 11 11 11 11	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
12825 7	11 8	10 18	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	! !							

M = MALE F = FEMALE PLACENTAE APPEARED NORMAL UNLESS NOTED OTHERWISE.

21 20 119 119 119
20425
177 TOTAL 177 TO
- 00 - 10 - 1
28 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
TOTAL 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15
UMBER 00 SJ 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
IMPLANTATION SITES CORPORTING TOTAL OVALUATION SITES CORPORTING TOTAL OVALUATION SITES TOTAL OVALUATION SITUATION SITES TOTAL OVALUATION SITUATION SITUAT
MPLANI HOHLANI 111 8 8 8 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SOR'S IM S IM
SPONSOR TILONS TOTAL TOTAL O O O O O O O O O O O O O O O O O O O
IN RATS (S IN RATS (S RIGHT LEFT RIGHT LEFT RIGHT LEFT O O O O O O O O O O O O O
N RATS IGHT LE HORN 0 0 0 0 0 0 0 0 0 0 0 0 0
R R R R R R R R R R R R R R R R R R R
DATE OF THE OF T
TINAL TERM
STUDY OF N STUDY OF N INDIVIDUA ARLY RESCRE RIGHT LEFT HORN 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RAIG
SES ESES E CONTINUES ESES ESES ESES ESES ESES ESES ESES
TOXIII TUSES
NING OBSERVATI
ELLOPMER DEAL DEAL RIGHT HO 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
DEVELOPMENTAL TOXICITY SECTIONING OBSERVATIONS SECTIONING OBSERVATIONS ES DEAD FETUSES EL RIGHT LEFT HORN 1 MG/KG/DAY 11 MG/KG/DAY 11 MG/KG/DAY 1 1 MG/KG/DAY 1 1 MG/KG/DAY 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0
AN-SECTI AN-SECTI AN-SECTI AN-SECTI AN-SECTI AND
ORAL (GAVAGE) I CAESAREAN SE CAESAREAN SE VIABLE FETUSES VIABLE FETUSES VIABLE FETUSES 11
CAESARE CAESARE IABLE FET HORN HORN 11 11 11 11 11 11 11 11 11 11 11 11 11
CRAL (GAV) (CAESARE (VIABLE FET (VIABLE FET (VIABLE FET (CAESARE (CAES
8 (PAGE 2): CAESAREAN-SECTIONING OBSERVATIONS SEX PICHT LEFT HORN TIGHT LEFT TOTAL HORN
OL 418-011 18 (PAGE 18 (PAGE 12826 12826 12827 12837 12831 12831 12833 12833 12833 12833 12834 12835 12836 12836 12837 12837 12837 12838 12838 12838 12838 12838 12838 12838 12838 12838 12838 12838 12838 12838 12838 12838 12838 12838 12848
PROTOCOL 418-011: TABLE 18 (PAGE 2) SEX SEX RAT # M F 1282 8 6 1282 8 6 1282 9 6 1282 9 6 1283 0 1283 7 1283 7 1283 7 1283 6 1283 7 1283 6 1283 7 1283 6 1283 7 1283 6 1284 9 1284 9 1284 9 1284 9 1284 6 1284 9 1284 6 1284 9 1284 6 1284 6 1284 9 1284 1 1284 NO' 1284 6 1284 6 1284 7 1284 6 1284 7 1284 7 1284 7 1284 7 1284 7 1284 7 1284 7 1284 7 1284 7 1284 7 1284 7 1284 7 1284 7 1284 7 1284 7 1284 7 1284 7
TABI

ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7) PROTOCOL 418-011:

TABLE 18 (PAGE 3); CAESAREAN-SECTIONING OBSERVATIONS - INDIVIDUAL DATA

			VIABLE		SECULE	DEAD FEIUSES	210012		100001)	EANLI NESCHITORS LAID HALL NESCHITORS							
RAT #	SEX	× .	RIGHT L	LEFT	TOTAL	RIGHT LEFT HORN	FT TOTAL		RIGHT LEFT HORN	TOTAL	RIGHT LEFT HORN	TT	1	RIGHT LEFT HORN	TOTAL	RIGHT	RIGHT LEFT OVARY	TOTAL
DOSAGE	GRO	GROUP III	11	1	5 MG,	5 MG/KG/DAY		1 3 3	f 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1	1	1			1
12851	7		4	11	15	 	0		1 0	1	0	0 (5 11	16	9	12	18
12852		0	9	10	16		0	0	0 0	0	_		-	6 10	16	9	11	13
12853	Ŋ	۰	10	4	14			0	0 1	н		0	10		15	10	7	11
12854	9	10	7	9/	16	0	0	0	0 0	0	0	0		7 9	16	œ	10	18
12855	NOT		PREGNANT															
12856	Ŋ	6	'n	0	14	0	0	0	0	0		0		8	14	'n	5 .	14
12857	11	80	6	10	19	0	0	0	0	0	0	0		9 10	19	12	11	23
12858	7	7	ß	6	14	0	0	0	1 0			0		9	15	9	11	17
12859	10	۲	10	7	17	0	0	0	0 0	0		0	7	0 7	17	10	7	17
12860		· œ	٠	6	15	0	0	0	1 0	-	0	0 0		7 9	16	6	11	20
12861	· •	v	· 60	4	12	0	0	0	1 1	7		0 0		9	14	10	6 0	18
12862	7	· œ	80	7	15	0	0	0	0 0	0		0 0		8 7	15	8	7	15
12863	· ru	. 6	4	10	14		0	0	1 0	-		0 0		5 10	15	S	10	15
12864	9	. 60	10	₹	14			0	0 0	0		0		10 4	14	12	'n	17
12865		10	7	80	15		0	0	1 1	2		0 0		6	17	œ	σ,	17
12866		10	11	60	19			0	0 0	0		0	-	1 8	19	11	11	22
12867		L.	4	10	14		0	0		0		0 0		4 10	14	5	10	15
12868		4	7	m	ın	0		0	0 2	7		0 0		2 5	7	7	9	13
12869	6	9	7	80	15	0	0	0		0				7 8	15	7	∞	15
12870		9	· vc	10	16	0		0	0 0	0	0			6 10	16	9	11	17
12871		٧	٠	œ	14	0	0	0	0 2	7		0		6 10	16	9	11	17
12872		'n	6	S	14	0	0	0	0 0	0		0 0		9 5	14	10	9	16
12873		σ	4	10	14	0	0	0	1 0	-	0	0	_	5 10	15	ហ	13	18
12874		σ	7	6	16	0	0	0	0 1	-	0	0 0	_	7 10	17	7	10	17
					,	•		•	•	u	<	•		9	7	٢	σ	7

M = MALE F = FEMALE
PLACENTAE APPEARED NORMAL UNLESS NOTED OTHERWISE.

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 18 (PAGE 4): CAESAREAN-SECTIONING OBSERVATIONS - INDIVIDUAL DATA

	1	111	VIABLE FE	SETTISES	DEAD	DEAD FETUSES		EARLY RESORPTIONS	SORPTIC	ONS L	LATE RESORPTIONS	PTIONS	TAKT	IMPLANTALION	2110			
	SEX	RI	`	· · ·	RIGHT LEFT	1	1	RIGHT LEFT			RIGHT LEFT	T. TOTAL.		RIGHT LEFT HORN	TOTAL	RIGHT LEFT OVARY		TOTAL
RAT # 1	Σ. Σ.		HORN	TOTAL	HORN		TOTAL	HOKN	2	10186	norm.		1		1	1	1	
DOSAGE GROUP	GROUP) IV	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	101	10 MG/KG/DAY	X						1	1				1	
	1			1 1 1 1 1		1	1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		! ! ! C			60	7	15	6	œ	17
12876	9		7 8	15	0	0	0	0 '	-	.			. 0	2	14	11	9	13
12877	9	_	9 5	14	0	0	0	o (> <	.			m	12	15	4	12	16
12878			3 12	1	0	0	0 (0 (-				80	7	15	10	6	19
12879	9	, -	8	15	0	0	0 (9 0		, ,			9	9	15	11	0/	20
12880			9 6	15	0	0	0 1	o 1	o -	, c			0	'n	14	10	5	15
12881			8	12	0	0	0 1	٦ (٠ ،	4 6				10	17	89	11	19
12882	-	_	7 10) 17	0	0	0 0	.	o (~ د			9		17	9	11	17
12883	8	10	5		0	0	o (→	, -	٠ -		0	J1	4	13	6	9	15
12884	9 9	ın	9	3 12	0	0	o (.	٠ ،					8	17	10	6	19
12885	9	er.	3	17	0	0 1	5	0 -	.			0		9 5	14	10	7	17
12886	9		6 0		0	o (> 0	+ C	· c	۰.				6 10	16	9	10	16
12887	8	89	6 10		0	0 (> •	0 0	· -	. –	0	0 0		7 7	14	ထ	10	189
12888	6 7	7	7	6 13	0	۰ د	5 (0 0	٠ -	• 0				2 1	٣	11	4	15
12889	1 2	2		. 3	0 (٥ د	> 0	> -	, c					5 11		Ŋ	11	16
12890	7	60	4 11	1 15	0 (-	> <	4 6	· c							9	7	1.3
12891	80	S		7 13	0	-	> <		, c	· C	0			7 8	15	80	١	1.5
12892	5 1(0	ъ	7 15	0	5 (> <	0 0	, ,		0	0	0 1	1 5	16	14	r-	2.1
	10	9	11	5 16	0	Э ;	> <	> <	· -	· -		0	_	Р 7	15	80	7	5
12894	7	7			0	0 (5	o -	4 6		, c		0	7 8	15	7	œ	15
12895	80	9		8 14	0	0	>	٦ ,		٠ -	· c		0	5	14	ភ	10	15
12896	9	80	S	9 14	0	0	э (> <	> <				0	6 9	15	σ	6	18
12897	7	80	9	9 15	0	0	o :	> <		•	o c		0 1	1 7	18	11	80	19
12898	9	12	11	7 18	0	0	9 (5	> <	> -	» c			9	14	œ	7	15
12899	10	m	7	6 13		0	0 (→ •	> <	٠ ،	, c		0 1	10 6	16	11	9	17
			•	, ,	_	c	0	9	>	>	>			•				

M = MALE F = FEMALE PLACENTAE APPEARED NORMAL UNLESS NOTED OTHERWISE.

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-EtFOSE IN RATS (SPONSOR'S STUDY NUMBER: T 6316.7)

TABLE 18 (PAGE 5): CAESAREAN-SECTIONING OBSERVATIONS · INDIVIDUAL DATA

		VIARIE	D.	FTUSES	DEAD	DEAD FETUSES		EAKLY KESORPIIONS	CNOT LAW	ייייי יייייייייייייייייייייייייייייייי	211011111					1 1 1	1
		0414	• ;			1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1		1	TEET LEET	E	
# T ∀ 8	SEX F	RIGH.	RIGHT LEFT HORN	TOTAL	RIGHT LEFT HORN		1 TOTAL	RIGHT LEFT HORN	T TOTAL	RIGHT LEFT HORN	FT TOTAL	RIGHT LEFT HORN		TOTAL	OVARY	TOTAL	AL
	direction			20 M	20 MG/KG/DAY		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1						,	1
DOSAGE GROUP V	GROUP	>					1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1		1 1				-
1			α	17	0	0	0	0 0	0	0	0	σ. i	30 L		ה ה		17
		, (0	0	1 0	-	0	0	ייס	'n	# L	- C		, ,
12902	4.	~ (, ·	1 -			c	1 0	-	0	0	6	٥	r C	01	- (
12903	8	3 0	۰ م	-) •		, (, ,		m	0	0	7	9	13	n o		ח ו
12904	2 8	٠	4	10	o '	> 6		4 6	· c	c	0	9	9	12	7		15
12905	5 7	9	9	12	0	o .	۰ د	> -		· c	0	8	9	14	80		4
12906	6 7	7	9	13	0	0	5	۰, ر	• •			0	10	10	8 1		18
12907	6 3	0	6	6	0	0	0	0 (m	13	16	4 1	14	18
12908	9		11	14	0	0	0	0 0	v -	0 0		, ,	9	13	6	80	17
12909	8	7	5	12	0	0	0	0	-	Þ							
12910	NOT P	PREGNANT	_						-	c	0	9	80	14	9	8	14
12911	9		80	13	0	0	5 (- ·		o c	0	6	4	13	11	4	15
12912	7 6	9	4	13	0	0	0 (0 -	o -	o c		. 49	7	13	6	∞	17
12913	7 5		7	12	0	0	۰ د		4 C	o c	. 0	12	٣	15	12	4	16
12914	8		m	15	0	0	o () r	> ~	o C	0	σ	80	17	9 1	m.	22
12915	8	60	-	14	0	0 1	۰ د		, -	o c	0	80	o,	17	8	6	17
12916	8		80	16	0	0 (5 (o -				10	2	15	11	9	17
12917	10 4			14	0	0	5 (- (• •	o c		12	4	16	12	r.	11
12918	5 10) 12		15	o	0	0 '	- 0	- c	o			80	14	9	80	14
12919	8	9	6 0	14	o	0	>	- -	-			6	7	16	10	6	19
12920	8	8	7	16	0	0	0 (.				, ,	٢	14	7	10	17
12921	9	3 7	7	14	0	0	0	.				œ	7	15	6 0	60	16
12922	7	5 7	S	12	0	0	0	٠,	7 (· v	14	89	9	14
12923	7	7 8	9	14	0	0	0	0					,	15	80	80	16
12924	7	80	7	15	0	0	0	0	· ·				7	16	6	6	18
			,	7	c	_	c	0	0								

M = MALE F = FEMALE PLACENTAE APPEARED NORMAL UNLESS NOTED OTHERWISE.

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

PROTOCOL 418-011:	5	OLITANABBO CITTO	ONS - INDIVIDUAL DATA	4		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
TARLE 18 (PAGE	6): CAESAREAN-SECTI	CAESAREAN-SECTIONING OBSERVED		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SELIS NOTE:	CORPORA LUTEA	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sastinga axac	EARLY RESORPTIONS LATE RESORPTIONS	LATE RESORPTIONS	- :	Tanara LEPT	
1 1 1 1 1 1 1 1 1	VIABLE FETUSES	DEAD SECTION	diam's and an array and	RIGHT LEFT	RIGHT LEFT	OVARY TOTAL	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RIGHT LEFT	RIGHT LEFT HORN TOTAL	RIGHT LEFT L HORN TOTAL	HORN TOTAL	i		
RAT #	HOKN TOTAL	1	(VEHICLE) MG/KG/DAY	J.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
SATELLITE DO	SATELLITE DOSAGE GROUP I			0 0		12 12 24	
12573	12 3 15 9 9 18	000		0 0 0	6 1 7	6 6 12	
12574	-	0	,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	
SATELLITE D	SATELLITE DOSAGE GROUP II	1	MG/KG/DAL	1	•	15 5 20 8 12 20	
12576	11 3 14	00	, 0 -	00	6 11		
12577	10	0 0		00	10 5	ر د د	
12579	10 5 12		T 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 1
00671	III dilona accom	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 MG/KG/DAY		6 9		
SATELLITE	1		0 2	2 0 0	0 13 5 18	14 / 13 11	
12581	13 5 18	00	0 0 0	0 0	13 '		
12583	,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 MG/KG/DAY	1			1
SATELLITE	SATELLITE DOSAGE GROUP IV	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	0 11 6 17	6 6 10 16	
12584	9 6 15	0 0 0	0 0	0 0 0	9	, 6	
12585		0	0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
12586		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20 MG/KG/DAY	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S	
SATELLITE	1		0	0 9	n on	9 6	
12587		14 0 0 115 0 0	000		L 4	16 12 4 16 16 19 9 19	
12588	7 7 1	0 (0 9	10 7	10	i
12589				0 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	
317 V		>					

PLACENTAE APPEARED NORMAL UNLESS NOTED OTHERWISE.

UMBER: T 6316.7) SES RESORBED		0.0	0.0 0.0 12.5		0.6			0.0	
(SPONSOR'S STUDY NAL DATA CONCEPTU	1		16 13 15	16 17 18 10	14 15 18		3.10 16 3.44 15 3.25 15	1 1 1 4 1	
M OF N-ELFOSE IN RATS ED FETUSES) INDIVIDUA AVERAGE FETAL BODY WEIGHT (G)	FEMALE TOTAL A (VEHICLE) MG/KG/DAY	3.37	1.89 3.46 3.44 3.55	(1)	3.14	3.45 3.43 3.35 2.85	3.49 3.01 3.38 3.14	3.16 3.87 3.42 3.66	
LAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFO LITTER OBSERVATIONS (CAESAREAN-DELIVERED FETUSES) AVERAGE FE NUMBER OF LIVE BODY WEIGHT	TOTAL MALE	29 8		15 3.64 15 3.64 14 3.39 12 3.70	18 10 14	• •	15 13 14	15 15 12 18	LIVE
(GAVAGE) DEVELOPMENTA TER OBSERVATIONS (CAE NUMBER OF LIVE	FETUSES MALE FEMALE	UP I	66	7 C Q Q L	7 8 8 6 4 4 7	T PREGNA		10 10 8 4	7 11 FETAL WEIGHTS/NUMBER OF
PROTOCOL 418-011: ORAL TABLE 19 (PAGE 1): LIT		RAT #	12801	12804 12804 12805 12806	12808 12809 12810	12811 12812 12813 12814	12816 12817 12817 12818	12820 12821 12821 12822	12824 12825 12845

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7) 0.0 RESORBED CONCEPTUSES TABLE 19 (PAGE 2): LITTER OBSERVATIONS (CAESAREAN-DELIVERED FETUSES) - INDIVIDUAL DATA TOTAL a 1 MG/KG/DAY AVERAGE FETAL BODY WEIGHT (G) FEMALE 2.94 3.21 3.03 3.03 3.60 3.18 2.98 2.98 3.27 3.33 3.53 3.53 3.70 3.10 3.12 3.48 3.48 3.48 3.48 3.48 3.48 3.48 TOTAL = SUM OF FETAL WEIGHTS/NUMBER OF LIVE FETUSES. MALE FEMALE TOTAL NUMBER OF LIVE PREGNANT PREGNANT PETUSES MALE DOSAGE GROUP II 12842 12843 12844 12845 12846 12848 12849 12850 12847 12836 12837 12838 12839 12840 12835 12834 12833 12830 12831 RAT #

3MA10083211

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

	NUM	NUMBER OF LIVE FETUSES	ы	AVI BOD	AVERAGE FETAL BODY WEIGHT (G)	1.60	CO	CONCEPTUSES RESO	SES
RAT #	MALE	FEMALE	TOTAL	MALE	FEMALE	TOTAL a	Z	Z	ا اعبد اعبد ا
DOSAGE GROUP 111	111 dnc	1 1 1 1 1 1 1	1	1	5 MG/KG/DAY	/DAY			1 1 1
12851	7		15	3.69	3.36	3.51	16	1	6.2
12852	. 00	, α	16	3.34	3.20	3.27	16	0	0.0
12853	ı ın	. 0	14	3.78	3.65	3.70	15	-	6.7
12854	9	10	16	3.52	3.07	3.24	16	0	0.0
12855	I LON	PREGNANT					;	,	d
12856	Ŋ	6	14	3.55	3.24	3.35	14	0	0 1
12857	11	8	19	3.34	3.16	3.26	19	0	0.0
12858	7	7	14	3.55	3.43		15		6.7
12859	10	7	17	3.20	3.20	3.20	17	0	0.0
12860	7	80	15	3.82	3.55	3.67	16		6.2
12861	v	9	12	3.12	2.98	3.04	14	2	14.3
12862	7	œ	15	2.95	2.91	2.93	15	0	0.0
12861	· Lrī	თ	14	3.67	3.37	3.48	15	7	6.7
12864	·	60	14	3.76	3.52	3.62	14	0	0.0
12865	un	10	15	3.67	3.44	3.52	17	7	11.8
12866	6	10	19	3.42	3.21	3.31	19	0	0.0
12867	6	S	14	3.44	3.15	3.34	14	0	0.0
12868	, ,	4	S	3.35	3.16	3.19	7	7	28.6
17869	וסי	9	15	3.35	3.20	3.29	15	0	0.0
12870	· ve	10	16	3.69	3.40	3.51	16	0	0.0
12871	, cc	9	14	3.46	3.26	3.37	16	2	12.5
12872	, σ	ľ	14	3.32	3.19	3.27	14	0	0.0
12871	· r	6	14	3.54	3.41	3.45	15	-	6.7
12874	7	σ	16	3.66	3.54	3.59	11	-	6.5
								L	,

a. TOTAL = SUM OF FETAL WEIGHTS/NUMBER OF LIVE FETUSES.

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-EtFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

DATA
INDIVIDUAL
ETUSES) -
TABLE 19 (PAGE 4): LITTER OBSERVATIONS (CAESAREAN-DELIVERED FETUSES) : INDIVIDUAL DATA
CAESARE
OBSERVATIONS
LITTER
4
(PAGE
1 9
TARLE

GROUP IV GROUP IV GROUP IV 6 8 15 3 6 8 14 3 7 8 15 3 6 6 11 17 3 6 6 6 12 3 7 8 8 17 3 9 8 8 17 3 1 2 2 3 1 3 3 1 4 13 3 1 5 10 15 1 6 16 1 7 7 14 8 6 8 15 1 8 6 16 1 9 8 15 1 0 15 1 0 6 16 1 0 6 16 1 0 6 16 1 0 7 7 14 1 0 6 16 1 0 0 6 16 1 0 0 0 15 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0		E II	NUMBER OF LIVE FETUSES	3	вор	BODY WEIGHT (G)		1	RESORBED	(BED
E GROUP IV 5 6 15 3.67 3.59 3.64 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RAT #	MALE	FEMALE	TOTAL	MALE	FEMALE	TOTAL a	Z	Z	
9 6 15 3.67 3.59 3.64 15 0 <t< td=""><td>DOSAGE GRC</td><td>UP IV</td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>1</td><td>10 MG/KG,</td><td>/DAY</td><td>1</td><td>1</td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td></t<>	DOSAGE GRC	UP IV	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	10 MG/KG,	/DAY	1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 6 15 3.27 3.08 3.16 14 0 0 7 8 15 3.39 3.46 3.42 15 0 0 9 6 15 3.39 3.46 3.42 15 0 0 9 6 15 3.39 3.46 3.42 15 0 </td <td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>1 1 1 1 1 1 1 1 1 1</td> <td></td> <td></td> <td></td> <td></td> <td>3.64</td> <td>15</td> <td>0</td> <td>0.0</td>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1					3.64	15	0	0.0
6 8 14 3.27 3.08 3.45 3.49 15 3.27 3.08 3.46 3.43 15 0	12876	6	9	\$	70.5	1 6	10.0	14	0	0.0
7 8 15 3.53 3.34 3.43 15 3.46 3.42 15 0	2000	٧	80	14	3.27	3.08	01.7			-
9 6 15 3.39 3.46 3.42 15 0 <t< td=""><td>17071</td><td>) [</td><td>α</td><td>15</td><td>3.53</td><td>3.34</td><td>3.43</td><td>15</td><td>0</td><td>0.0</td></t<>	17071) [α	15	3.53	3.34	3.43	15	0	0.0
9 7 15 3.32 3.08 3.21 15 0 6 6 11 17 3.69 3.43 3.52 17 0 6 6 12 3.12 2.82 2.97 14 2 14 6 6 12 3.40 3.30 3.36 17 0 0 9 8 17 3.40 3.14 3.16 13 17 3 18 3 10 3	12878	~ (1 -	62 2	3.46	3.42	15	0	0.0
8 7 15 3.52 2.97 14 2 14 6 6 11 17 3.69 3.43 3.52 17 0 6 11 17 3.69 3.43 3.36 17 0 6 6 12 3.18 3.14 3.16 13 1 9 4 13 3.26 2.86 3.07 17 0 9 4 13 3.26 2.86 3.07 14 1 9 4 13 3.21 2.95 3.08 16 0 9 4 13 3.01 2.95 3.08 16 0 1 2 3 3.47 3.66 3.60 3.49 16 0 1 2 3 3.24 3.52 3.70 13 0 0 1 4 3.55 3.69 3.49 16 0 0<	12879	J.	ו פ			80.6	3.21	15	0	0.0
6 6 12 3.12 2.82 2.7 1 0	12880	æ	7	61	3.36		0,0	14	7	14.3
6 11 17 3.69 3.43 3.52 17 3 17 6 6 12 3.30 3.30 3.36 17 3 17 9 9 8 1 17 3.26 2.86 3.07 17 9 9 9 8 13 3.60 3.45 3.07 17 9 9 9 4 13 3.60 3.45 3.08 1.6 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	19901	9	9	12	3.12	78.7	76.7		1 0	· c
8 6 14 3.40 3.30 3.36 17 3 6 6 12 3.18 3.14 3.16 13 1 9 4 13 3.26 2.86 3.07 17 0 9 4 13 3.26 2.95 3.08 16 1 9 4 13 3.21 2.95 3.08 16 0 1 2 3 3.47 3.66 3.00 14 1 1 2 3 3.47 3.66 3.70 14 1 1 2 13 3.24 3.52 3.70 13 0 1 3 3.60 3.49 16 0 5 10 15 3.34 3.49 16 0 6 16 14 3.25 3.49 16 0 7 14 3.25 3.24 3.40 14	12021	. 4	-	17	3.69	3.43	3.52	/1	>) t
8 6 6 12 3.18 3.14 3.16 13 1 9 8 17 3.26 2.86 3.07 17 0 9 8 13 3.26 2.95 3.08 14 1 9 8 16 3.21 2.95 3.08 14 1 1 2 3 3.47 3.66 3.60 14 1 1 2 3 3.47 3.66 3.60 14 1 7 8 15 3.24 3.64 3.14 16 1 9 10 15 3.24 3.43 3.49 15 0 10 6 16 3.52 3.43 3.49 15 0 10 6 16 3.55 3.49 3.40 14 0 10 14 3.25 3.18 3.40 14 0 10 <td< td=""><td>12882</td><td>0 1</td><td>; `</td><td></td><td>3 40</td><td>3.30</td><td>3.36</td><td>17</td><td>m</td><td>17.6</td></td<>	12882	0 1	; `		3 40	3.30	3.36	17	m	17.6
6 6 12 3.15 2.86 3.07 17 0 9 4 13 3.26 2.86 3.07 17 0 9 4 13 3.21 2.95 3.08 16 1 9 4 13 3.21 2.95 3.08 16 0 1 2 3 3.01 2.95 3.00 14 1 1 2 3 3.01 2.98 3.00 14 1 7 8 13 3.01 2.98 3.00 14 1 8 13 3.24 3.04 3.14 16 1 9 16 3.60 3.43 3.49 15 0 10 6 16 3.39 3.25 3.49 16 0 10 6 14 3.25 3.49 15 1 10 4 3.25 3.49 <t< td=""><td>12883</td><td>æ</td><td>۰ م</td><td># C</td><td>9</td><td>3 14</td><td>3.16</td><td>13</td><td>7</td><td>7.7</td></t<>	12883	æ	۰ م	# C	9	3 14	3.16	13	7	7.7
9 8 17 3.26 5.08 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12884	9	9	7.7	01.0		20.	17	0	0.0
9 4 13 3.60 3.45 3.59 14 8 8 16 3.21 2.95 3.08 16 10 1 2 3 3.47 3.66 3.60 3 10 7 8 15 3.24 3.66 3.60 3 10 8 15 3.24 3.66 3.60 14 16 10 6 16 3.52 3.70 13 0 10 6 16 3.52 3.70 13 0 10 6 16 3.59 3.69 3.62 15 10 7 7 14 3.25 3.69 3.62 15 10 8 14 3.48 3.41 3.40 14 0 10 3 13 3.3 3.25 3.29 14 1	12885	6	ω	17	3.46	0 .			-	7.1
8 8 16 3.21 2.95 3.08 16 15 16 17 13 3.01 2.98 3.00 14 1 16 1 1 2 2 3 3.01 2.98 3.00 14 1 1 1 2 2 3 3.01 2.98 3.00 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12886	6	4	13	3.60	3.45	رد . د	, (
6 7 13 3.01 2.98 3.00 14 1 7 8 13 3.47 3.66 3.60 3 7 9 3.47 3.66 3.60 3 8 15 3.24 3.04 3.14 16 1 8 15 13 82 3.52 3.70 13 0 10 6 16 3.39 3.26 3.34 16 0 7 7 7 14 3.55 3.69 3.62 15 7 7 7 14 3.55 3.18 3.22 15 7 8 15 3.38 3.41 3.40 14 0 7 8 15 3.38 3.41 3.40 15 7 8 15 3.38 3.41 3.40 15 7 8 15 3.38 3.41 3.40 15 7 8 15 3.38 3.41 3.40 15 7 8 15 3.38 3.41 3.40 15 7 8 15 3.38 3.41 3.40 15 7 8 15 3.38 3.41 3.40 15 7 8 15 3.38 3.41 3.40 15	0 00	. a	œ	16	3.21	2.95	3.08	10	> -	
1 2 3 3.47 3.66 3.60 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/ 887T	•) r		3.01	2.98	3.00	14		1.1
1 2 3.24 3.04 3.14 16 1 7 8 13 3.62 3.52 3.70 13 0 8 10 15 3.62 3.43 3.49 15 0 10 6 16 3.59 3.26 3.34 16 0 7 7 14 3.55 3.69 3.62 15 1 8 6 14 3.25 3.18 3.22 15 1 7 8 14 3.48 3.41 3.40 14 0 6 12 18 3.22 3.23 3.22 18 0 10 3 13 3.25 3.29 14 1 10 3 15 3.25 3.24 16 0	12888	۰۰	- (7 4 ۲	3,66	3.60	ю	0	0.0
7 8 15 3.24 3.72 3.70 13 0 8 5 13 3.60 3.43 3.49 15 10 6 16 3.39 3.26 3.34 16 0 7 7 7 14 3.55 3.69 3.62 15 11 3.48 3.34 3.40 14 0 7 8 15 3.38 3.41 3.40 15 10 3 13 33 3.22 18 0 10 3 12 3.23 3.22 18 0 10 3 12 3.23 3.24 16 0	12889	7	7	· ;			14	16	-	6.2
8 5 13 3.82 3.52 3.70 13 5.52 15.70 15.9 5.70 15.9 5.70 15.9 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	12890	7	c o	15	7.7			7.7	c	0.0
5 10 15 3.60 3.43 3.49 15 0 10 6 16 3.39 3.26 3.34 16 0 7 7 14 3.55 3.69 3.62 15 1 8 6 14 3.48 3.34 3.40 14 0 7 8 15 3.38 3.41 3.40 15 0 6 12 18 3.22 3.23 14 1 10 3 13 33 3.25 3.24 16 0	1000	œ	'n	13	3.82	3.52	0/.5	7 .		
10 6 16 3.39 3.26 3.34 16 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16071	u	-	15	3.60	3.43	3.49	15	-	o .
10 0 14 3.55 3.69 3.62 15 1 1 1 1 3.55 3.69 3.62 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	17837	n «	,	16	3,39	3.26	3.34	16	0	0.0
7 7 7 14 3.25 3.18 3.22 15 1 8 6 14 3.25 3.18 3.22 15 1 6 8 14 3.48 3.41 3.40 14 0 7 8 15 3.38 3.41 3.40 15 0 6 12 18 3.22 3.23 18 0 10 3 13 331 3.24 3.29 14 1	12893	0.1	ا م	9 4	י ני	3 69	3.62	15	7	6.7
8 6 14 3.25 3.18 3.22 15 7 6 8 9 14 3.48 3.34 3.40 14 0 14 0 15 0 15 0 15 0 15 0 15 0 15	12894	7		7	0.0			ų	-	6.7
6 8 14 3.48 3.34 3.40 14 0 7 15 0 15 3.38 3.41 3.40 15 0 0 0 15 0 0 0 0	12805	œ	9	14	3.25	3.18	3 . 22	C ;	• •	
7 8 15 3.38 3.41 3.40 15 0 6 12 18 3.22 3.23 3.22 18 0 10 3 13 3.31 3.24 3.29 14 1 7 16 3.25 3.24 16 0	C687T	, (ď	14	3.48	3.34	3.40	14	>	0 '
, 12 18 3.22 3.23 3.22 18 0 6 12 18 3.24 3.29 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12896	0 1	5 6	2 1	3.38	3.41	3.40	15	0	0.0
6 12 18 3.24 3.29 14 1 1 3.24 3.29 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12897	,	n ·	7 6		1 23	22 د	18	0	0.0
10 3 13 3.31 3.24 3.29 14 7 1 1 3.22 3.24 16 0	12898	9	12	81	3.66	7	1 0		-	7.1
7 16 3.25 3.24 16 0	00001	10	m	13	3.31	3.24	3.29	<u>.</u>	• 0	
	66071	1	•	16	3.22	3.25	3.24	16	>	0.0

a. TOTAL = SUM OF FETAL WEIGHTS/NUMBER OF LIVE FETUSES.

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

INDIVIDUAL DATA
FETUSES)
VS (CAESAREAN-DELIVERED FETUSES) - II
TABLE 19 (PAGE 5): LITTER OBSERVATIONS (CAESAREAN-DE
. 2
(PAGE
TABLE 19

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NUM	NUMBER OF LIVE		AVE BOD)	AVERAGE FETAL BODY WEIGHT (G)	ı @	CON	CONCEPTUSES	RBED	1 1 1 1
1	1		1	TOTAL	MALE	FEMALE	TOTAL a	N	Z	حيد	
	RAT #	MALE	FEMALE	nuiot		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DOSAGE GROUP V	>				20 MG/KG/DAY	3/DAY	1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1			0000	70 5	3.21	17	o	0.0	
	12901	11	9	/ 1	9 6	, c	3.11	14	7	14.3	
	12902	4	00	12	3.23	0.0	2	15	1	6.7	
	12903	8	9	14	3.21	3.00	3 · · ·		m	23.1	
	12904	2	8	10	3.20	3.01	3.0.4	;		0.0	
	1000	ı	7	12	3.34	3.28	3.31	7 ,	۰ -		
	20671	, ,		13	3.41	3.24	3.32	5 1	٠,		
	12906	۰۰	~ (σ	2.96	2.86	2.93	10	-	0.01	
	12907	و	ໆ (` -	היי	2.98	3.05	16	7	12.5	
	12908	9	x 0	1 1	0	8,4	2 97	13	1	7.7	
	12909	80	4	1.2	3.12) N					
	12910	NOT F	PREGNANT				,	7.	_	7.1	
	11001	σ	4	13	3.27	2.95	3.17	5		0	
	17211	, r	· v	13	3.74	3.34	3.55	£1,	,		
	12912	- 1	, u	1.0	2.97	2.99	2.98	13	-		
	12913	,	n t	7 1	. 43	3.20	3.32	15	0	0.0	
	12914	80	,	C 7 .		3 20	3.42	17	m	17.6	
	12915	80	۰	# \ -1 :			2.95	17		5.9	
	12916	8	ω	9 ;	0.0		3.07	15	1	6.7	
	12917	10	4	61.	9 6	1 C	3.12	16	1	6.2	
	12918	ហ	10	51	3.20	60.6	3 13	14	0	0.0	
	12919	œ	9	5 7	# 17 . 17	60.7	3 22	16	0	0.0	
	12920	60	ထ	16	3.35		ביי	14	0	0.0	
	12921	9	Œ	14	3.36	5.2.	10.0		,	20.0	
	12927	7	w	12	3.18	3.07	# L		ı C	0.0	
	77671	7	7	14	3.44	3.25	3.35	.		· c	
	1000	٠ ٢	α	15	3.39	3.13	3.25	47	> <		
	12924	` -	ur	16	2.91	2.91	2.91	16	•	o. •	,
	12925	7.7	,	1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				

a TOTAL = SUM OF PETAL WEIGHTS/NUMBER OF LIVE FETUSES.

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-EtFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

	1
THE THEFTEL DATA	
	TABLE 19 (PAGE 6): LITTER OBSERVATIONS (CAESAREAN-DELIVERED FETUSES) - INDIVIDUAL DELIVERED FETUSES)
	LITTER OBSERVATIONS
	: 9
	(PAGE
PROTOCOL 418 011:	TABLE 19

	OLONIAL CARREST	BODY WEIGHT (G)		RESO	RESORBED
	FETUSES			,	مد ا ا
RAT #	TOTAL	TOTAL a	4		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	T GEORGE GROUP I	0 (VEHICLE) MG/KG/DAY	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
SATELLITE DU	משפה פורכה		4	1	6.2
	15	1,15		0	0.0
12513	18	אריד כי י	7	0	0.0
12575	7				k
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 MG/KG/DAY		1	
SATELLITE DOSAG	USAGE GROOF II			-	6.7
	14	1,31	5 6	0	0.0
9/571	18	1.38	17	H	5.9
12577	16	1.28	15	0	0.0
17578	15	- N - T		1	6.7
12579	14	1.46	, .		
09671	HAT COOK OF	S MG/KG/DAY			1
SATELLITE D	SATELLITE DOSAGE GROUP III		15.	6	13.3
1000	13	1.43	18	0	0.0
10071	18	1.30	20	0	0.0
12583	20			1 1 1 1 1 1 1	1 1 1 1 1
	VI GROUP INCOME.	10 MG/KG/DAY	1	1	1
SATELLITE		1 22	17	7	11.8
12584	15	11:1	16	0	0.0
12585	16	1.17	14	-	7.1
12586	13		1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1
	V GROUP CROUP V	20 MG/KG/DAY		1	1
SATELLITE		1 16	14	0	0.0
12587	14	1.35	15	0	0.0
12588	15	1 32	14	0	0.0
12589	14	14.1	16	7	12.5
12590	14	1.32	17	 1	y. v
12591	16				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7)	17	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			,
316	19 20	1			
ER: T	18	1		A B B S . 4 3	
NUMB	1.7	1		3.57 MA 5.43	
stubY	16			FA 3.43 3.43 WA MA 2.4.848 K	
S. 40	15 1	1		MA MA 3.65 3 3.65 3 3.72 FA 3.34 FA 3.50 MA 1.5.32	
SPONS	14	1	!	MA M	
ATS (3	3 .			FA MR F) 3.51 3.8 MA 3.39 3. MA 3.39 3.76 3 MA 3.76 3 MA 3.76 3 MA 3.76 3 MA MA 3.76 3 MA MA MA 3.77 3.80 3 FA MA 5.5.41 4 S.5.41 4 S.8 3.19 SITION C	
EVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RA INDIVIDUAL DATAVITAL STATUS AND BODY WEIGHT - INDIVIDUAL DATA	12 1	0 (VEHICLE) MG/KG/DAY		IN MA MA MA FA MA E FA MA E FA MA	LIVE E FAMILY WERE RECORDED IN GRAMS (C) FETAL BODY WEIGHTS WERE
FOSE	1 1) MG/	1	MA EA MA EA MA	GKAM
N-Et	10 11	HICLE	1	A FA MAA / MA / MA / MA / MA / MA / MA /	N1 03
JDY OF	1 6	0		MA / MA FA MA MA MA MA MA MA MA	ECORD
Y STU			1	MA / MA FA MA FA MA 1.82 2.06 MA / MA 3.40 3.26 FA A 3.41 3.41 3.53 FA MA 3.91 3.42 FA FA 3.91 3.42 FA FA 6.506 FA MA 6.506 FA MA 6.506 FA MA 75 3.56 FA FA	SRE RI
xICI1			1	MA M	TTS W
'AL TC	1 1 1	٠	1 1	MA M	WEIG
PMEN1	1		1	MA M MA M MA M 1.89 2. 1.89 2. 1.83 3.66 3. 1.30 3.31 3. 1.30 3.31 3. 1.30 3.81 4. 1.30 3. 1.30 3.	BODY
EVELC		4.	1	FA M7 13.15 3.4 14.183 1. 14.43 3. 2.3.443 3. 2.3.443 3. 2.3.443 3. FA F F F F F F F F F F F F F F F F F F	= ALIVE FETAL
GE) F		3		1347461	11
(GAV)		2	,	A MA FA FA FA FA FA MA FA FA MA FA	JE A
ORAL			П	MA MA FA 3.54 3.90 3.31 MA FA FA 2.01 1.70 1.94 MA MA MA MA 3.48 3.60 3.72 FA MA FA 3.44 3.63 3.72 FA MA FA 3.47 3.84 3.63 3.47 3.84 3.63 MA FA FA 3.41 3.64 3.63 FA FA FA 5.33 5.24 4.9 5.33 5.24 4.9 5.34 3.38 3.31 FA F	F = FEMALE ORA LUTEA/OV
11:	<u>.</u>	**	DOSAGE GROUP I	2 1 6 9	M = MALE F = FEMALE A CLS = CORPORA LUTEA/OVARY
418-0	(PAGE	FETUS #	OSAGE	RAT # CL8 12801 8/ 9 12802 10/ 9 12803 9/ 8 12804 6/11 12805 10/ 7 12807 5/12 12809 10/ 9 12811 7/ 9 12811 7/ 9 12812 10/ 6	ALE
COCOL	TABLE 20 (PAGE 1): FEIGH	E	Õ	RAT # C 12801 8 12802 10 12803 12803 12806 12806 12807 12809 12810 12811 12811	M = MALE CLS = COR
PROT	TAB	:	1		1

21 22 23	
15 16 17 18 15 16 17 18 15 16 17 18 15 16 17 18 17 3.76 3.39 3.65 18 3.76 3.36 18 8.8 8.8 18	
SPONSOR'S STU 14 15 16 14 15 16 3.62 3.76 3.77 MA MA MA 3.54 MA MA 3.54 MA 3.54 MA 3.54 MA 4.09 65 4.09 65 4.09 10N OF CERVIX	
E IN RATS (S L DATA 112 13 1 12 13 1 146 FA 3 146 FA 3 140 3.41 3 140 3.41 3 140 3.41 3 140 3.64 3 150 3.64 3 160 3 1	
HT - INDIVIDUAL DATA HT - INDIVIDUAL DATA O (VEHICLE) MG/KG/DAY FA MA HA MA FA	
XICITY STUDY BODY WEIGHT BODY WEIGHT A MA MA A 4.03 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.4	
STATUS AND STATUS AND STATUS AND STATUS AND 3.80 3.55 3 MA MA 3.52 3.35 3 FA MA 1.82 3.25 FA FA FA 1.82 3.25 FA MA 7 3.55 3.63 MA MA A MA MA A MA A MA A MA A MA A MA	
SAVAGE) DEVEI SAVAGE) DEVEI 3 4 MA FA MA	
11: ORAL (G 2): FETAL 1 2 GROUP I GROUP I 9 MA M 9 MA M 9 MA M 9 MA M 13.437 6 FA P 6 2.913 1/10 MA 1/10 MA	Spoke as
TOCOL 418-01 SLE 20 (PAGE BLE 20 (PAGE 12814 9/1 12814 9/1 12815 10/ 12815 10/ 12819 11 12820 12822 12822 12822 12823 12825 M = MALE	CL8 = CU
18.011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY PAGE 2): FETAL SEX, VITAL STATUS AND BODY WEIGHT PAGE 2): FETAL SEX, VITAL STATUS AND BODY WEIGHT SAGE GROUP I SAGE GROUP I 10/9 E	CLS = CORPORA ECT

STUDY OF N.EtFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

FET	FETUS #		7	3	4	Z	9	7	6 0	60	10	11	12	13	14	15	16	17	18	19	20	21
30g	DOSAGE GROUP		. II	1 1 1 1	! !	1				Σ :	1 MG/KG/DAY	'DAY	1	1	1	1 1 1		1	1	1	1	,
RAT # CL 12826 12/	CLs 12/5	FA 2.26	MA 3.30		MA 3.42	MA 3.14	₹8 3.31	MA 3.46	MA 3.56	FA / 3.16	FA 2.89	MA 3.33	MA 3 · 12	FA 2.95	FA 3.19							
12827	8/9	FA 2.95			FA 3.55	FA 3.21	FA 3.16	3.30	MA 3.60	MA 3.40	FA 3.09	MA 3.24	3.30	n i				5	g G			
12828 1	11/8	FA 3.29			MA 3.26	MA 3.59	MA 3.50	FA 3.47	M.A. 3.65	MA 3.35	3.23	FA 3.23	/ FA 3.08	FA 3.05			3.12	3.98	3.44			
12829	8/8	MA 2.88			3.05	FA 3.16	MA 3.45	3.03	FA /	MA 2.79	MA 2.72	FA 2.99	FA 2.86	2 . 8 .	m							
12830	7 /6	MA 3.85		FA 3.58	FA 3.76	FA 3.63	FA 3.77	FA 3.59	MA /	, FA 3.19	FA 3.65	3.33	3.48	4 . 14								
12831 12/	12/ 5	FA 3.32	MA 3.22	FA 3.25	FA 2.89	FA 3.26	MA 3.22	ш	FA 3.29	FA 3.23	FA 2.95	FA 3.07	FA 3.41		MA 1 3.49	FA 9 3.18	MA 1 3.76	3.85				
12832 10/10	10/10	MA 3.24		ш	FA 2.79	MA 3.13	FA 3.20	3.16	FA 3.03	MA 3.36	MA 2.93	FA 2.91	FA 2.98									
12833	9 /8	FA 3.46		MA 3.42	m	MA 3.07	MA 3.20	MA 3.45	MA /	/ MA 3.56	MA 2.95	3.33	FA 3.08	MA 3 3.56								
12834	5/10			FA 3.14		FA /	7 FA 3.42	MA 3.36	MA 3.34	MA 3.70	MA 3.72	MA 3.57	MA 3.52			MA 8 3.49	_					
12835	8 /6	MA 3.52		/ FA 3.73	FA 3.80	FA 2.36	MA 3.77		MA 3.76	FA 3.52		;										
12836	8/10			FA 3.06		FA 3.18			FA 3.30	3.39	MA 3.20	3.91					9 3 . 23					
12837	8 / 8		FA 1 3.49	MA 3.74			FA 3.69		FA 3.64	/ FA FA 3.58 3.74	3.74	MA 3.84	MA 1 3.91	FA 1 4.26	FA 6 3.14	A 3.92	C ³					
12838	9 /6	¥ ∑		FA 3.43	MA 3.60	MA 3.46			MA 3.23	FA 2.40	/ FA 3.26	3.84 8.84					6					

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

FET	FETUS #	-	73	٣	4	Ŋ	9	7	α	6	10	11	12	į	13 1	14 1	15	16	17	80	19	20	21
SOO	AGE G	DOSAGE GROUP II		1 1	1 1	1 1	. ! ! ! ! !		. ,		MG/K	MG/KG/DAY		1	1	1	!	1 1 1	1				i
RAT # 12839	CLs 7/11	FA 2.69	FA 3.32	MA 3.40	• •			FA /	/ MA	FA 9 3.27	MA 7 3.09	FA 19 3.11		FA F	FA K	MA 1	FA 3.36 3	FA 3.873	3.51				
12840	9/10	FA 2 90							MA .										1.12				
12841	8 /6	FA		FA					FA 2.6										MA 1.68				
12842 10/	9 /01	FA	MA 5.4		MA 4	A.A.	FA .		MA 1 3.70									FA . 39					
12843 7/	۱/ 8	FA							/ FA 9 3.5								;	i	į				
12844 11/ 8	11/8	MA 70		FA 3.49					MA 3 3.9				`		FA 3.583		3.93 3	FA 3.92	FA 3.51				
12845		NOT																					
12846		NOT	PREGNANT	NANT																			
12847 15/	15/6	MA							FA 0 3.0		A F. 28 3			FA 2.92 2	FA 2.92 2	FA / 2.65 3	3.78	3.45	MA 3.52	FA 3.21			
12848 13/	13/7	MA C	MA K	FA	MA 78	F.P.			M. M. 8		A F 26 2.		FA F 3.093.		FA / .063	MA . 16 3	FA 1.01		FA 3.04	FA 3.12			
12849	9 /6	M. A.							W.		M / W				MA .653	.46	MA 3.39						
12850	7/12		3.31 MA 3.66		5 3.60 FA 2 3.45		0 3.07 FA 4 3.14	MA / MA / A 3.37	6 3.38 1 / MA 17 3.25		FA F 2.95 2.	FA 5.91			FA 3.23 3		FA 3.07	MA 3.46	FA 2.33	MA 3.18			,

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N.ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

FE	FETUS #		2		4	5	9	7	80	6	10	11	12	13	14	15	16	17	18	19	20	21
2	DOSAGE GROUF		III							Σ.	5 MG/KG/DAY	DAY	1 1 1			1	1 1 1 1	1		1 1 1	1	:
RAT # CLS 12851 6/12	CLs 6/12	•		œ	3.55	MA /	FA 3.25	F.A.					MA 3.84	MA 3.48		FA 3.48	MA 3.82					
12852 6/11	6/11	FA .09	FA 3.31	MA 3.29	FA 3.22	MA 3.23	MA / 3.58	MA 3.12					FA 3.21	MA 3.30		FA 3.29	FA 3.38					
12853 10/ 7	10/ 7	3.26	FA MA FA 3.52 3.87 3.65	MA 3.87	FA 3.65	FA 3.48	FA 3.76	FA 3.82	FA 3.50	MA 3.66	FA /	MA 4.00	MA 4.09	(x)	FA 4.03	FA 3.75						
12854 8/10	8/10	MA 3.57	FA 2.90	FA 3.21	MA 3.44	FA 2.98	MA 3.43	M.A. 3.50					MA 3.59	FA 3.50		FA 3.18	FA 3.24					
12855		NOT	PREG	NANT																		
12856 5/9	6 /9	FA 3.35	MA 3.57	FA 3.10	FA 3.56	MA /	/ FA 3.16	MA 3.47					MA 3.61	FA 3.21	MA 3.49							
12857 12/11	12/11				MA 3.50		MA 3.49	MA 3.40					MA 3.19	MA 3.21	MA 3.56	FA 3.14	FA 2.61	FA 3.24	FA 2.93	FA 3.44		
12858	12858 6/11		FA . 3.83		E		FA /	3.25					FA 3.47	MA 3.32	FA 2.99	MA 3.70						
12859	12859 10/ 7				FA 3.26		MA 3.31	MA 3.29					MA 3.22	FA 3.21	FA 3.12	MA 3.26	MA 3.15	FA 3.17				
12860	12860 9/11				MA 3.64		MA 4.31	MA /					3.95	FA 3.51	FA 3.53	FA 3.36	FA 3.76					
12861	12861 10/ 8				FA 2.91		MA 3.26	FA 2.89					E	FA 3.06	FA 3.20							
12862	12862 8/7	MA 2.93	FA 2.77	FA 3.02	FA 3.13	MA 2.96	MA 3.13	FA 2.81	MA / 2.70	FA 2.77	MA 3.04	MA 2.89	FA 2.99	FA 3.00	MA 3.02	FA 2.76						
12863	12863 5/10				FA 3.37		7 FA	M.A. 7.8					FA	FA 3.14	FA 3.29	3.69						

STUDY OF N.ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 20 (PAGE	(PAGE	: (9	FETAL SEX,	, SEX,	VITA	L STA	VITAL STATUS AND BODY WEIGHT	ND BO	λ WE]		- INDIVIDUAL DATA	VIDUA	L DAT	ج					1	1	1	
. E.	FETUS #		2		4	5	9	7	80	. 6	10	11	12	E -	14	15	16	17	18	19	20	21
00	DOSAGE GROUP III	ROUP	111					, ,	1	5 MC	5 MG/KG/DAY	AY		1	:	1	,		! !	1	1	1
RAT # CLS 12864 12/ 5	CLS 12/ 5	FA	FA 3.46		MA 3.77		FA 3.49		FA 3.73			' FA 3.36 3	MA 3.48	MA 3.90	FA 3.37	i	ī	5				
12865	12865 8/9	FA	F.A.		ш		FA 3.42	FA 3.30	MA / 3.28	FA 3.49	FA 3.50			FA 3.38	3.84	3.18	ы 5	3.72	Ś	Š		
12866	12866 11/11	FA	F.A. 3.08		FA 2.84		FA 3.38		MA 3.41					3.57	3.34	3.52	3.44	3.30	3.44	3.68		
12867	12867 5/10	MA 4	MA 3.53		MA 3.46		MA 3.10		MA 3.16					MA 3.44	FA 3.08							
12868	12868 7/6	FA	FA		FA 2 81		Œ															
12869	9 / L	MA 4	FA	MA 30	FA 3.30	3.22	FA 3.20	MA /	FA 3.01	MA 3.19	FA 3.21	MA 3.44	MA 3.41	3.55	3.20	3.07	;					
12870	6/11	E A	M.A. 3.92		FA 3.28		FA .		MA 3.61	MA 3.37	FA 3.63	FA 3.22	MA 3.68			٠,	3.45					
12871	6/11	MA 3.26	FA 3.46		MA 3.62		F.A.		FA 3.34	ы	MA 3.29	FA 3.21	3.58				3.46					
12872	12872 10/ 6	FA 3.21	MA 3.36		MA 3.45		3.25		3.50	FA / 3.16	MA 3.11	FA 3.12	3.37									
12873	12873 5/13		<u> </u>		MA 17.1		/ FA 3.34		FA 2.90	FA 3.59	FA 3.57	MA 3.56	3.57					ć				
12874	12874 7/10		MA 7 3.53		MA : 3.67		FA 3.62		/ FA 3.43	Ħ	FA 3.36	FA 3.53	3.39			3.28	3.54	3.92				
12875	6 /1				¥		Ē		FА	Œ	ы	¥Ψ	ΜA									

M = MALE F = FEMALE A = ALIVE E = EARLY RESORPTION "/" DENOTES POSITION OF CERVIX CLS = CORPORA LUTEA/OVARY FETAL BODY WEIGHTS WERE RECORDED IN GRAMS (G).

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N.ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

FET	FETUS #	7	7	m	4	S	9	7	80	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23
SOO	DOSAGE GROUP IV	ROUP	Λ.	1	:	: : :	1	1 7 8	1 1	10	MG/KG/DAY	/DAY				1			1	:	1		1	
RAT # CLs 12876 9/8	CLS 9/8	MA 3.48	FA 3.62	FA 3.64	MA 3.79	FA 3.21	MA 3.55	MA 3.49	MA / 3.91	FA 3.63	MA 3.46	•	MA 3.84	FA 3.62	MA 3.89	FA 3.81								
12877 11/ 6	11/6	FA 2.93	MA 3.13	FA 3.07	MA 3.28	MA 3.23	FA 2.88	FA 3.28	FA 2.95	FA / 3.27 3	, MA 3.40		MA 3.14	FA 3.08	FA 3.16									
12878 4/12	4/12	MA 3.80	FA 3.88	_	MA 3.36		FA 3.20	FA 3.30	FA 3.63	MA 3.31	MA 3.40		FA 3.34	FA 3.15	FA 3.00	FA 3.18								
12879 10/ 9	6 /01	FA 3.21	FA 3.83		FA 3.34		FA 3.44	3.08	MA / 3.60	MA 3.41	MA 3.20		MA 3.10	MA 3.62	MA 3.31	FA 3.45								
12880 11/ 9	11/9	FA 3.01	MA 3.40	MA 3.65	FA 3.01	4.1	MA 3.30	FA 3.16	FA 3.25	MA /	, FA 2.83		MA 3.35	MA 3.23	FA 3.11	MA 3.28								
12881 10/ 5	5 /01	FA 2.31	ធា	MA 3.03	FA 2.91	٠,	MA 3.07	MA 3.27	FA 2.88	FA /	2.95	FA 2.89	FA 3.00	[x)										
12882 8/11	8/11	MA 3.39	FA 3.64	FA 3.86	FA 3.57	MA 3.60	FA 3.61	FA /	3.85	MA 3.56	FA 3.23		FA 3.19	FA 3.06		FA 3.44	FA 3.28	MA 3.93						
12883 6/11	6/11	FA 3.38	FA 3.23	MA 3.89	MA 3.20		ш	/ MA 3.46	FA 3.42	3.69	FA 3.34		MA 3.19	FA 3.12		FA 3.29	ស	MA 3.18						
12884 9/6	9 /6	FA 3.02	MA 3.41	FA 3.23	MA 2.97	FA 3.02	MA 3.24		FA 3.00	MA ,	7 MA 2.84		ш	FA 3.40			i	1						
12885 10/ 9	10/9	FA 3.02	FA 3.15	MA 3.52	MA 3.38		MA 3.24		3.44	FA ,	/ FA 2.87	m	MA 2.10	MA 3.76		FA 1.67	FA 3.00	FA 3.03						
12886 10/ 7	10/7	MA 3.61	FA 3.21	FA 3.61	MA 3.71		MA 3.47		MA 3.80	FA ,	/ MA 3.16	FA 3.15	MA 3.41	MA 4.00										
12887 6/10	6/10	FA 3.08	FA 2.88	MA 3.28	MA 2.95		MA /	/ MA 3.38	FA 3.04	FA 3.19	MA 3.17	FA 2.71	FA 2.91	MA 3.27	FA 2.90	FA 2.90	MA 3.23							
12888	8/10	MA CO	FA	FA	FA				/ FA	FA 107		FA 2	FA 2 95	MA 9 C	MA 5									

FETAL BODY WEIGHTS WERE RECORDED IN GRAMS (G). CLS = CORPORA LUTEA/OVARY

TABLE 20 (PROE 8): PETAL SEX, VITAL STATUS AND BODY WEIGHT INTALLS PETUS # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 17 18 19 20 21 22 PETUS # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 BAT # CLA RAT # CLA 12890 5/11 NA NA FA FA FA FA FA FA NA		AL STATUS AN	D BODY WEIGHT	TOTATONT -								
ROUP IV PA MA FA TO MG/KG/DNY TO MG/KG/DNY	1 2 3 ROUP IV FA MA / FA 3.54 3.47 3.79 MA MA FA NA MA FA 3.25 3.55 3.44	1					1 1 1 1				1	2,3
FA MA FA MA FA MA FA MA FA FA FA FA MA FA MA FA MA FA MA FA MA FA MA MA FA MA MA FA MA	ROUP IV FA MA / FA 3.54 3.47 3.79 MA FA 3.25 3.55 3.44	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;)	17		1			1			
FA MA / FA 3.55 3.44 2.99 NA FA FA FA FA MA MA FA MA FA MA FA FA FA MA MA FA 3.25 3.55 3.44 2.99 NA FA FA FA FA MA MA MA MA MA MA MA FA FA 3.46 3.49 3.59 3.63 3.29 3.59 3.26 3.20 3.16 2.84 3.46 3.49 3.89 3.81 3.82 3.39 3.41 3.99 3.73 3.63 3.59 3.59 3.59 3.46 3.49 3.89 3.81 3.82 3.39 3.41 3.29 3.59 3.46 3.49 3.41 3.56 3.43 3.39 3.41 3.21 3.75 3.71 3.52 3.50 3.63 3.59 3.63 3.59 3.46 3.49 3.41 3.56 3.43 3.39 3.41 3.21 3.75 3.71 3.52 3.50 3.63 3.59 3.42 3.48 FA FA FA FA MA FA FA MA	FA MA / FA 3.54 3.47 3.79 MA FA FA MA FA)(1	1		1	1	1		1
FA MA FA HA FA HA FA MA FA MA FA HA FA FA FA HA MA FA HA FA HA HA FA HA HA FA HA HA FA HA HA FA FA HA MA HA MA HA MA HA	FA MA / FA 3.54 3.47 3.79 MA MA FA 3.25 3.55 3.44		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
MA MA FA FA FA E M MA FA MA FA	3.25 3.55 3.44			î	ć	4 X	FA					
6 / 7 MA FA MA MA FA FA / MA		E / MA 3.04	4A FA .18 3.20	FA FA .15 3.39 3	60.	3.20						
FA FA FA FA FA FA FA FA FA MA / FA MA MA MA MA MA MA MA FA FA MA FA MA MA MA MA MA MA MA FA FA MA FA MA MA MA MA MA MA MA MA MA FA FA MA	6/7 MA FA MA	FA FA / .82 3.39	MA MA .74 3.98	MA MA .93 3.63	5.29	ξ						
FA MA FA FA FA FA MA FA FA FA MA FA FA FA FA MA MA FA MA MA MA MA MA FA MA MA FA FA FA MA	8/7 FA FA FA FA	FA FA .38 3.41	FA MA .21 3.75	MA FA .52 3.50 MA MA /	. 63 . €	3.52 MA	M.A					
1/7 FA FA FA MA MA FA FA MA MA FA	FA MA FA	MA FA	FA MA .16 3.48	51 3.37	31	3.52 FA	3.49					
7/8 MA MA MA MA MA B E/MA MA FA FA MA MA FA FA MA MA FA FA MA MA FA FA MA FA FA MA FA FA MA MA MA MA MA MA MA FA FA MA FA FA MA MA MA MA MA MA FA FA FA MA FA FA MA MA MA MA MA FA FA FA MA FA FA MA FA FA FA MA	B/ 7 FA FA FA FA	MA FA 3.58 3.72	FA MA .603.60	1.52 4.16	F. A.	3.68 FA	_					
5/10 FA MA FA MA MA / FA FA MA FA FA MA FA FA MA	7/8 MA MA MA MA 3,00 3.17 3.43	MA MA 3.27 3.35	3.3	3.04 3.25	3.20 MA	3.11 FA	.0					
9/ 9 MA FA FA FA MA FA / FA MA FA FA FA FA FA B 3.41 3.33 3.19 3.53 3.51 3.63 3.59 3.54 3.53 3.29 3.08 3.18 3.65 3.18 3.41 3.33 1/ 8 FA MA PA PA PA FA FA FA FA FA FA FA FA B 3.26 3.25 3.16 3.19 3.44 3.38 3.36 3.47 3.00 3.18 2.77 3.15 3.03 3.19 3.24 3.14 3.46 3.26 3.25 3.16 3.19 3.44 3.38 3.36 3.41 8/ 7 MA FA FA MA FA MA MA E / MA MA MA MA MA MA MA MA FA FA MA FA FA FA PA MA MA FA FA FA PA PA MA MA FA FA FA PA MA MA FA FA PA PA MA MA FA FA FA PA MA MA FA FA MA MA FA FA FA FA FA MA MA FA FA FA FA FA FA MA MA MA FA	5/10 FA MA FA	₩.	FA MA 3.193.5	3.44 3.36	3.69 X	3.29 MA						
FA MA MA FA FA FA FA MA	9/ 9 MA FA FA FA	MA 3.5	FA MA 3.53 3.2	3.30 3.18	3.65 MA	3.41 FA			FA			
8/7 MA FA FA MA FA MA MA E / MA	FA MA MA	FA 3.0	FA FA 3.24 3.1	3.26 3.25	3.16	3.44 MA			.36			
2.96 2.95 3.47 3.39 3.00 3.05 3.35 3.59 3.37 3.31 3.56 3.12 3.22 2.66 3.33	8/7 MA FA FA FA	FA 3.3	MA E 3.18	3.0.	3.68	3.29 FA						
	MA MA MA 2.96 2.95 3.4	M. 3.00	FA FA 3.35 3.59	3.3	3.12	2.66	1	1		1		1

(GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RAIS (SPONSOR'S STUDY NUMBER: T-6116.7)

22

21

MA MA MA 3.23 3.11 3.06 FA FA NA 3.01 3.00 3.31 MA E NA 3.37 3.29 FA MA FA 3.37 3.76 3.37 MA FA 3.37 3.76 3.37 MA FA MA NA FA MA NA NA	MA M	MAN	5 6 7 8 MA FA FA FA 3.06 2.94 3.03 2.82 3.31 3.07 2.70 MA MA FA MA 3.27 3.32 2.85 2.80 E FA MA FA FA MA FA FA MA FA FA 3.37 3.24 3.04 3.44 MA FA FA MA FA FA MA FA FA MA FA FA MA FA FA MA FA MA MA 3.01 2.38 2.88 3.32 MA FA MA MA MA FA MA MA MA FA MA MA 3.01 2.38 2.88 3.32 MA FA MA MA MA FA MA MA	MA FA FA FA M MA FA FA FA M MA MA FA E E 3.31 3.07 2.70 3. MA MA FA MA FA 3.27 3.32 2.85 2.80 3. E FA FA FA FA 3.37 3.24 3.04 3.44 3. MA FA FA FA MA FA FA FA 3.37 3.24 3.04 3.44 3. MA FA MA FA FA MA FA FA FA MA FA MA FA FA MA FA MA FA FA MA FA FA MA MA FA MA MA 3.01 2.38 2.88 3.32 MA FA MA MA FA 6.97 3.07 3.37 3.40 2.61 MA FA MA MA 6.97 3.07 3.37 3.40 2.61 MA FA MA MA 6.97 3.07 3.37 3.40 2.61 MA FA MA MA 6.97 3.07 3.37 3.40 2.61 MA FA MA MA 6.97 3.07 3.37 3.40 2.61 MA FA MA MA 6.97 3.07 3.37 3.40 2.61	F 6 7 8 9 10 20 MG/KG MA FA FA FA MA FA 3.31 3.07 2.70 MA MA FA E FA MA 3.21 3.07 2.70 MA MA FA E FA MA 5.31 3.07 2.70 MA FA FA FA FA 5.32 3.32 2.85 2.80 3.12 3.04 E FA MA FA FA FA 7.32 2.86 3.09 FA MA FA FA FA 7.30 3.37 3.24 3.25 3.46 MA FA MA FA FA 7.30 3.17 3.31 2.94 3.25 MA FA MA MA FA MA 8.05 3.08 2.80 3.32 8.49 3.32 8.49 3.32 8.49 3.32 8.49 3.32 8.40 3.37 8.40 3.37 8.40 3.37 8.40 3.37 8.40 3.37 8.40 3.37 8.40 3.32 8.40 3.37 8.40 3.32 8.40 3.37 8.40 3.32 8.40 3.37 8.40 3.32	FETUS # 1 2	- !	DOSAGE GROUP V	CLs	MA .	3.1/3.3/ 12902 11/6 FA E	2.93	12903 10/ 7 FA MA	3.08	12904 8/7 FA FA	3.01	12905 7/8 MA FA	3.37	12906 8/6 FA MA	3.10	12907 8/10 / MA FA	2.50	12908 4/14 FA MA	3.09	12909 9/8 FA FA	2.47	12910 NOT PREC	12911 6/8 E FA		12912 11/ 4 FA FA	
MA M	MA M	MA MA 3.06 3.27 3.31.06 3.27 5.90 8.84 8.84 8.84 8.84 8.84 8.84 8.84 8.8	MA FA FA FA B S S S S S S S S S S S S S S S S S S	MA FA FA FA MA FA FA MA FA FA MA FA FA FA MA FA FA FA FA MA FA FA FA FA MA MA MA FA MA MA MA MA FA MA MA MA FA MA	MA FA FA MA MA FA	9	7			¥Σ'.	7 . 2 . 4 . FA	3.01	ΜA	3 3.37	Ψ	5 3.10	FA	0 3.37	Æ	4 3.48	Ψ	3 2.85	FA	9 3.01	Æ	3 3.31	GNANT				
33.00 E PA B 3.31 B 3.31 B 4.93 B 4.93 B 4.93 B 4.93 B 4.93 B 4.93 B 7.94 B	33.00 E PA B 3.31 B 3.31 B 4.93 B 4.93 B 4.93 B 4.93 B 4.93 B 4.93 B 7.94 B	33.00 33.00 33.30 33.30 33.32 33.00 33.00 33.00 33.00 33.00 34.00 37.00 37.00	5 6 7 8 MA FA FA FA 3.06 2.94 3.03 2.82 3.31 3.07 2.70 MA MA FA MA 3.27 3.32 2.85 2.80 E FA FA FA FA MA FA FA MA FA FA MA FA FA 3.37 3.24 3.04 3.44 MA FA FA MA FA FA MA FA FA MA FA FA MA FA MA FA 3.34 3.37 3.49 3.41 MA FA MA MA 3.05 3.08 2.80 2.61 MA FA MA MA 3.01 2.38 2.88 3.32 MA FA MA MA MA FA MA MA	MA FA FA FA M MA FA FA FA M MA MA FA E E 3.31 3.07 2.70 3 3 MA MA FA E B 3.27 3.32 2.85 2.80 3 E 2.92 2.86 3.99 FA MA FA FA FA MA FA MA MA MA MA FA MA MA MA FA MA MA MA FA MA MA FA MA MA MA FA MA	5 6 7 8 9 10 20 MG/KG MA FA FA FA MA FA MA MA FA E FA MA 3.31 3.07 2.70 3.07 3.16 MA MA FA E FA FA MA 3.27 3.32 2.85 2.80 3.12 3.04 E FA FA FA FA FA MA / FA FA FA FA MA / FA MA / FA MA / FA MA / FA MA / FA MA / FA	4	+			Ž,	5.17 FA	3.00	ſΞÌ		FA	2.99	ΑM	3.76	БĀ	3.11	Ψ	3.20	/ MA	3.02	ξ	3.18		MA	3.29	¥ ;	7
	FA 2.94 3.07 3.07 3.32 3.32 3.32 4.42 4.43 3.13 3.13 3.13 3.13 3.13 4.43 5.44 5.44	FA FA EA 3.03 3.07 2.70 MA FA EA	FA FA FA EA	FA FA FA MA FA E FA MA FA E FA MA FA E FA MA FA E FA E	FA FA FA MA / FA 2.9 3.03 2.82 3.16 3.25 MA FA E FA MA / FA 3.07 2.70 MA FA FA 3.32 2.85 2.80 3.12 3.04 MA FA FA FA E 4 FA FA FA E 5.92 2.86 3.12 3.04 MA / FA FA FA 3.24 3.04 3.44 3.22 3.46 FA E MA / MA FA MA FA MA MA FA 3.08 2.80 2.61 3.16 3.22 MA / MA FA 3.17 3.31 2.94 3.22 MA / MA FA MA 5.38 2.88 3.32 3.23 FA MA / MA FA MA 5.38 2.88 3.32 3.23 FA MA / MA FA MA 5.38 2.88 3.32 3.23 FA MA / MA FA MA 5.38 2.88 3.32 3.23		o :			¥ζ	ž Š	3.31	Æ	3.27	闰		FA	3.37	Æ	3.45	FA	2.90	FΑ	3.0	¥	3.0		Æ	2.97	E.	·
G/kg/pay G/kg/pay PA FA 16 3.37 FA MA 16 3.37 FA MA 17 3.34 FA MA 17 3.34 FA MA 17 3.34 FA FA 17 3.34 FA FA 17 3.34 FA FA MA MA FA MA FA MA MA FA MA MA MA MA	G/KG/DAY G/KG/DAY F PA A A A A A A A A A A A A A A A A A A	G/kg/pay G/kg/pay PA FA 16 3.37 FA MA 16 3.37 FA MA 17 3.34 FA MA 17 3.34 FA MA 17 3.34 FA FA 17 3.34 FA FA 17 3.34 FA FA MA MA FA MA FA MA MA FA MA MA MA MA	G/kg/pay G/kg/pay PA FA 16 3.37 FA MA 16 3.37 FA MA 17 3.34 FA MA 17 3.34 FA MA 17 3.34 FA FA 17 3.34 FA FA 17 3.34 FA FA MA MA FA MA FA MA MA FA MA MA MA MA	111 PA PA P		12	3	1									ΜA	3.19	FA	3.24			MA.					MA	3.25	F. F.	,
G/KG/DAY G/KG/DAY FA FA FA 16 3.37 3.18 MA MA FA 16 3.37 3.18 FA MA MA 16 3.37 3.18 FA MA MA 17 3.16 3.39 FA MA MA 18 3.10 3.19 FA MA MA 19 3.12 3.19 FA MA MA 17 3.34 3.24 17 3.34 3.24 18 MA FA MA MA MA FA MA MA FA A FA MA A A FA MA A A FA MA A A FA MA A A B A B MA A A B B MA B B M	G/KG/DAY G/KG/DAY FA FA FA 16 3.37 3.18 MA MA FA 16 3.37 3.18 FA MA MA 16 3.37 3.18 FA MA MA 17 3.16 3.39 FA MA MA 18 3.10 3.19 FA MA MA 19 3.12 3.19 FA MA MA 17 3.34 3.24 17 3.34 3.24 18 MA FA MA MA MA FA MA MA FA A FA MA A A FA MA A A FA MA A A FA MA A A B A B MA A A B B MA B B M	G/KG/DAY G/KG/DAY FA FA FA 16 3.37 3.18 MA MA FA 16 3.37 3.18 FA MA MA 14 3.15 3.09 FA MA MA 14 3.12 3.19 FA MA MA 17 3.34 3.24 FA FA FA 18 3.12 3.19 FA MA MA 17 3.34 3.24 FA FA MA 18 SA MA MA MA FA MA FA MA MA FA A A A A A A A A A A A A A A A A A	G/KG/DAY G/KG/DAY FA FA FA 16 3.37 3.18 MA MA FA 16 3.37 3.18 FA MA MA 14 3.15 3.09 FA MA MA 14 3.12 3.19 FA MA MA 17 3.34 3.24 FA FA FA 18 3.12 3.19 FA MA MA 17 3.34 3.24 FA FA MA 18 SA MA MA MA FA MA FA MA MA FA A A A A A A A A A A A A A A A A A	DAY FA FA 12 3.27 12 3.27 13 3.18 MA FA 16 3.09 MA FA 10 3.19 MA FA 11 1.2 12 3.19 MA FA 14 1.2 17 1.2 18 MA FA	FA 3.19 FA MA MA 3.19 FA MA MA 3.19 FA MA 3.19 FA MA 3.24 MA MA 3.25	13	2 1	1 1	:	W.A.	F.A.				FA	2.89							D2		A.	3.03		MA	3.47	¥ Z	
G/KG/DAY FA FA FA MA 1.25 3.12 3.27 3.40 MA MA FA FA FA 1.6 3.37 3.18 3.41 FA MA MA FA 1.04 3.16 3.09 2.84 E MA MA FA 1.04 3.12 3.19 FA MA MA 1.17 3.34 3.28 FA MA MA FA FA FA MA FA FA MA MA MA FA MA MA FA MA MA HA FA MA MA MA FA MA MA HA HA HA MA MA HA HA HA HA MA HA MA HA HA MA HA MA HA HA MA HA	G/KG/DAY FA FA FA MA 1.25 3.12 3.27 3.40 MA MA FA FA FA 1.6 3.37 3.18 3.41 FA MA MA FA 1.04 3.16 3.09 2.84 E MA MA FA 1.04 3.12 3.19 FA MA MA 1.17 3.34 3.28 FA MA MA FA FA FA MA FA FA MA MA MA FA MA MA FA MA MA HA FA MA MA MA FA MA MA HA HA HA MA MA HA HA HA HA MA HA MA HA HA MA HA MA HA HA MA HA	G/KG/DAY FA FA FA MA 125 3.12 3.27 3.40 MA MA FA FA FA 16 3.37 3.18 3.41 FA MA MA FA 10 3.16 3.09 2.84 E MA MA FA 10 3.16 3.09 2.84 E MA MA 146 3.12 3.19 FA MA MA 17 3.34 3.24 3.71 FA FA MA FA FA MA MA MA FA MA MA FA MA MA FA MA MA FA MA MA MA FA MA MA MA FA MA MA MA FA MA MA MA FA MA MA MA FA MA MA MA FA MA MA MA FA MA MA MA FA MA MA MA FA MA MA MA FA MA MA MA FA MA MA MA FA MA MA MA FA MA MA MA FA MA MA MA MA FA MA MA MA FA MA MA MA MA FA MA MA MA MA FA MA MA MA MA MA FA MA MA MA MA FA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA M	G/KG/DAY FA FA FA MA 125 3.12 3.27 3.40 MA MA FA FA FA 16 3.37 3.18 3.41 FA MA MA FA 10 3.16 3.09 2.84 E MA MA FA 10 3.16 3.09 2.84 E MA MA 146 3.12 3.19 FA MA MA 17 3.34 3.24 3.71 FA FA MA FA FA MA MA MA FA MA MA FA MA MA FA MA MA FA MA MA MA FA MA MA MA FA MA MA MA FA MA MA MA FA MA MA MA FA MA MA MA FA MA MA MA FA MA MA MA FA MA MA MA FA MA MA MA FA MA MA MA FA MA MA MA FA MA MA MA FA MA MA MA FA MA MA MA MA FA MA MA MA FA MA MA MA MA FA MA MA MA MA FA MA MA MA MA MA FA MA MA MA MA FA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA M	DAY FA FA MA 12 3.27 3.40 MA FA FA 13 3.18 3.41 MA FA FA MA MA FA 10 3.09 2.84 MA MA FA 11 2 3.13 2.89 MA MA FA MA F	MA 3.41 5.84 2.84 2.84 2.89 3.71 8.8 MA 3.03 3.47 MA 3.03 MA 3.03 3.43 MA	14			;	A A	F.A	3.09							FA	3.37			W.	66.5				MA	3.32		
G/KG/DAY FA FA FA MA MA 25 3.12 3.27 3.40 3.59 MA MA FA FA FA FA FA 16 3.37 3.18 3.41 3.09 FA MA MA FA FA 6 MA MA FA FA 7.04 3.15 3.09 2.84 3.07 E MA FA FA 7.45 3.12 3.19 FA MA MA 7.46 3.12 3.19 FA FA FA MA 7.52 3.29 3.25 3.47 3.32 MA FA MA MA MA HA FA HA HA FA MA MA HA FA HA HA FA MA MA HA FA HA HA FA MA MA HA	G/KG/DAY FA FA FA MA MA 25 3.12 3.27 3.40 3.59 MA MA FA FA FA FA FA 16 3.37 3.18 3.41 3.09 FA MA MA FA FA 6 MA MA FA FA 7.04 3.15 3.09 2.84 3.07 E MA FA FA 7.45 3.12 3.19 FA MA MA 7.46 3.12 3.19 FA FA FA MA 7.52 3.29 3.25 3.47 3.32 MA FA MA MA MA HA FA HA HA FA MA MA HA FA HA HA FA MA MA HA FA HA HA FA MA MA HA	G/KG/DAY FA FA FA MA MA 25 3.12 3.27 3.40 3.59 MA MA FA FA FA FA FA 16 3.37 3.18 3.41 3.09 FA MA MA FA FA 6 MA FA FA 7.04 3.15 3.09 2.84 3.07 E MA FA FA 7.45 3.12 3.19 FA MA MA 7.45 3.12 3.19 FA FA MA MA 7.22 3.12 3.17 8.34 3.24 3.71 3.37 MA MA FA MA MA FA MA MA MA MA FA MA MA MA MA MA MA MA FA MA MA MA FA MA MA MA FA MA MA MA MA MA MA MA FA MA MA MA FA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA	G/KG/DAY FA FA FA MA MA 25 3.12 3.27 3.40 3.59 MA MA FA FA FA FA FA 16 3.37 3.18 3.41 3.09 FA MA MA FA FA 6 MA FA FA 7.04 3.15 3.09 2.84 3.07 E MA FA FA 7.45 3.12 3.19 FA MA MA 7.45 3.12 3.19 FA FA MA MA 7.22 3.12 3.17 8.34 3.24 3.71 3.37 MA MA FA MA MA FA MA MA MA MA FA MA MA MA MA MA MA MA FA MA MA MA FA MA MA MA FA MA MA MA MA MA MA MA FA MA MA MA FA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA	DAY FA FA MA MA 12 3.27 3.40 3.59 MA FA FA FA 37 3.18 3.41 3.09 MA FA FA MA FA FA 16 3.09 2.84 3.07 MA FA FA 12 3.19 MA FA FA 12 3.19 FA MA B FA MA B FA MA MA MA FA	MA MA 3.40 3.59 FA FA 2.84 3.07 FA FA 2.89 MA FA 3.71 3.37 B MA MA MA 3.03 MA	15			;	AA C	· ·		Ψ¥	3.18									FA	26.2							
G/KG/DAY G/KG/DAY FA FA FA MA MA MA 125 3.12 3.27 3.40 3.59 3.40 MA MA FA FA FA FA MA 16 3.37 3.18 3.41 3.09 FA MA MA FA FA MA 10 3.19 2.84 3.07 3.18 FA MA MA 146 3.12 3.19 FA MA MA 17 3.34 3.24 3.71 3.37 FA MA MA 18 FA FA MA FA 19 2.34 3.24 3.71 2.25 3.12 3.17 MA FA MA MA MA MA FA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA	G/KG/DAY G/KG/DAY FA FA FA MA MA MA 125 3.12 3.27 3.40 3.59 3.40 MA MA FA FA FA FA MA 16 3.37 3.18 3.41 3.09 FA MA MA FA FA MA 10 3.19 2.84 3.07 3.18 FA MA MA 146 3.12 3.19 FA MA MA 17 3.34 3.24 3.71 3.37 FA MA MA 18 FA FA MA FA 19 2.34 3.24 3.71 2.25 3.12 3.17 MA FA MA MA MA MA FA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA	G/KG/DAY G/KG/DAY FA FA FA MA MA MA 125 3.12 3.27 3.40 3.59 3.40 MA MA FA FA FA FA MA 16 3.37 3.18 3.41 3.09 FA MA MA FA FA MA 10 3.19 2.84 3.07 3.18 FA MA MA 146 3.12 3.19 FA MA MA 17 3.34 3.24 3.71 3.37 FA MA MA 18 FA FA MA FA 19 2.34 3.24 3.71 2.25 3.12 3.17 MA FA MA MA MA MA FA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA	G/KG/DAY G/KG/DAY FA FA FA MA MA MA 125 3.12 3.27 3.40 3.59 3.40 MA MA FA FA FA FA MA 16 3.37 3.18 3.41 3.09 FA MA MA FA FA MA 10 3.19 2.84 3.07 3.18 FA MA MA 146 3.12 3.19 FA MA MA 17 3.34 3.24 3.71 3.37 FA MA MA 18 FA FA MA FA 19 2.34 3.24 3.71 2.25 3.12 3.17 MA FA MA MA MA MA FA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA	DAY FA FA MA MA MA 12 3.27 3.40 3.59 3.40 MA FA FA FA 13 3.18 3.41 3.09 MA FA FA FA 16 3.09 2.84 3.07 3.18 MA FA FA MA FA FA MA FA FA 12 3.19 FA MA EA FA MA FA FA MA MA FA MA FA MA MA FA MA FA MA MA FA MA	MA MA MA MA MA 3.40 3.40 3.49 3.41 3.09 8.89 MA FA 3.07 3.18 E MA FA 3.03 3.03 MA	16	2																CO)								
G/KG/DAY FA FA FA MA MA MA MA 1.25 3.12 3.27 3.40 3.59 3.40 3.26 MA MA FA FA FA MA 1.6 3.37 3.18 3.41 3.09 FA MA MA FA FA MA 1.04 3.16 3.09 2.84 3.07 3.18 FA MA MA 1.46 3.12 3.19 FA MA MA 1.46 3.12 3.19 FA MA MA FA FA 1.7 3.34 3.24 3.71 3.37 FA MA MA FA MA MA MA FA MA MA MA FA MA MA MA MA FA MA MA MA MA FA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA	G/KG/DAY FA FA FA MA MA MA MA 25 3.12 3.27 3.40 3.59 3.40 3.26 MA MA FA FA FA FA MA MA MA 16 3.37 3.18 3.41 3.09 FA MA MA FA FA FA MA 10 3.30 3.13 2.89 FA MA MA 46 3.12 3.19 FA MA MA 17 3.34 3.24 3.71 3.37 FA FA MA FA FA FA MA MA 18 A MA FA FA FA MA MA 17 3.34 3.24 3.71 3.37 MA MA FA MA MA MA FA MA MA MA MA FA MA MA MA MA FA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA	G/KG/DAY FA FA FA MA MA MA MA 1.25 3.12 3.27 3.40 3.59 3.40 3.26 MA MA FA FA FA MA 1.6 3.37 3.18 3.41 3.09 FA MA MA FA FA MA 1.04 3.16 3.09 2.84 3.07 3.18 FA MA MA 1.46 3.12 3.19 FA MA MA 1.46 3.12 3.19 FA MA MA FA FA 1.7 3.34 3.24 3.71 3.37 FA MA MA FA MA MA MA FA MA MA MA FA MA MA MA MA FA MA MA MA MA FA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA	G/KG/DAY FA FA FA MA MA MA MA 1.25 3.12 3.27 3.40 3.59 3.40 3.26 MA MA FA FA FA MA 1.6 3.37 3.18 3.41 3.09 FA MA MA FA FA MA 1.04 3.16 3.09 2.84 3.07 3.18 FA MA MA 1.46 3.12 3.19 FA MA MA 1.46 3.12 3.19 FA MA MA FA FA 1.7 3.34 3.24 3.71 3.37 FA MA MA FA MA MA MA FA MA MA MA FA MA MA MA MA FA MA MA MA MA FA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA	DAY FA FA MA MA MA MA TA 3.27 3.40 3.59 3.40 3.26 MA FA	MA MA MA MA MA 3.40 3.59 3.40 3.26 FA FA MA 2.89 FA FA MA FA FA MA FA FA B.07 3.18 FA FA FA B.07 3.18 FA FA FA FA FA B.07 3.37 B.03 3.03 MA	17			5	¥ 2	3 3																				
G/KG/DAY FA FA FA MA MA MA 125 3.12 3.27 3.40 3.59 3.40 MA MA FA FA FA FA MA 16 3.37 3.18 3.41 3.09 FA MA MA FA FA MA 1.04 3.16 3.09 2.84 3.07 3.18 E MA FA FA FA 1.04 3.15 3.09 2.84 3.07 3.18 FA MA MA 1.46 3.12 3.19 FA MA MA 1.7 3.34 3.24 3.71 3.37 FA FA MA B MA 1.2 3.32 3.72 3.03 MA FA MA MA MA MA FA MA MA FA MA MA FA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA	G/KG/DAY FA FA FA MA MA MA MA 25 3.12 3.27 3.40 3.59 3.40 3.26 MA MA FA FA FA FA MA MA MA 16 3.37 3.18 3.41 3.09 FA MA MA FA FA FA MA 10 3.37 3.18 3.41 3.09 FA MA MA FA FA FA 17 3.30 3.13 2.89 FA MA MA 18 A A A A B A B A B B B B B B B B B B B	G/KG/DAY FA FA FA MA MA MA MA 1.25 3.12 3.27 3.40 3.59 3.40 3.26 MA MA FA FA FA MA 1.6 3.37 3.18 3.41 3.09 FA MA MA FA FA MA 1.04 3.16 3.09 2.84 3.07 3.18 FA MA MA 1.46 3.12 3.19 FA MA MA 1.46 3.12 3.19 FA MA MA FA FA 1.7 3.34 3.24 3.71 3.37 FA MA MA FA MA MA MA FA MA MA MA FA MA MA MA MA FA MA MA MA MA FA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA	G/KG/DAY FA FA FA MA MA MA MA 1.25 3.12 3.27 3.40 3.59 3.40 3.26 MA MA FA FA FA MA 1.6 3.37 3.18 3.41 3.09 FA MA MA FA FA MA 1.04 3.16 3.09 2.84 3.07 3.18 FA MA MA 1.46 3.12 3.19 FA MA MA 1.46 3.12 3.19 FA MA MA FA FA 1.7 3.34 3.24 3.71 3.37 FA MA MA FA MA MA MA FA MA MA MA FA MA MA MA MA FA MA MA MA MA FA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA	DAY FA FA MA MA MA MA TA 3.27 3.40 3.59 3.40 3.26 MA FA	MA MA MA MA MA 3.40 3.59 3.40 3.26 FA FA MA 2.89 FA FA MA FA FA MA FA FA B.07 3.18 FA FA FA B.07 3.18 FA FA FA FA FA B.07 3.37 B.03 3.03 MA	88.7	,	1																							
G/KG/DAY G/KG/DAY FA FA FA MA MA MA MA MA MA MA MA FA FA FA FA FA MA	G/KG/DAY G/KG/DAY FA FA FA MA MA MA MA MA MA MA MA FA FA FA FA FA MA	G/KG/DAY G/KG/DAY FA FA FA MA MA MA MA MA MA MA FA FA FA FA FA FA MA MA FA FA FA FA MA MA FA FA FA FA MA FA FA FA FA MA FA FA FA MA FA FA FA MA HA MA MA HA FA FA FA FA MA HA	G/KG/DAY G/KG/DAY FA FA FA MA MA MA MA MA MA MA FA FA FA FA FA FA MA MA FA FA FA FA MA MA FA FA FA FA MA FA FA FA FA MA FA FA FA MA FA FA FA MA HA MA MA HA FA FA FA FA MA HA	DAY FA FA MA MA MA MA MA MA MA MA MA FA FA FA FA FA FA FA FA MA FA	HA MA MA MA MA MA MA 3.40 3.59 3.40 3.26 3.38 FA FA MA 2.84 3.07 3.18 FA FA BA 3.07 3.18 FA BA 3.71 3.37 E 99 2.92 MA	19	1	1																							
G/KG/DAY G/KG/DAY FA FA FA MA MA MA MA MA MA 1.25 3.12 3.27 3.40 3.59 3.40 3.26 3.38 MA MA FA FA FA FA 1.6 3.37 3.18 3.41 3.09 FA MA MA FA FA 1.04 3.16 3.09 2.84 3.07 3.18 E MA FA FA 1.17 3.13 2.89 FA MA MA 1.46 3.12 3.19 FA MA MA 1.73 3.43 3.24 3.71 3.37 MA MA FA MA MA MA MA MA MA MA MA MA MA FA MA MA MA 1.22 3.05 3.25 3.47 3.32 MA FA MA MA MA MA SA MA MA MA MA SA MA MA MA MA SA MA MA MA MA MA MA SA MA MA SA MA MA MA MA MA MA MA MA MA MA SA MA MA MA MA MA MA MA MA MA MA SA MA MA MA MA MA MA MA MA MA MA SA MA MA MA MA MA MA MA MA MA MA SA MA MA MA MA MA MA MA MA MA MA SA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA	G/KG/DAY G/KG/DAY FA FA FA MA MA MA MA MA MA 1.25 3.12 3.27 3.40 3.59 3.40 3.26 3.38 MA MA FA FA FA FA 1.6 3.37 3.18 3.41 3.09 FA MA MA FA FA 1.04 3.16 3.09 2.84 3.07 3.18 E MA FA FA 1.17 3.13 2.89 FA MA MA 1.46 3.12 3.19 FA MA MA 1.73 3.43 3.24 3.71 3.37 MA MA FA MA MA MA MA MA MA MA MA MA MA FA MA MA MA 1.22 3.05 3.25 3.47 3.32 MA FA MA MA MA MA SA MA MA MA MA SA MA MA MA MA SA MA MA MA MA MA MA SA MA MA SA MA MA MA MA MA MA MA MA MA MA SA MA MA MA MA MA MA MA MA MA MA SA MA MA MA MA MA MA MA MA MA MA SA MA MA MA MA MA MA MA MA MA MA SA MA MA MA MA MA MA MA MA MA MA SA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA MA	G/KG/DAY G/KG/DAY FA FA FA MA MA MA MA MA 1.25 3.12 3.27 3.40 3.59 3.40 3.26 3.38 MA MA FA FA FA FA 1.6 3.37 3.18 3.41 3.09 FA MA MA FA FA MA 1.04 3.16 3.09 2.84 3.07 3.18 E MA FA FA 1.17 3.34 3.24 3.07 3.18 FA MA MA 1.46 3.12 3.19 FA MA MA FA 1.73 3.43 3.43 MA MA FA MA MA FA MA MA MA MA FA MA	G/KG/DAY G/KG/DAY FA FA FA MA MA MA MA MA 1.25 3.12 3.27 3.40 3.59 3.40 3.26 3.38 MA MA FA FA FA FA 1.6 3.37 3.18 3.41 3.09 FA MA MA FA FA MA 1.04 3.16 3.09 2.84 3.07 3.18 E MA FA FA 1.17 3.34 3.24 3.07 3.18 FA MA MA 1.46 3.12 3.19 FA MA MA FA 1.73 3.43 3.43 MA MA FA MA MA FA MA MA MA MA FA MA	DAY FA FA MA MA MA MA MA 12 3.27 3.40 3.59 3.40 3.26 3.38 MA FA FA FA 13 3.41 3.09 MA FA FA 14 15 16 17 18 MA FA FA 13 3.27 3.40 3.59 3.40 3.26 3.38 MA FA FA FA 14 3.09 2.84 3.07 3.18 MA FA FA MA FA FA MA FA MA MA FA MA FA FA MA MA MA FA MA	HA MA MA MA MA MA 3.40 3.59 3.40 3.26 3.38 FA FA FA 2.84 3.07 3.18 FA FA MA FA 3.71 3.37 E MA FA 3.03 MA MA 3.03 MA MA 3.47 3.32 MA M			- 1																							

M = MALE F = FEMALE A = ALIVE E = BARLY RESORPTION "/" DENOTES POSITION OF CERVIX CLS = CORPORA LUTEA/OVARY FETAL BODY WEIGHTS WERE RECORDED IN GRAMS (G).

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RAIS (SPONSOR'S STUDY NUMBER: T-6316.7)

1 22 23

INDIVIDUAL DATA
WEIGHT
BODY V
AND
STATUS AND
VITAL
SEX,
FETAL
10):
(PAGE
20
TABLE

3E	FETUS #	7	2	m !	4	5	9	7	80	9	10	11	12	13	14	15	16	17	18	19	20
0	DOSAGE GROUP		>		:		!			20 1	MG/KG/DAY	/DAY	:			1			,		- 1
RAT #	CLS 12/4	FA		A.	FA	4.	FA	A.A.	F			Æ	FA /	Æ.	Æ.	Æ					
12915	9/13	3.06 FA 2.94	.,	3.59 FA 3.41	-,	3.43	3.27 MA 3.65	3.40 FA 2.98	3.35 FA 2.99	8.32 MA / 8.72	3.35 MA 3.27	3.21 3.21	3.32 E	2. 24 H H		1.7		FA 3.66			
12916	6 /8	FA 2.58	MA 3.03		FA 2.94	MA 3.33		MA 2.76	MA /	FA 2.64		FA 2.90	MA 3.15	FA 3.34	FA 3.05;	FA 2.63	FA 2.75 2	MA 2.86			
12917	11/6	MA 3.13				MA 3.39		MA 3.24	FA 2.79 :	FA 2 77		FA 2.76	FA 2.94			MA 3.02					
12918	12/ 5	FA 2.57	,					MA 3.34	FA 3.25	FA 3.26	MA 3.30	FA 3.02	MA / 3.11			٠.	FA 3.35				
12919	8 /9	3.05			MA 3.61			3.22	FA 3.07	MA 3.28	FA 2.97	MA 3.14	FA 3.00		FA 2.97						
12920 10/	10/9	FA 3.25						FA 2.91	FA 3.17	MA /	FA 3.03	MA 3.28	FA 3.16			FA 3.15	FA 3.14				
12921	7/10	MA 3.66						MA / 3.44	FA 3.20	MA 3.23	FA 3.31	FA 3.34	MA 3.73								
12922	8 / 8	MA 2.80						FA 2.96	MA / 2.96	ы	ш	MA 3.16	MA 3.06			FA 3.01					
12923	9 /8	MA 3.54						FA 3.38	FA / 2.94	FA 3.12		MA 3.55	MA 3.31	MA 3.58	FA 3.44						
12924	8 / 8	MA 3.27			MA 3.68			FA 2.93	MA / 3.59	FA 3.10	FA 3.03	FA 3.26	MA 3.04		FA 3.47	FA 2.85					
12925	6 /6	MA 2.45	FA	FA 04		MA 71 E		MA C	AM C	FA /		4 X 5	FA		A.A.		MA 3.06				

M = MALE F = FEMALE A = ALIVE E = EARLY RESORPTION "/" DENOTES POSITION OF CERVIX CLS = CORPORA LUTEA/OVARY FETAL BODY WEIGHTS WERE RECORDED IN GRAMS (G).

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RAIS (SPONSOR'S STUDY NUMBER: T-6316.7)

PETUS #	## S	-	7	٣	4	5	9	7	œ	6	10	11	12	13	14	15	16	17	18	19	20	21	22
SATEL	LLITE	SATELLITE DOSAGE GROUP	E GRO	I dn		1	1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1) 0	VEHIC	0 (VEHICLE) MG/KG/DAY	IG/KG/	'DAY	:	1) 1 1 1	1	1			1	
RAT # CLS 12573 13/3	L8 / 3	. ы	4 d	4 C	K -	A L	4	A 4	4 °	A A 1	1			40	A /	/ A A A	4 C		! ! !		1 		!
12574 12/12 12575 6/6		A A A 1.12 1.21 A A A A 1.36 1.45		1.27 1 A 1.27 1 A 1.43 1	CALLA C	1.29 1 1.29 1 A 1.45 1	4 A 5	1.12 1.12 1.12 1.12	20 A	1.19 1.09	4 4 1 0 6 0 . I	1.24	1.31		1.10	A A A 1.10 1.18	1.19	A A 1.12 1.18	1.18				
SATEL	LLITE	SATELLITE DOSAGE	್ಟ್	: : dr))) 1	1 1 1 1		MG/KG/DAY	DAY		:	1) (((1 1 1 t	1 1	;	1	1 1	1 1	
12576 15/ 5		1.17 1.05 1.	.05 1 A	ALA	A 1.21 1	1.30 A	1		A 1.36		1.32	1.42	,).46 1.46	1.42	1	4	4	Æ	1	4 4 4	1	1
12578 8/11		1.08 1 A 1.77 1	ن ه ه ډ				_			1.45 1.28	1.39 A 1	1.42 A 36	1.49 E	1.31 A F2	1.44 A 1		1.30 1.30	1.29 A	1.29				
12579 10/ 5 12580 11/ 5		A A B A B A B A B A B A B A B A B A B A	3 4 5 4 6	1.23 1 A 1.49 1	A 1.39 1 1.50 1		1.46 1.46	1.50 1.50	1.36 1.49	1.26 1.39	1.26 1.54	A / A 1.26 1.52 A / A 1.54 1.48	1.51 A 1.36	1.34 E E	1.28 1.58	1.50 1.50 1.54							
SATEI	LLITE	SATELLITE DOSAGE		GROUP III		1 1) 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	. Z	MG/KG/DAY	DAY	1	1			1	1 1 1	! !	1	1 1	1	1
12581 6/ 9 12582 14/ 7 12583 13/11	/ 9	1.24 1.42 1 A A A A A A A A A A A A A A A A A A A	A 1.12 1.12 1.12 1.12 1.13	A SO A F	1.54 1.21	1.37 1.37 1.37	1.47 1.23	1.32 1.40	1.31 A 1.43	1.47 1.50 A	1.51 1.29	1.45 1.26 A	1.22 A	1.32 A / A	1.44 1.29	1.52 1.43	1.32 A A	1.02 A	1.49 A	4	₹	1 }	i 1 1

A = ALIVE E = EARLY RESORPTION "/" DENOTES POSITION OF CERVIX CLS = CORPORA LUTEA/OVARY FETAL BODY WEIGHTS WERE RECORDED IN GRAMS (G).

a. Value presumed incorrectly recorded; value excluded from group averages.

ORAL, (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RAIS (SPONSOR'S STUDY NUMBER: T-6316.7)

FETUS #	#	7	7	۳	4	S	9	7	x 0	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23
SATELLITE DOSAGE GROUP	TTE C	OSAG	E GRO	VI due		*	1	1		100	MG/K	10 MG/KG/DAY	1						! ! !) ; ;	1	1	1	
RAT # CLS 12584 14/8		Ξ Ξ	4 4 6	. 4 -	(E)	A 60	A 17	A 1					/ A					A 1.21						
12585 6/10		, A 18	. A	25.	A 1.30	4 F	1.07	, A 1.17			A 1.21	A 1.17	A 1.30		A 1.13	A 1.24	A 1.17							
12586 9/7	7	1.25 1.25 1.35 0.99 1	A .25 1	A 1.35	A 0.99	A 4.	1.30	A 1.26	A /	1.27			A 1.23	A 1.35							1	, ! !	1	
SATELLITE DOSAGE GROUP	I BIL	OOSAG	E GRC	v duc	1		1	: : :		20	MG/K	20 MG/KG/DAY		3				1 1	1	•		1 1 1		1
12587 9/5		A 1	A 15 1	A 1.16	A 1.25	A 1.17					1.05		A 1.32	A 1.17	1.26									
12588 9/6		A	A .27 1	A 1.32	A 1.28	A 1.47					/ A 1.40		A 1.37	A 1.47	A 1.47	A 1.38								
12589 7/7	7	A .25 1	A	A 1.30	A 1.31	A 1.34					A 1.29		A 1.32	1.45	A 1.36	_								
12590 12/	4	A A A A 1.25 1.37 1.56	A .	A 1.56	A 1.38	A 1.38	A 1 43	A 1.31	ш	A 1.25	A 1.41	A 1.32	A /	Ξ `.	A 1.65	, 1.50	A 1.46							
12591 10/ 9	6	4 c	A A A A A A A A A A A	4 4	A .	4 4					ш		4 F	4 °	4 5	4 č	A .	A 1	_					

A = ALIVE E = EARLY RESORPTION "/" DENOTES POSITION OF CERVIX CLS = CORPORA LUTEA/OVARY FETAL BODY WEIGHTS WERE RECORDED IN GRAMS (G).

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 21 (PAGE 1): FETAL ALTERATIONS - INDIVIDUAL DATA

JOSAGE (DOSAGE GROUP I			0 (VEHICLE) MG/KG/DAY	MG/KG/DAI		
	SPECIMENS WITH ANY	GROS	GROSS EXTERNAL EXAMINATION	IOS	SOFT TISSUE EXAMINATION		SKELETAL EXAMINATION
KAT	ALIERALIONS N(%)	N/N	DESCRIPTION	N/N	DESCRIPTION	N/N	DESCRIPTION
12801	1 (7.7)	0/13		1/6	FETUS 10 VESSELS: UMBILICAL ARTERY DESCENDS TO THE LEFT OF URINARY BLADDER	7 /0	
12802	6 (42.8)	0/14		1/7	FETUS 11 KIDNEYS: PELVIS, SLIGHT DILATION, right	۲ /5	FETUS 1 STERNAL CENTRA: 1ST, NOT OSSIFIED FELVIS: PUBIS, INCOMPLETELY OSSIFIED, bilateral
							FETUS 3 PELVIS: PUBIS, INCOMPLETELY OSSIFIED, left
							FETUS 5 STERNAL CENTRA: 1ST, NOT OSSIFIED
							FETUS 8 PELVIS: PUBIS, INCOMPLETELY OSSIFIED, bilateral
							FETUS 10 STERNAL CENTRA: 1ST, NOT OSSIFIED
12803	1(6.2)	0/16		1/8	FETUS 2 KIDNEYS: PELVIS, SLIGHT DILATION, bilateral	0 / 8	

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 21 (PAGE 2): FETAL ALTERATIONS - INDIVIDUAL DATA

DOSAGE GROUP I	SROUP I			0 (VEHICLE) MG/KG/DAY	
; ; ; ; ; ;	SPEC	SPECIMENS WITH ANY	GROSS EXTERNAL EXAMINATION	SOFT TISSUE EXAMINATION	SKELETAL EXAMINATION
NUMBER	Z	N(*)	N/N DESCRIPTION	N/N DESCRIPTION	N/N DESCRIPTION
12804) 0	0.0)0	0/13	9 /0	۲ / ٥
12805) 0	0.0)	0/15	7 /0	8 /0
12806	0	0.0)	0/15	٧ / ٥	8 /0
12807) 0	0.0)	0/14	7 /0	۷ / ۵
12808	0	0.0	0/12	9/0	9 /0
12809	0	0.0)	0/18	6/0	6 /0
12810) (1(10.0)	0/10	1/ 5 FETUS 10 VESSELS: UMBILICAL ARTERY DESCENDS TO THE LEFT OF URINARY BLADDER	5 /0
12811	0	0.0	0/14	7 /0	١ / ٥
12812) 0	0.0)	0/14	۷ / ۵	7 /0
12813	LON	NOT PREGNANT	LN		
12814	0	0.0)	0/16	0/8	8 /0
12815	0 (0.0)	0/15	7 /0	8 /0
12816	0	0.0)	0/12	9 / 0	9 / 0
12817	0	0.0	0/15	7 /0	0/8
12818	0	0.0)	0/13	9 /0	۷ / ر
12819	0	0.0)	0/15	۲ / ۵	8 /0

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 21 (PAGE 3): FETAL ALTERATIONS INDIVIDUAL DATA

DOSAGE GROUP	ROUP I			0 (VEHICLE) MG/KG/DAY	MG/KG/DAY		
	SPECIMENS WITH ANY	GRC	GROSS EXTERNAL EXAMINATION	108	SOFT TISSUE EXAMINATION	1 1 1 1 1 1 1	SKELETAL EXAMINATION
RAT NUMBER	ALTERATIONS N(%)	N/N	DESCRIPTION	N/N	DESCRIPTION	N/N	DESCRIPTION
12820	0 (0 .0)	0/14	1	7 /0	, , , , , , , , , , , , , , , , , , ,	۲ / ٥	
12821	4 (26.7)	0/15		1/7	FETUS 6 VESSELS: UMBILICAL ARTERY DESCENDS TO THE LEFT OF URINARY BLADDER	3/8	FETUS 7 STERNAL CENTRA: 1ST, INCOMPLETELY OSSIFIED FETUS 11 STERNAL CENTRA: 1ST, INCOMPLETELY OSSIFIED
							FETUS 15 STERNAL CENTRA: 1ST, INCOMPLETELY OSSIPIED
12822	2(13.3)	0/15		1/7	FETUS 4 LUNGS: APICAL LOBE, ABSENT	1/8	FETUS 9 STERNAL CENTRA: 1ST, INCOMPLETELY OSSIFIED
12823	0.0 00	0/14		7 /0		1 /0	
12824	0.0 00	0/12		9 /0		9 /0	
12825	0.0 00	0/18		6 /0		6 /0	-

PROTOCOL 418 011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N.EtFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

ABLE 21 (PAGE 4): FETAL ALTERATIONS - INDIVIDUAL DATA

OSAGE (DOSAGE GROUP II				1 MG/KG/DAY			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SPECIMENS	(ENS	GRO	GROSS EXTERNAL EXAMINATION	308	SOFT TISSUE EXAMINATION		SKELETAL EXAMINATION
RAT NUMBER	ALTERATIONS N(%)	rions ()	N/N	DESCRIPTION	N/N	DESCRIPTION	N/N	DESCRIPTION
12826	1(7.1)	7.1)	0/14		1/7	FETUS 12 VESSELS: INNOMINATE, ABSENT	7 /0	
12827	0	0.0]	0/13		9 /0		6 /0	
12828	0	0.0	0/18		8 /0		0/10	
12829	0	0.0	0/14		7 /0		۷ / 0	
12830	0	0.0)	0/15		1 /0		8 /0	
12831) 0	0.0)	0/16		8 /0		8 /0	
12832	2 (14.3)	4.3)	0/14		6 / 0		2/7	FETUS 4 CERVICAL VERTEBRAE: CERVICAL RIB PRESENT AT 7TH CERVICAL VERTEBRA, right
								FETUS 6 CERVICAL VERTEBRAE: CERVICAL RIB PRESENT AT 7TH CERVICAL VERTEBRA, right
12833	0	0.0)	0/13		9 /0		7 /0	
12834	1 (6.7)	0/15		7/1	FETUS 14 VESSELS: UMBILICAL ARTERY DESCENDS TO THE TETT OF IDIANGY SLANDER	8 /0	

N/N = NUMBER OF SPECIMENS WITH ALTERATIONS/NUMBER OF SPECIMENS EXAMINED

STUDY OF N.ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

SAGE (DOSAGE GROUP II	1		-	1 MG/KG/DAY	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1	SPECIMENS	INS	GRO	GROSS EXTERNAL EXAMINATION	OS	SOFT TISSUE EXAMINATION	• • • • • • • • • • • • • • • • • • • •	SKELETAL EXAMINATION
RAT NUMBER	WITH ANY ALTERATIONS N(%)	TONS	z/z	DESCRIPTION	N/N	DESCRIPTION	N/N	DESCRIPTION
12835	0 0	0.0	6 /0		0/ 4		9 / 0	
12836	0 0	0.0)	0/15		7 /0		8 /0	
12837	1 (7.	7.1)	0/14		1/7	FETUS 9 VESSELS: INNOMINATE, ABSENT	7 /0	
12838	0) 0	0.0)	0/15		L /0		8 /0	
12839	0) 0	0.0)	0/17		8 /0		6 /0	
12840	1 (5	6.9)	0/17		8 /0		1/ 9	FETUS 13 STERNAL CENTRA: 1ST, INCOMPLETELY OSSIFIED
12841	0) 0	0.0)	0/17		0 / 8		6 /0	
12842		6.2)	0/16		8 /0		1/8	FETUS 15 CERVICAL VERTEBRAE: CERVICAL RIB PRESENT AT 7TH CERVICAL VERTEBRA, right
12843	0	0.0	0/13		9 /0		7 /0	
12844	0	0.0)	0/17		0 / 8		6 /0	
2000	T CN	THURST WON	4.4					

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 21 (PAGE 6): FETAL ALTERATIONS - INDIVIDUAL DATA

DOSAGE	DOSAGE GROUP II	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 MG/KG/DAY			
+ + + + + +	SPECIMENS WITH ANY	GROS	ROSS EXTERNAL EXAMINATION	800	SOFT TISSUE EXAMINATION	1 1 1 1	SKELETAL EXAMINATION
NUMBER	N(*)	N/N	DESCRIPTION	N/N	DESCRIPTION	N/N	DESCRIPTION
12846	NOT PREGNANT	TI	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1) 1 1 1 1 1 1 1 1 1	
12847	0.0)0	0/18		6 /0		6 /0	
12848	1(5.6)	0/18		6 /0		1/9	FETUS 1 RIBS: WAVY, right 7th 10th
12849	0.0 00	0/15		1 /0		8 /0	
12850	12850 2(12.5) 0/16	0/16		1/8	FETUS 16 LUNGS: DIAPHRAGMATIC LOBE, ABSENT	1/8	FETUS 17 STERNAL CENTRA: 1ST, NOT OSSIFIED

N/N = NUMBER OF SPECIMENS WITH ALTERATIONS/NUMBER OF SPECIMENS EXAMINED

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N.ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 21 (PAGE 7): FETAL ALTERATIONS - INDIVIDUAL DATA

30000	DOSAGE GROOF 111			ייים (אין (אין אין		1	
; ; ; ;	SPECIMENS WITH ANY	GRO	GROSS EXTERNAL EXAMINATION	3OS	SOFT TISSUE EXAMINATION		SKELETAL EXAMINATION
RAT NUMBER	ALTERATIONS N(\$)	N/N	DESCRIPTION	N/N	DESCRIPTION	N/N	DESCRIPTION
12851	(0.0)0	0/15	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 / 0		8 /0	
12852	0(0.0)	0/16		8 /0		8 /0	
12853	0.0 00	0/14		1 /0		د /٥	
12854	0(0.0)	0/16		8 /0		8 /0	
12855	NOT PREGNANT	Ŀ					
12856	0 (0 0)0	0/14		9 /0		8 /0	
12857	0.0.0	0/19		6 /0		0/10	
12858	0.0 00	0/14		1 /0		1 /0	
12859	2 (11.8)	0/17		8 /0		2/ 9	FETUS 11 PELVIS: ISCHIUM, INCOMPLETELY OSSIFIED, right
							FETUS 15 PELVIS: ISCHIUM, INCOMPLETELY OSSIFIED, right
12860	2(13.3)	0/15		7 /2	FETUS 5 VESSELS: UMBILICAL ARTERY DESCENDS TO THE LEFT OF URINARY BLADDER	8 /0	
					FETUS 9 VESSELS: UMBILICAL ARTERY DESCENDS TO THE LEFT OF URINARY BLADDER		

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N.ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 21 (PAGE 8): FETAL ALTERATIONS - INDIVIDUAL DATA

, , ,	SPEC	SPECIMENS WITH ANY	GROS	GROSS EXTERNAL EXAMINATION	SOS	SOFT TISSUE EXAMINATION		SKELETAL EXAMINATION
KAT NUMBER	ALIER	ALIEKATIONS N(*)	N/N	DESCRIPTION	N/N	DESCRIPTION	N/N	DESCRIPTION
12861) 0	0.0)	0/12		9 /0		9 /0	
12862	0	0.0	0/15		1 /0		8 /0	
12863	1(7.1)	0/14		8 /0		1/6	FETUS 14 STERNAL CENTRA: 1ST, INCOMPLETELY OSSIFIED
12864	ŏ	0.0	0/14		1 /0		1 /0	
12865	1	6.7	0/15		7 /0		1/8	FETUS 6 CERVICAL VERTEBRAE: CERVICAL RIB PRESENT AT 7TH CERVICAL VERTEBRA, left
12866	0	0.0)	0/19		6 /0		0/10	
12867	0 (0.0	0/14		1 /0		7 /0	
12868	0	0.0	5 /0		0/2		0/3	
12869	0 (0.0)	0/15		1 /0		8 /0	
12870	0	0.0	0/16		8 /0		8 /0	
12871	0 (0.0)	0/14		1 /0		7 /0	
12872	0	0.0)	0/14		1 /0		7 /0	
12873	0	0.0)	0/14		7 /0		7 /0	10 + 17 + O +
12874	0	0.0)	0/16		8 /0		0/ 8	671/101
12875	0	0.0)	0/10		9 / 0		0/5	

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 21 (PAGE 9): FETAL ALTERATIONS - INDIVIDUAL DATA

DOSAGE (DOSAGE GROUP IV			10 MG/KG/DAY			
) 	SPECIMENS WITH ANY	GRO	GROSS EXTERNAL EXAMINATION	30S	SOFT TISSUE EXAMINATION		SKELETAL EXAMINATION
RAT NUMBER	ALTERATIONS N(%)	N/N	DESCRIPTION	N/N	DESCRIPTION	N/N	DESCRIPTION
12876	0.0 0	0/15	1	2 /0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 /0	
12877	1(7.1)	0/14		1/7	FETUS 14 KIDNEXS: PELVIS, MODERATE DILATION, right	7 /0	
12878	0.0)0	0/15		1 /0		8 /0	
12879	0.0)0	0/15		7 /0		8 /0	
12880	0.0)0	0/15		6 / 0		8 /0	
12881	0 (0 0)0	0/12		9 /0		9 /0	
12882	1(5.9)	0/17		8 /0		1/9	FETUS 3 CERVICAL VERTEBRAE: CERVICAL RIB PRESENT AT 7TH CERVICAL VERTEBRA, left
12883	0.0 0	0/14		7 /0		7 /0	
12884	0 (0 0)0	0/12		9 /0		9 /0	

PRESENT a
PELVIS: PUBIS, NOT
OSSIFIED, bilateral
RIBS: 0 PRESENT a,

NOT OSSIFIED, bilateral 1st - 13th

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N.ELFUSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

10): FETAL ALTERATIONS - INDIVIDUAL DATA
FETAL ALTERATIONS -
TABLE 21 (PAGE 10):
TABLE 21

2 324300	DOCAGE GROUP IV	1	1	10 MG/KG/DAY		1		
DOSHOR	WOOF TA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			NOTE TO THE STANFOLD OF THE ST		SKELETAL EXAMINATION	
	SPECIMENS WITH ANY	GRO	ROSS EXTERNAL EXAMINATION	Ö,				
RAT	ALTERATIONS N(%)	N/N	DESCRIPTION	N/N	DESCRIPTION	N/N	DESCRIPTION	
1 2 8 8 5 1 2 8 8 5 1 2 8 8 5 1 2 8 8 5 1 2 8 8 5 1 2 8 8 5 1 2 8 8 5 1 2 8 8 5 1 2 8 8 5 1 2 8 8 5 1 2 8 8 5 1 2	1 (5.9)	1/17	FETUS 15 BODY: TRUNK SHORT TAIL: ABSENT	8 /0		6 /1	FETUS 15 CERVICAL VERTEBRAE: 4 PRESENT a THORACIC VERTEBRAE: 0 PRESENT a ARCH, NOT OSSIFIED, bilateral 1st - 13th; CENTRUM, NOT OSSIFIED, LUMBAR VERTEBRAE: 0 PRESENT a ARCH, NOT OSSIFIED, bilateral 1st - 6th; CENTRUM, NOT OSSIFIED, bilateral 1st - 6th; CENTRUM, NOT OSSIFIED, bilateral 1st - 6th; CENTRUM, NOT OSSIFIED, 1st - 6th SACRAL VERTEBRAE: 0 PRESENT a ARCH, NOT OSSIFIED, bilateral 1st - 3rd; CENTRUM, NOT OSSIFIED, list - 3rd; CENTRUM, NOT OSSIFIED, list - 3rd; CENTRUM, NOT OSSIFIED,	

N/N = NUMBER OF SPECIMENS WITH ALTERATIONS/NUMBER OF SPECIMENS EXAMINED a. Excluded from ossification site group averages and statistical analyses.

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-EtFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 21 (PAGE 11): FETAL ALTERATIONS - INDIVIDUAL DATA

DOSAGE (DOSAGE GROUP IV			10 MG/KG/DAY		
	SPECIMENS WITH ANY	GRC	GROSS EXTERNAL EXAMINATION	SOFT TISSUE EXAMINATION		SKELETAL EXAMINATION
RAT	ALTERATIONS N(%)	N/N	DESCRIPTION	N/N DESCRIPTION	N/N	DESCRIPTION
12886	0.0 0	0/13		9 /0	7 /0	
12887	0 (0 0)0	0/16		8 /0	8 /0	
12888	2(15.4)	0/13		9 /0	2/7	FETUS 1 FELVIS: PUBIS, INCOMPLETELY OSSIFIED, left
						FETUS 14 STERNAL CENTRA: 1ST, INCOMPLETELY OSSIFIED
12889	0.0 0.0)	0/3		0/1	0/2	
12890	1 (6.7)	0/15		7 /0	1/8	FETUS 10 CERVICAL VERTEBRAE: CERVICAL RIB PRESENT AT 7TH CERVICAL VERTEBRA, 1eft
12891	0.0 0.0)	0/13		9 /0	۷ / ۵	
12892	0.0)0	0/15		۷ / ٥	8 /0	

N/N = NUMBER OF SPECIMENS WITH ALTERATIONS/NUMBER OF SPECIMENS EXAMINED

PROTOCOL 418 011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6116.7)

TABLE 21 (PAGE 12): FETAL ALTERATIONS - INDIVIDUAL DATA

toous severa							
	SPEC	SPECIMENS WITH ANY	GRC	GROSS EXTERNAL EXAMINATION	SOFT TISSUE EXAMINATION		SKELETAL EXAMINATION
KAT	ALTER	ALTERATIONS N(8)	N/N	DESCRIPTION	N/N DESCRIPTION	N/N	DESCRIPTION
12893	1 (1(6.2)	0/16		0 / 8	1/8	FETUS 13 SKULL: NASAL - FRONTAL, SUTURE LARGE
12894	0	0 0 0 0	0/14		7 /0	1 /0	
12895) 0	0.0	0/14		7 /0	1 /0	
12896	0	0.0)	0/14		7 / 0	۷ / 0	
12897	0 (0.0)	0/15		۲ / ٥	8 /0	
12898	1 (5 . 6)	0/18		6 /0	1/9	FETUS 15 CERVICAL VERTEBRAE: CERVICAL RIB PRESENT AT 7TH CERVICAL VERTEBRA, right
12899	0	0.0)	0/13		9 /0	7 /0	
12900	ò	0.0)0	0/16		0/8	0 / 8	

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 21 (PAGE 13): FETAL ALTERATIONS - INDIVIDUAL DATA

DOSAGE GROUP V	SROUP V			20 MG/KG/DAY		1 1 1 1 1 1 1	P
	SPECIMENS WITH ANY	GR(GROSS EXTERNAL EXAMINATION	SOF	SOFT TISSUE EXAMINATION	1 1 1 1 1 1	SKELETAL EXAMINATION
RAT NUMBER	ALTERATIONS N(%)	N/N	DESCRIPTION	N/N	DESCRIPTION	N/N	DESCRIPTION
12901	0.0 0	0/17		2 /0	1	0/10	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
12902	0.0.0	0/12		9 /0		9 /0	
12903	0.0.0	0/14		1 /0		1 /0	
12904	1(10.0)	0/10		9 / 0		1/ 5	FETUS 1 RIBS: WAVY, right 5th - 7th and 10th
12905	0.0 0	0/12		9 /0		9 /0	
12906	0.0 0	0/13		9 /0		1 /0	
12907	1(11.1)	6 /0		4 /0		1/ 5	FETUS 1 STERNAL CENTRA: 1ST, NOT OSSIFIED
12908	1(7.1)	0/14		7 /0		1/7	FETUS 5 CERVICAL VERTEBRAE: CERVICAL RIB PRESENT AT 7TH CERVICAL VERTEBRA, left
12909	4 (33.3)	0/12		9 /0		4/6	FETUS 5 RIBS: WAVY, bilateral 4th - 11th
N = N/N	N/N = NUMBER OF SPECIMENS WITH	ENS WITH	H ALTERATIONS/NUMBER OF SPECIMENS EXAMINED	CIMENS EXAM	INED		

 \mathfrak{S}

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-BLFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 21 (PAGE 14): FETAL ALTERATIONS - INDIVIDUAL DATA

DOSAGE GROUP V	ROUP V				20 MG/KG/DAY	Y		
! ! ! !	SPEC	SPECIMENS WITH ANY	GRO	GROSS EXTERNAL EXAMINATION	lo s	SOFT TISSUE EXAMINATION		SKELETAL EXAMINATION
RAT NUMBER	ALTER	ALTERATIONS N(%)	N/N	DESCRIPTION	N/N	DESCRIPTION	N/N	DESCRIPTION
(CONT)	1	1 1 1 1 1 1	1 1 1 1 1				1 1 1 1 1	FETUS 7 RIBS: WAVY, right 4th - 12th, left 3rd - 12th; INCOMPLETELY OSSIFIED (HYPOPLASTIC), right 9th - 12th, left 10th - 12th
								FETUS 10 RIBS: WAVY, right 6th - 11th, left 6th, 7th and 10th
								FETUS 12 RIBS: WAVY, right 4th - 11th, left 6th - 9th
12910	NOT	NOT PREGNANT	Ţ,					
12911) 0	0.0)	0/13		9 /0		7 /0	
12912	1(£. r	0/13		9 /0		1/7	FETUS 5 CERVICAL VERTEBRAE: CERVICAL RIB PRESENT AT 7TH CERVICAL VERTEBRA, left
12913	0	0.0)	0/12		9 /0		9 /0	
12914	0	0.0)	0/15		7 /0		8 /0	
12915) 0	0.0)	0/14		7 /0		6 /0	10 17130
12916	0	0.0)	0/16		8 /0		8 /0	
	1 1 1 1 1 1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

N/N = NUMBER OF SPECIMENS WITH ALTERATIONS/NUMBER OF SPECIMENS EXAMINED

PROTOCOL 418-011: ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N.ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 21 (PAGE 15): FETAL ALTERATIONS - INDIVIDUAL DATA

DOSAGE GROUP V	ROUP V		v	20 mg/mg/Dai		
	SPECIMENS WITH ANY	GRO	GROSS EXTERNAL EXAMINATION	SOFT TISSUE EXAMINATION	rion	SKELETAL EXAMINATION
RAT NUMBER	ALTERATIONS N(%)	N/N	DESCRIPTION	N/N DESCRIPTION	N/N	DESCRIPTION
12917	0.0 0	0/14	1	L /0	7 /0	
12918	0 0 0 0	0/15		1 /0	8 /0	
12919	2(14.3)	0/14		۲ / ۵	2/7	FETUS 3 RIBS: WAVY, bilateral 4th 12th
						FETUS 9 RIBS: WAVY, bilateral 4th - 12th
12920	1(6.2)	0/16		8 /0	1/8	FETUS 1 CERVICAL VERTEBRAE: CERVICAL RIB PRESENT AT 7TH CERVICAL VERTEBRA, left
12921	0.0 0.0)	0/14		2 /0	L /0	
12922	0.0 00	0/12		9 / 0	9 /0	
12923	1(7.1)	0/14		0/7	1/ 7	FETUS 7 CERVICAL VERTEBRAE: CERVICAL RIB PRESENT AT 7TH CERVICAL VERTEBRA, bilateral
12924	0 (0 0)0	0/15		/0	8 /0	
12925	0 0 0 0	0/16		8 /0	8 /0	

APPENDIX C PROTOCOL AND AMENDMENTS

Argus Research Laboratories, Inc. 905 Sheehy Drive, Building A Horsham, PA 19044 Telephone: (215) 443-8710 Telefax: (215) 443-8587

PROTOCOL 418-011

SPONSOR'S STUDY NUMBER: T-6316.7

Oral (Gavage) Developmental Toxicity Study of N-EtFOSE STUDY TITLE:

in Rats

The purpose of this study is to detect adverse effects of PURPOSE:

N-EtFOSE on Crl:CD®BR VAF/Plus® presumed pregnant female rats and development of the embryo and fetus consequent to exposure of the dam from implantation to closure of the hard palate. This study evaluates ICH Harmonised Tripartite Guideline stages C and D of the

reproductive process.

Argus Research Laboratories, Inc. **TESTING FACILITY**:

905 Sheehy Drive, Building A

Horsham, Pennsylvania 19044-1297

Telephone: (215) 443-8710 (215) 443-8587 Telefax:

Raymond G. York, Ph.D., DABT STUDY DIRECTOR:

Associate Director of Research

3M Toxicology Services SPONSOR:

3M Center, Building 220-2E-02 St. Paul, Minnesota 55144-1000

Marvin T. Case, D.V.M., Ph.D. STUDY MONITOR:

> Telephone: (651) 733-5180 Telefax: (651) 733-1773

ALTERNATE

Andrew M. Seacat, Ph.D. STUDY MONITOR:

Telephone: (651) 575-3161

10 171306 Telefax: (651) 733-1773

418-011:PAGE C-2

Protocol 418-011 Page 2

REGULATORY CITATIONS:

U.S. Food and Drug Administration (1994). International Conference on Harmonisation; Guideline on detection of toxicity to reproduction for medicinal products. *Federal Register*, September 22, 1994, Vol. 59, No. 183.

U.S. Food and Drug Administration. Good Laboratory Practice Regulations; Final Rule. 21 CFR Part 58.

Japanese Ministry of Health and Welfare (1997). Good Laboratory Practice Standard for Safety Studies on Drugs, MHW Ordinance Number 21, March 26, 1997.

European Economic Community (1989). Council decision on 28 July 1989 on the acceptance by the European Economic Community of an OECD decision/recommendation on compliance with principles of good laboratory practice. Official Journal of the European Communities: Legislation. 32(No. L 315; 28 October): 1-17.

REGULATORY COMPLIANCE:

This study will be conducted in compliance with the Good Laboratory Practice (GLP) regulations cited above.

All changes or revisions of this protocol shall be documented, signed by the Study Director and the Sponsor, dated and maintained with the protocol.

The Quality Assurance Unit (QAU) will audit the protocol, the raw data and the report, and will inspect critical phases of the study in accordance with the Standard Operating Procedures of Argus Research Laboratories, Inc.

The final report will include a statement signed by the Study Director that the report accurately reflects the raw data obtained during the performance of the study and that all applicable GLP regulations were followed in the conduct of the study. Should significant deviations from GLP regulations occur, each will be described in detail, together with how the deviation might affect the quality or integrity of the study.

SCHEMATIC OF STUDY DESIGN AND STUDY SCHEDULE:

See ATTACHMENT 1 to the protocol.

TEST ARTICLE AND VEHICLE:

Identification:

Test Article:

Name:

N-EtFOSE.

Physical Description:

Waxy solid.

Lot/Batch Number:

FM-3929 (30035, 30037, 30039).

Specific Gravity:

~1.7. 99.1%.

Purity: Expiration Date:

May, 2000.

Information on the identity, composition, strength and purity of the test article is on file with the Sponsor.

Vehicle:

2% Tween® 80 in Reverse Osmosis Membrane Processed Deionized Water (R.O. Deionized Water). Supplier and lot identification of Tween® 80 will be documented in the raw data.

Neither the Sponsor nor the Study Director is aware of any potential contaminants likely to be present in the vehicle that would interfere with the results of this study. Therefore, no analyses other than those mentioned in this protocol will be conducted.

Safety Precautions:

Gloves, mask, appropriate eye protection and a uniform/lab coat are to be worn during formulation preparation and administration. The Material Safety Data Sheet (MSDS) is attached to the protocol (see ATTACHMENT 2).

Storage:

Bulk Test Article:

Room Temperature.

Vehicle Components:

Room Temperature.

Prepared Vehicle:

Room Temperature.

Prepared Formulations:

Refrigerated (samples to be frozen).

All test article shipments to the Testing Facility should be addressed to the attention of Julian Gulbinski, Manager of Formulations, at the previously cited address and telephone number.

10 171308

Shipments should include information concerning storage conditions and shipping cartons should be labeled appropriately. The recipient should be notified in advance of shipment.

FORMULATION:

Frequency of Preparation:

Formulations suspensions will be prepared weekly at the Testing Facility.

Detailed preparation procedures are attached to this protocol (ATTACHMENT 3).

Adjustment for Purity:

The test article will be considered 100% pure for the purpose of dosage calculations.

Testing Facility Reserve Samples:

The Testing Facility will reserve a sample (1 g) of each lot of bulk test article used during the course of this study. The Testing Facility will reserve a sample (5 ml) of each lot of vehicle components used during the course of the study. Samples will be stored under the previously cited conditions.

ANALYSES:

Samples additional to those described below may be taken if deemed necessary during the course of the study.

Bulk Test Article Sampling:

No analyses of the bulk test article will be conducted during the course of this study. Information on the stability of the bulk test article is on file with the Sponsor.

Analyses of Prepared Formulations:

At the request of the Sponsor, no analyses of prepared test article formulations will be conducted during the course of the study. Homogeneity and stability information is on file with the Sponsor. However, records will be maintained to document how the test article formulations were prepared.

Concentration of Test Article Formulations:

Concentration of the prepared formulations will be verified during the course of this study. Duplicate samples (2 mL each) will be taken from the first and last preparation on the day prepared. One sample of each set will be shipped for analysis; the remaining samples will be retained at the Testing Facility as backup samples. Backup samples will be stored under the previously cited conditions and discarded at the Testing Facility upon request of the Sponsor.

Shipping Instructions:

Samples to be analyzed will be shipped (frozen on dry ice) to:

Kris J. Hansen, Ph.D.
3M Environmental Technology and Safety Services
935 Bush Avenue
Building 2-3E-09
St. Paul, Minnesota 55133-3331
Telephone: (612) 778-6018

Telefax: (612) 778-6176

The recipient will be notified in advance of sample shipment.

DISPOSITION:

Prepared formulations will be discarded at the Testing Facility. All remaining bulk test article will be returned to the Study Monitor at the previously cited address.

TEST SYSTEM:

Species/Strain and Reason for Selection:

The Crl:CD®BR VAF/Plus® (Sprague-Dawley) rat was selected as the Test System because: 1) it is one mammalian species accepted and widely used throughout industry for nonclinical studies of developmental toxicity (embryo-fetal toxicity/teratogenicity); 2) this strain has been demonstrated to be sensitive to developmental toxins; 3) historical data and experience exist at the Testing Facility(1-3); and 4) the test article is pharmacologically active in this species and strain.

Number:

Initial population acclimated: 190 virgin female rats.

Population selected for study: 125 mated female rats (25 per dosage group).

Population assigned to satellite study: 19 mated female rats (five per Groups II and V and three per Groups I, III and IV) assigned to

toxicokinetic evaluation.

Body Weight and Age:

Female rats will be ordered to have body weights of 200 g to 225 g each at receipt, at which time they will be expected to be at least 60 days of age. Actual body weights will be recorded the day after receipt and will be documented in the raw data. The weight range will be included in the final report.

Sex:

Female rats will be given the test article. Male rats of the same source and strain will be used only as breeders and are not considered part of the Test System.

Source:

Charles River Laboratories, Inc.

The rats will be shipped in filtered cartons by air freight and/or truck from Charles River Laboratories, Inc., to the Testing Facility.

Identification:

Rats are permanently identified using Monel® self-piercing ear tags (Gey Band and Tag Co., Inc., No. MSPT 20101). Male rats are given unique permanent identification numbers upon assignment to the Testing Facility's breeder male rat population. Female rats are assigned temporary numbers at receipt and given unique permanent identification numbers when assigned to the study on the basis of day 0 of presumed gestation body weights.

ANIMAL HUSBANDRY:

All cage sizes and housing conditions are in compliance with the Guide for the Care and Use of Laboratory Animals⁽⁴⁾.

Housing:

The rats will be individually housed in stainless steel, wire-bottomed cages except during the cohabitation period. During cohabitation, each pair of rats will be housed in the male rat's cage. No nesting materials will be supplied because the female rats will be sacrificed before parturition is expected.

Room Air, Temperature and Humidity:

The animal room is independently supplied with at least ten changes per hour of 100% fresh air that has been passed through 99.97% HEPA filters (Airo Clean® room). Room temperature will be maintained at 64°F (18°C) to 79°F (26°C) and monitored constantly. Room humidity will also be monitored constantly and maintained at 30% to 70%.

Light:

An automatically controlled 12-hour light:12-hour dark fluorescent light cycle will be maintained. Each dark period will begin at 1900 hours EST.

Diet:

Rats will be given Certified Rodent Diet® #5002 (PMI Nutrition International) available ad libitum from individual feeders.

Water:

Water will be available ad libitum from individual bottles attached to the cages or from an automatic watering access system. All water will be from a local source and passed through a reverse osmosis membrane before use. Chlorine will be added to the processed water as a bacteriostat; processed water is expected to contain no more than 1.2 ppm chlorine at the time of analysis. Water is analyzed monthly for possible bacterial contamination and twice annually for possible chemical contamination.

Contaminants:

Neither the Sponsor nor the Study Director is aware of any potential contaminants likely to be present in the certified diet or in the drinking water at levels that would interfere with the results of this study. Therefore, no analyses other than those routinely performed by the feed supplier or those mentioned in this protocol will be conducted.

RANDOMIZATION AND COHABITATION:

Upon arrival, male and female rats will be assigned to individual housing on the basis of computer-generated random units. After acclimation, virgin female rats will be cohabited with breeder male rats, one male rat per female rat. The cohabitation period will consist of a maximum of five days. Female rats with spermatozoa observed in a smear of the vaginal contents and/or a copulatory plug observed *in situ* will be considered to be at day 0 of presumed gestation and assigned to individual housing.

Healthy mated female rats will be assigned to dosage groups based on computergenerated (weight-ordered) randomization procedures.

ADMINISTRATION:

Route and Reason for Choice:

The oral (gavage) route was selected for use because: 1) in comparison with the dietary route, the exact dosage can be accurately administered; and 2) it is one of the proposed routes for clinical use.

Method and Frequency:

10 171312

Female rats will be given the test article once daily on days 6 through 17 of presumed gestation, the period of organogenesis. Dosages will be adjusted for the most recently recorded body weight and given at approximately the same time each day.

418-011:PAGE C-8

Protocol 418-011 Page 8

Rationale for Dosage Selection:

Dosages were selected on the basis of a dosage-range study (Argus Research Laboratories, Inc., Protocol 418-011P) that tested 0, 1, 5, 10, 25 and 35 mg/kg/day. In that study, body weight gain was decreased at 10 mg/kg/day and higher dosages, and feed consumption values were reduced at all dosages tested.

Dosage Levels, Concentrations and Volumes:

Dosage Group	Number of Rats	Dosage (mg/kg/day)	Concentration (mg/mL)	Dosage Volume (mL/kg)	Argus Batch Number
	25 + 3°	() (Vehicle)	0	5	B-418-011-A(Day.Month.Year)
1)	25 + 5°	1	0.2	5	B-418-011-B(Day.Month.Year)
111	25 + 3°	5	1	5	B-418-011-B(Day.Month.Tear)
	25 + 3°	10	2	5	B-418-011-C(Day.Month.Year)
V	25 + 5°	20	4	5	B-418-011-D(Day,Month,Year)

The test article will be considered 100% pure for the purpose of dosage calculations.

TESTS, ANALYSES AND MEASUREMENTS:

Viability:

All Periods:

At least twice daily.

Clinical Observations and/or General Appearance:

Acclimation Period:

Weekly.

Predosage Period:

Day 0 of presumed gestation.

Dosage Period:

Twice daily. Prior to dosage administration and once

approximately one hour postdosage.

Postdosage Period:

Once daily.

Clinical observations may be recorded more frequently than cited above, if deemed appropriate by the Study Director and/or Study Monitor.

Body Weights:

Acclimation Period:

Weekly.

10 171313

Predosage Period:

Day 0 and 4 of presumed gestation.

Rats assigned to the satellite group for blood collection.

Dosage Period:

Daily.

Postdosage Period:

Daily.

Feed Consumption Values (recorded and tabulated):

Predosage Period:

Day 0 and 4 of presumed gestation.

Dosage Period:

Days 6, 8, 10, 12, 14 and 16 of presumed gestation.

Postdosage Period:

Days 18 and 20 of presumed gestation.

Feed consumption values may be recorded more frequently if it is necessary to replenish the feed. These intervals will not be tabulated.

Mating Performance:

Mating will be evaluated daily during the cohabitation period and confirmed by observation of spermatozoa in a smear of the vaginal contents and/or a copulatory plug observed in situ.

Caesarean-Sectioning Observations:

Rats will be Caesarean-sectioned on day 20 of presumed gestation. The fetuses will be removed from the uterus and placed in individual containers. The rats will be examined for number and distribution of:

Corpora Lutea.

Implantation Sites.

[Placentae appearance (size, color or shape if abnormal) will be noted in the raw data].

Live and Dead Fetuses.

(A live fetus is defined as one that responds to stimuli; a dead fetus is defined as a term fetus that does not respond to stimuli and that is not markedly autolyzed; dead fetuses demonstrating marked to extreme autolysis are considered to be late resorptions.)

Early and Late Resorptions.

(A conceptus is defined as a late resorption if it is grossly evident that organogenesis has occurred; if this is not the case, the conceptus is defined as an early resorption.)

Fetal Observations:

Gross External Alterations and Sex:

Fetuses will be examined for sex and for gross external alterations. Late resorptions and dead fetuses also will be examined for sex and for gross external alterations to the extent possible but such observations will not be included in either data summarization or statistical analyses.

Body Weights and Identification:

The body weight of each fetus will be recorded. Only body weights of live fetuses will be used to determine litter fetal body weight averages. Fetuses will be tagged with identification noting study number, litter number, uterine distribution and fixative.

Soft Tissue Examination:

Approximately one-half of the fetuses in each litter will be examined for soft tissue alterations by using an adaptation of Wilson's sectioning technique⁽⁵⁾. The fetuses will be initially fixed in Bouin's solution; sections will be retained in alcohol.

Skeletal Examination:

The remaining fetuses (approximately one-half of the fetuses in each litter) will be examined for skeletal alterations after staining with alizarin red S⁽⁶⁾. The fetuses will be initially fixed in alcohol; skeletal preparations will be retained in glycerin with thymol added as a preservative.

Representative photographs of fetal gross, soft tissue and skeletal alterations will be taken.

METHOD OF SACRIFICE:

Rats will be sacrificed by carbon dioxide asphyxiation. Live fetuses will be sacrificed by an intraperitoneal injection of euthanasia solution (Beuthanasia®-D Special, manufactured by Schering-Plough Animal Health).

NECROPSY:

Gross lesions will be retained in neutral buffered 10% formalin for possible future evaluation (a table of random units will be used to select one control group rat from which all tissues examined at necropsy will be retained, in order to provide control tissues for any possible histopathological evaluations of gross lesions). Unless specifically cited below, all other tissues will be discarded.

Satellite Rats Assigned to Toxicokinetic Sample Collection:

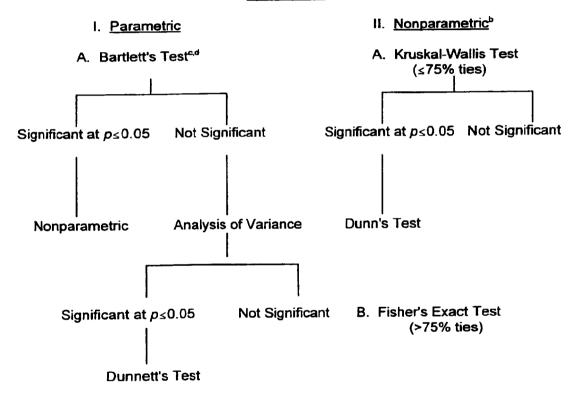
On day 18 of presumed gestation (the day following the last dosage), rats assigned to the toxicokinetic evaluation will be sacrificed and the following samples collected. Blood samples (approximately 4 mL per rat) will be collected from the inferior vena cava into serum separator tubes and centrifuged. The resulting serum (approximately 2 mL) will be immediately frozen on dry ice and maintained frozen (-70°C) until shipment to the Sponsor for analysis. The liver will be excised, weighed, and a sample section (lateral lobe) will be frozen and retained at -70°C until shipment to the Sponsor for analysis.

Rats will be Caesarean-sectioned and fetuses will be examined grossly to the extent possible as described above for rats assigned to the main study. Fetuses and placentae will be pooled per litter and retained frozen (-70°C) until shipment to the Sponsor for analysis

After completion of sample collection, serum, liver section (lateral lobe), fetal and placental samples will be shipped (frozen on dry ice) to Kris J. Hansen, Ph.D., at the previously cited address for analysis. Both the recipient and the Study Monitor will be notified in advance of sample shipment.

Scheduled Sacrifice:

On day 20 of presumed gestation, female rats will be Caesarean-sectioned, and a gross necropsy of the thoracic, abdominal and pelvic viscera will be performed. Uteri of apparently nonpregnant rats will be stained with 10% ammonium sulfide to confirm the absence of implantation sites⁽⁷⁾.


Rats Found Dead or Moribund:

Rats that die or are sacrificed because of moribund condition, abortion or premature delivery will be examined for the cause of death or moribund condition on the day the observation is made. The rats will be examined for gross lesions. Pregnancy status and uterine contents of female rats will be recorded. Aborted fetuses and/or delivered pups will be examined to the extent possible, using the same methods described for fetuses. Uteri of apparently nonpregnant rats will be stained with 10% ammonium sulfide to confirm the absence of implantation sites⁽⁷⁾.

PROPOSED STATISTICAL METHODS(8-14):

Averages and percentages will be calculated. Litter values will be used where appropriate. Additional procedures and/or analyses may be performed, if appropriate.

Type of Test*

III. Test for Proportion Data

Variance Test for Homogeneity of the Binomial Distribution

a. Statistically significant probabilities are reported as either $p \le 0.05$ or $p \le 0.01$.

b. Proportion data are not included in this category.

c. Used only to analyze data with homogeneity of variance.

d. Test for homogeneity of variance.

DATA ACQUISITION, VERIFICATION AND STORAGE:

Data will be hand- and/or computer-recorded. Records will be reviewed by the Study Director and/or appropriate management personnel within 21 days after generation. All original records will be stored in the archives of the Testing Facility. All original data will be bound and indexed. A copy of all raw data will be supplied to the Sponsor upon request. Preserved tissues will be stored at the Testing Facility at no charge for one year after mailing of the draft final report, after which time the Sponsor will be contacted to determine the disposition of these materials.

RECORDS TO BE MAINTAINED:

Protocol and Amendments.

Test Article, Vehicle and/or Reagent Receipt, Preparation and Use.

Animal Acquisition.

Randomization Schedules.

Mating History.

Treatment (if prescribed by Staff Veterinarian).

General Comments

Clinical Observations and/or General Appearance.

Blood and Tissue Sample Collection, Processing and Shipment.

Body Weights.

Feed Consumption Values.

Caesarean-Sectioning and Fetal Observations.

Gross Necropsy Observations.

Organ Weights.

Photographs (if required).

Study Maintenance (room and environmental records).

Feed and Water Analyses.

Packing and/or Shipment Lists.

KEY PERSONNEL:

Executive Director of Research: Mildred S. Christian, Ph.D., Fellow, ATS

Director of Research: Alan M. Hoberman, Ph.D., DABT

Associate Director of Research and Study Director: Raymond G. York, Ph.D., DABT

Director of Laboratory Operations: John F. Barnett, B.S. Manager of Study Coordination: Valerie A. Sharper, M.S.

Manager of Animal Operations and Member, Institutional Animal Care and

Use Committee: Dena C. Lebo, V.M.D.

Manager of Regulatory Compliance: Kathleen A. Moran, M.S.

Consultant, Veterinary Pathology: W. Ray Brown, D.V.M., Ph.D., ACVP

FINAL REPORT:

A comprehensive draft final report will be prepared on completion of the study and will be finalized following consultation with the Sponsor. The report will include the following:

Summary and Conclusion.

Experimental Design and Method.

Evaluation of Test Results.

Appendices: Figures, Summary and Individual Tables Summarizing the Above Data, Protocol and Associated Amendments and Deviations, Study Director's GLP Compliance Statement, Reports of Supporting Data (if appropriate) and OAU Statement.

INSTITUTIONAL ANIMAL CARE AND USE COMMITTEE STATEMENT:

The procedures described in this protocol have been reviewed by the Testing Facility's Institutional Animal Care and Use Committee. All procedures described in this protocol that involve study animals will be conducted in a manner to avoid or minimize discomfort, distress or pain to the animals.

The Sponsor's signature below documents the fact that information concerning the necessity for conducting this study and the fact that this is not an unnecessarily duplicative study may be obtained from the Sponsor. No alternative (*in vitro*) procedures were available for meeting the stated purposes of the study.

REFERENCES:

- Christian, M.S. and Voytek, P.E. (1982). In Vivo Reproductive and Mutagenicity Tests. Environmental Protection Agency, Washington, D.C. National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.
- Christian, M.S. (1984). Reproductive toxicity and teratology evaluations of naltrexone (Proceedings of Naltrexone Symposium, New York Academy of Sciences, November 7, 1983), J. Clin. Psychiat. 45(9):7-10.
- 3. Lang, P.L. (1988). Embryo and Fetal Developmental Toxicity (Teratology)
 Control Data in the Charles River Crl:CD®BR Rat. Charles River Laboratories,
 Inc., Wilmington, MA 01887-0630. (Data base provided by Argus Research
 Laboratories, Inc.)
- Institute of Laboratory Animal Resources (1996). Guide for the Care and Use of Laboratory Animals. National Academy Press, Washington, D.C.

- Wilson, J.G. (1965). Methods for administering agents and detecting malformations in experimental animals. *Teratology: Principles and Techniques* (Wilson, J.G. and Warkany, J., eds.), University of Chicago Press, pp. 262-277.
- 6. Staples, R.E. and Schnell, V.L. (1964). Refinement in rapid clearing technique in the KOH-alizarin red S method for fetal bone. Stain Technol. 39:61-63.
- Salewski, E. (1964). Färbemethode zum makroskopischen Nachweis von Implantationsstellen am Uterus der Ratte. Arch. Pathol. Exp. Pharmakol. 247:367.
- 8. Snedecor, G.W. and Cochran, W.G. (1967). Variance test for homogeneity of the binomial distribution. *Statistical Methods*, 6th Edition, Iowa State University Press, Ames, pp. 240-241.
- 9. Sokal, R.R. and Rohlf, F.J. (1969). Bartlett's test of homogeneity of variances. Biometry, W.H. Freeman and Co., San Francisco, pp. 370-371.
- Snedecor, G.W. and Cochran, W.G. (1967). Analysis of Variance. Statistical Methods, 6th Edition, Iowa State University Press, Ames, pp. 258-275.
- 11. Dunnett, C.W. (1955). A multiple comparison procedure for comparing several treatments with a control. J. Amer. Stat. Assoc. 50:1096-1129.
- Sokal, R.R. and Rohlf, F.J. (1969). Kruskal-Wallis Test. Biometry, W.H. Freeman and Co., San Francisco, pp. 388-389.
- 13. Dunn, O.J. (1964). Multiple comparisons using rank sums. Technometrics 6(3):241-252.
- 14. Siegel, S. (1956). *Nonparametric Statistics for the Behavioral Sciences*, McGraw-Hill, New York, pp. 96-104.

PROTOCOL APPROVAL:

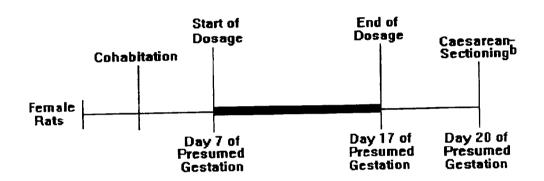
FOR THE TESTING FACILITY

Q 4/1/2	29 JUI-18
Alan M. Hoberman, Ph.D.,DABT Director of Research	Date
Raymond G. York, Ph.D., DABT Associate Director of Research Study Director	<u>31- みに </u>
Dena C. Lebo, V.M.D. Member, Institutional Animal Care and	ع علياً 98 Date

FOR THE SPONSOR

Marvin T. Case, D.V.M., Ph.D.

Study Monitor


3 Huy, 1998 Date

ATTACHMENT 1 SCHEMATIC OF STUDY DESIGN AND STUDY SCHEDULE

ATTACHMENT 1

Protocol 418-011 Page 1 of 2

STUDY SCHEMATIC DEVELOPMENTAL TOXICITY STUDY 8

= Dosage Period

a = For additional details see 'Tests, Analyses and

Measurements" section of the protocol
b = Fetal evaluations (all - external, 1/2 per litter soft tissue or skeletal)

ATTACHMENT 2 MATERIAL SAFETY DATA SHEET

N-E+FOSE

MATERIAL SAFETY DATA SHEET

3M

3M Center

St. Paul, Minnesota

55144-1000

1-800-364-3577 or (612) 737-6501 (24 hours)

Copyright, 1998, Minnesota Mining and Manufacturing Company. All rights reserved. Copying and/or downloading of this information for the purpose of properly utilizing 3M products is allowed provided that:

- 1) the information is copied in full with no changes unless prior agreement is obtained from 3M, and
- 2) neither the copy nor the original is resold or otherwise distributed with the intention of earning a profit thereon.

DIVISION: 3M CHEMICALS

TRADE NAME:

FC-10 FLUORAD Brand Fluorochemical Alcohol

ID NUMBER/U.P.C.:

98-0211-1113-7 00-51135-09495-2 98-0211-1183-0 00-51135-09542-3

98-0211-1575-7 00-51135-02145-3 98-0211-6620-6 00-51135-10439-2

ZF-0002-0572-2

ISSUED: January 29, 1998 SUPERSEDES: November 05, 1997

DOCUMENT: 10-3778-7

1. INGREDIENT	CAS NO.	PERCENT		
PERFLUOROOCTANESULFONAMIDO ALCOHOL PERFLUOROHEXANESULFONAMIDO ALCOHOL PERFLUOROHEPTANESULFONAMIDO ALCOHOL PERFLUOROBUTANESULFONAMIDO ALCOHOL PERFLUOROPENTANESULFONAMIDO ALCOHOL	1691-99-2 34455-03-3 68555-73-7 34449-89-3 68555-72-6	80.0 3.0 2.0 2.0 1.0	- 90.0 - 7.0 - 6.0 - 6.0 - 3.0	
2. PHYSICAL DATA				

BOILING POINT: ca. 118 C

@ 1 mm Hg

VAPOR PRESSURE:..... < 10 mmHg

Calc @ 20 C

VAPOR DENSITY:.... > 1.0 Air=1 Calc @ 20 C.

EVAPORATION RATE:.... < 1.0 BuOAc=1 SOLUBILITY IN WATER:.... neglig.

SPECIFIC GRAVITY:..... ca. 1.7 Water=1

(of melt)

PERCENT VOLATILE:..... 0 % MELTING POINT:..... N/D

10 171325

	1	Alcohol	PAGE	2
SDS: FC-10 FLUORAD BI	rand Fluorochemical	Alconos		
SDS: FC-10 FLUORAD BI	1 8110			•••
SDS: FC-10 FLUORAD BI				•••
	(continued)			
2. PHYSICAL DATA	(6011-2	. 		
onop:				
APPEARANCE AND ODOR: Amber waxy solid				••••
	TARD DATA			. • • • •
7 FIRE /**-				
		C Setaflash		
FLASH POINT:	N/A			
FLASH POINT: FLAMMABLE LIMITS - FLAMMABLE LIMITS - AUTOIGNITION TEMPER				
AUTOIGNITION				
EXTINGUISHING MEDIA	A: oxide, Dry chemical	, Foam	_	
Water, oz.	ING PROCEDURES: ctive clothing, incl re or pressure deman	holmet, sel	f-contained,	
SPECIAL FIRE FIGHT	ING PROCEDURES: ctive clothing, incl re or pressure deman s around arms, waist	uding neimot,	atus, bunker con-	
Wear full protect	ctive clothing, incl re or pressure deman s around arms, waist ring for exposed are	and legs, face w	nask, and	
positive pressur	s around arms, waist ring for exposed are	eas of the head.		
and pairts, bank	ring for exposed -	_		
proceeda	THE DETON HAZARDS:	ducts of	combustion.	
UNUSUAL FIRE AND	EXPLOSION HAZARDS: Decomposition section	on for produces		
See Hazardous				
	DATA			
				• • • • •
4 REACTIVITY	DATA			
_	_			
STABILITY: Stabl	- MATERIALS/CONDIT	IONS TO AVOID:		
TUCOMPATIBILITY	- MATERIALS/CONDITION			
Not applicable	e.	itatiDN	will not occur.	
, and	e. MERIZATION: Hazardou	is polymerización		
HAZARDOUS POLYM	IEH127112		- Ovides Of	
DECON	MPOSITION PRODUCTS:	ide Oxides of Ni	trogen, Unites.	
Carbon Monox:	MPOSITION PRODUCTS: ide and Carbon Diox ogen Fluoride, Toxi	c Vapors, Gases o	r parcious	
Sultur, myor				
	ENTAL INFORMATION	÷ . •		••••
5. ENVIRONME	NTAL INFORMATION			
			di na	
	_	ann inform	SETION PASSES	, and
SPILL RESPONS	her sections of thi	espiratory protec	tion, ventile Clear	n up
Reter to or	id health hazards, I	Collect spilled	Marei	10 474000
personal pr	E: her sections of thi nd health hazards, f rotective equipment place in a U.S. DOT	-approved contain	51 ·	10 171326
1 602				

MSDS: FC-10 FLUORAD Brand Fluorochemical Alcohol January 29, 1998	PAGE	
5. ENVIRONMENTAL INFORMATION (continued)	. 	
RECOMMENDED DISPOSAL: Incinerate in a permitted hazardous waste incinerator in the present of a combustible material. Combustion products will include HF. Dispose of waste product in a facility permitted to accept chemical waste.		
ENVIRONMENTAL DATA: Laboratory tests showed no biodegradation. 96-Hr. LD50 Fathead Mil (Pimephales promelas) - No mortality at water saturation. No statistically significant effect on % hatch, % survival, weight, a length in 30 day Fathead Minnow egg fry study. Lab tests showed 2 fold bioconcentration of FC-10 into muscle fillets of channel catf	nd 00	
REGULATORY INFORMATION: Volatile Organic Compounds: N/A. VOC Less H2O & Exempt Solvents: N/A.		
This product complies with the chemical registration requirements TSCA, EINECS, CDSL, AICS and Korea.	of	
EPCRA HAZARD CLASS: FIRE HAZARD: No PRESSURE: No REACTIVITY: No ACUTE: Yes CHRONIC:		
6. SUGGESTED FIRST AID		
EYE CONTACT: Immediately flush eyes with large amounts of water. Get immediate medical attention.		
SKIN CONTACT: Immediately wash skin with soap and large amounts of water. Remove contaminated clothing. If signs/symptoms occur, call a physician. Wash contaminated clothing before reuse and dispose of contaminate shoes.		
INHALATION: If signs/symptoms occur, remove person to fresh air. If signs/symptoms continue, call a physician.		
IF SWALLOWED: Call a physician IMMEDIATELY. If swallowed, induce vomiting immediately as directed by medical personnel. Never give anything mouth to an unconscious person.) by	

MSDS: FC-10 FLUORAD Brand Fluorochemical Alcohol PAGE 4 January 29, 1998 . ------7. PRECAUTIONARY INFORMATION

EYE PROTECTION:

Avoid eye contact. Wear safety glasses with side shields.

SKIN PROTECTION:

Avoid skin contact. Wear appropriate gloves when handling this material. A pair of gloves made from the following material(s) are recommended: butyl rubber. Use one or more of the following personal protection items as necessary to prevent skin contact: coveralls.

RECOMMENDED VENTILATION:

Use with appropriate local exhaust ventilation. Provide sufficient ventilation to maintain emissions below recommended exposure limits. If exhaust ventilation is not adequate, use appropriate respiratory protection.

RESPIRATORY PROTECTION:

Avoid breathing of airborne material. Select one of the following NIOSH approved respirators based on airborne concentration of contaminants and in accordance with OSHA regulations: half-mask dust respirator, full-face supplied air respirator.

PREVENTION OF ACCIDENTAL INGESTION:

Do not eat, drink or smoke when using this product. Wash exposed areas thoroughly with soap and water. Wash hands after handling and before eating.

RECOMMENDED STORAGE:

Store away from heat. Keep container closed when not in use.

FIRE AND EXPLOSION AVOIDANCE:

Nonflammable.

OTHER PRECAUTIONARY INFORMATION:

No smoking: Smoking while using this product can result in contamination of the tobacco and/or smoke and lead to the formation of the hazardous decomposition products mentioned in section 4 of this MSDS.

HMIS HAZARD RATINGS: HEALTH: 1 FLAMMABILITY: 1 REACTIVITY: 0

PERSONAL PROTECTION: X (See precautions, section 7.)

FERDORNE THE PER	•	•			
EXPOSURE	LIMITS	;		1	0 171328
INGREDIENT	VALUE	UNIT	TYPE	AUTH	SKIN*
PERFLUOROOCTANESULFONAMIDO ALCOHOL PERFLUOROHEXANESULFONAMIDO ALCOHOL	0.1	MG/M3 MG/M3	TWA TWA	3M 3M	Y
PERFLUOROHEPTANESULFONAMIDO ALCOHOL	0.1	MG/M3	AWT	3M 	Υ

MSDS: FC-10 FLUORAD Brand Fluorochemical Alcohol Jar.uary 29, 1998

PAGE 5

EXPOSURE	LIMITS	(continued)
----------	--------	-------------

INGREDIENT	VALUE	UNIT	TYPE		SKIN*
PERFLUOROBUTANESULFONAMIDO ALCOHOL	0.1	MG/M3	TWA	3M	Y
PERFLUOROPENTANESULFONAMIDO ALCOHOL	0.1	MG/M3	TWA	3M	Y

* SKIN NOTATION: Listed substances indicated with 'Y' under SKIN refer to the potential contribution to the overall exposure by the cutaneous route including mucous membrane and eye, either by airborne or, more particularly, by direct contact with the substance. Vehicles can alter skin absorption.

SOURCE OF EXPOSURE LIMIT DATA:

3M Recommended Exposure Guidelines - 3M:

B. HEALTH HAZARD DATA

FYF CONTACT: No adverse health effects are expected from eye contact.

SKIN CONTACT:

Product is not expected to be irritating to the skin.

May be absorbed through the skin and persist in the body for an extended time.

INHALATION:

May be absorbed by inhalation and persist in the body for an extended time.

IF SWALLOWED:

Ingestion is not a likely route of exposure to this product.

Illness may occur after a single swallowing of relatively large quantities of this material.

MUTAGENICITY:

Not mutagenic in in-vitro assays.

REPRODUCTIVE/DEVELOPMENTAL TOXINS:

Substance was not teratogenic in the rat at doses as high as 30 milligrams per kilogram per day via oral route.

OTHER HEALTH HAZARD INFORMATION:

This product is not known to contain any substances regulated under California Proposition 65.

A Product Toxicity Summary Sheet is available.

10 171329

January 29, 1998	Brand Fluorochemical Alcohol	PAGE	6
	 S		
	SECTION CHANGED SINCE November 05, 1997 ISSUE		

Abbreviations: N/D - Not Determined N/A - Not Applicable CA - Approximately

The information in this Material Safety Data Sheet (MSDS) is believed to be correct as of the date issued. 3M MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR COURSE OF PERFORMANCE OR USAGE OF TRADE. User is responsible for determining whether the 3M product is fit for a particular purpose and suitable for user's method of use or application. Given the variety of factors that can affect the use and application of a 3M product, some of which are uniquely within the user's knowledge and control, it is essential that the user evaluate the 3M product to determine whether it is fit for a particular purpose and suitable for user's method of use or application.

3M provides information in electronic form as a service to its customers. Due to the remote possibility that electronic transfer may have resulted in errors, omissions or alterations in this information, 3M makes no representations as to its completeness or accuracy. In addition, information obtained from a database may not be as current as the Me mort uttend a fine from 3M

ATTACHMENT 3 TEST ARTICLE PREPARATION PROCEDURE

ATTACHMENT 3

Protocol 418-011 Version: 418-011 (26 JUL 98) Page 1 of 3

TEST ARTICLE AND CONTROL ARTICLE PREPARATION PROCEDURE

	(EO)	4((1022									
	Test A	rticle:	N-EtFOSE								
	Vehicle	e:	2% Tween								
A.	Purpose:	The purpose of dosage su administration	of this procuspensions on to rats on	edu of N Arg	re is to p -EtFOSE jus Study	rovi an 41	ide a id the 18-01	metho contro	od for th ol articl	ne prepar e for oral	ation
В.	General I	nformation:									
	1.	number, col	on contained protocol numinoentration, of a conditions.	rs w ber dos	rill be lab r, test arti age level	elec icle I, pr	d and iden repar	tification of	coded. on, Argi iate, ex	Each la us batch piration c	bel Will
	2 a .	Suspension Daily	s will be pre	par -	ed: Weekly			For	_ days	of use	
	2b.	Daily		-	Weekly						
	3.	Suspension	ns will be pre	par	red at a f	inal	dos	age vo	lume of	f 5 mL/kg	•
	4.	X Dus Hall	ves, lab coat t-Mist Respi -Face Respi -Face Respi ek Suit/Apro	rato irato rato) r >r					ceshield	
	5.	Yes	uspensions a s e Base	adju X —	sted for l No (Ca Purity	(CUI	e bas lation	se and s base	% Puri d on 10	ty. 00%)	
	6.	Sampling	requirement	s: (Cited in p	orot	tocol.				
	7.	Storage:	Cited in prot	oco	ol.						

418-011: PAGE C-29

ATTACHMENT 3

Protocol 418-011 Version: 418-011 (28 JUL 98) Page 2 of 3

TEST ARTICLE AND CONTROL ARTICLE PREPARATION PROCEDURE

NOTE:

Test article will be prepared as a serial dilution from the high dosage to the low dosage. Once the final volumes are achieved, stir bars are to be added to the containers; mixing should occur during sampling and/or administration.

C. Preparation of Vehicle

- 1. Add the required amount of R.O. deionized water to an appropriately labeled container. Heat the water to 50 ± 5 °C, add the required amount of Tween® 80 and mix until uniform (See TEST ARTICLE CALCULATIONS).
- D. Test Article Suspension Preparation:
 - 1. To prepare the 4.0-mg/mL, Group V suspension, add the required amount of test article (See TEST ARTICLE CALCULATIONS) into an appropriately sized, labeled container. Add the required amount of vehicle and heat the mixture to $80 \pm 5^{\circ}$ C for approximately 30 minutes.
 - 2. Once the test article has dissolved; spin over night while the solution cools. (Be sure there is a visible vortex, this will achieve the desired emulsion.)
 - 3. To prepare the 2.0-mg/mL, Group IV suspension, remove the required amount of stock suspension (Group V) (See TEST ARTICLE CALCULATIONS), add the required amount of vehicle and mix.
 - 4. To prepare the 1.0-mg/mL, Group III suspension, remove the required amount of stock suspension (Group IV) (See TEST ARTICLE CALCULATIONS), add the required amount of vehicle and mix.

ATTACHMENT 3

Protocol 418-011 Version: 418-011 (28 JUL 98) Page 3 of 3

TEST ARTICLE AND CONTROL ARTICLE PREPARATION PROCEDURE

 To prepare the 0.2-mg/mL, Group II suspension, remove the required amount of stock suspension (Group III) (See TEST ARTICLE CALCULATIONS), add the required amount of vehicle and mix.

Written by:

Approved by:

nn Date: 31-Jul-98

Clarification: X No

Yes (See attached clarification form.)

Initials/Date: UC 9-21-98

Argus Research Laboratories, Inc. 905 Sheehy Drive, Building A Horsham, PA 19044 Telephone: (215) 443-8710 Telefax: (215) 443-8587

PROTOCOL 418-011

ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ETFOSE IN RATS

SPONSOR'S STUDY NUMBER: T-6316.7

Amendment 1 - 12 August 1998

Frequency of Preparation (page 4 and page 1 of Attachment 3 to the protocol): 1.

Formulations (suspensions) will be prepared daily at the Testing Facility, rather than weekly.

Reason for Change:

This change corrects the protocol.

lan 🕅. Hoberman, Ph.D., DABT Date

Director of Research

Raymond G. York Ph.D., DABT

Associate Director of Research

Study Director

Date

Dena C. Lebo, V.M.D. Member, Institutional Animal Care and

Use Committee

Marvin T. Case, D.V.M., Ph.D.

Study Monitor

10 171335

12-AU6:98

Date

Argus Research Laboratories, Inc. 905 Sheehy Drive, Building A Horsham, PA 19044 Telephone: (215) 443-8710 Telefax: (215) 443-8587

PROTOCOL 418-011

ORAL (GAVAGE) DEVELOPMENTAL TOXICITY STUDY OF N-ETFOSE IN RATS

SPONSOR'S STUDY NUMBER: T-6316.7

Amendment 2 - 11 December 1998

1. Sponsor (page 1 of the protocol):

The Sponsor is 3M Corporate Toxicology, rather than 3M Toxicology Services.

Reason for Change:

This change was made at the request of the Sponsor.

2. <u>Species/Strain and Reason for Selection</u> (page 5 of the protocol):

The test article is biologically active, rather than pharmacologically active in this strain.

Reason for Change:

This change was made at the request of the Sponsor to correct the protocol.

Route and Reason for Choice (page 7 of the protocol):

The oral (gavage) route is a possible route of human exposure, rather than the one proposed for clinical use.

Amendment 2 Protocol 418-011 Page 2

Reason for Change:

This change was made at the request of the Sponsor to correct the protocol.

Hoberman, Ph.D., DABT Date

Director of Research

Raymond G. York, Ph. D.,

Associate Director of Research

Study Director

Marvin T. Case, D.V.M., Ph.D.

Member, Institutional Animal Care and

Use Committee

Study Monitor

Date

Date

APPENDIX D

DEVIATIONS FROM THE PROTOCOL AND THE STANDARD OPERATING PROCEDURES OF THE TESTING FACILITY

DEVIATIONS FROM THE PROTOCOL AND STANDARD OPERATING PROCEDURES OF THE TESTING FACILITY

 26 AUG 98 (Day 4 of presumed gestation): Clinical observations and body weights were not recorded for the following rats:

Dosage	Dosage	Assigned
Group	(mg/kg/day)	<u>Numbers</u>
1	0 (Vehicle)	12814 - 12816
11	1	12839 - 12847
Ш	5	12864 - 12872
IV	10	12883 - 12897
V	20	12912 - 12922

This deviation did not adversely affect the outcome of the study because it occurred before initiation of the dosage period and represents a small loss of data across all dosage groups.

All deviations are documented in the raw data.

Raymond G. York, Ph.D., DABT Date

Associate Director of Research

and Study Director

APPENDIX E TEMPERATURE AND RELATIVE HUMIDITY REPORTS

ARGUS

Temperature and Relative Humidity Report Location: Room 04

Protocol Number: 418-011

Range of Dates: 11-Aug-1998 13:45 to 12-Sep-1998 10:26

	Tempe 64°F to	rature 79°F	Relative to 30% to	lumidity 70%
Target Range: Species: Rat Total Number of Days: Total Number of Hours: Total Number of Data Points:	33 764.49 766		33 764.49 766	
	69.3	(± 0.4)	47.7	(± 2.4)
Mean (± SD): Maximum: Median:	70.2 69.3 67.7		54.1 47.7 41.3	
Minimum: Number of Points in Range (%): Number of Points High (%): Number of Points Low (%):	766 0 0	(100.0) (0.0) (0.0)	766 0 0	(100.0) (0.0) (0.0)

Report Generated: 23-Oct-1998 at 09:15	
COMMENTS:	
REVIEWED BY:	DATE: _ N/23/88

APPENDIX F
PILOT REPORT

FINAL PILOT REPORT

Study Title

Oral (Gavage) Dosage-Range Developmental Toxicity Study of N-EtFOSE in Rats

Sponsor's Study Number: T-6316.7

Author

Raymond G. York, Ph.D., DABT (Study Director)

Study Completed On

10 December 1998 (Final Pilot Report)

Performing Laboratory

Argus Research Laboratories, Inc. 905 Sheehy Drive, Building A Horsham, Pennsylvania 19044-1297

Laboratory Project ID

Argus Research Laboratories, Inc., Protocol Number: 418-011P

PROTOCOL 418-011P:

ORAL (GAVAGE) DOSAGE-RANGE DEVELOPMENTAL TOXICITY STUDY OF N-EtFOSE IN RATS

TABLE OF CONTENTS

SUBJE	CT		<u>PAGE</u>
ABSTF	RACT		4
I .	Purpos	se	6
11.	Metho	ds	6
III.	Result		7
IV.	Concli		9
Figure		Maternal Body Weights	10
Table		Clinical and Necropsy Observations - Summary	11
Table		Maternal Body Weights - Summary	13
Table		Maternal Body Weight Changes - Summary	15
Table		Maternal Absolute Feed Consumption Values (g/day) - Summary	17
Table	5.	Maternal Relative Feed Consumption Values (g/kg/day) - Summary	19
Table	e 6.	Caesarean-Sectioning Observations - Summary	21

418-011:PAGE F-3

418-011P:PAGE 3

SUBJECT		<u>PAGE</u>
Table 7.	Litter Observations (Caesarean-Delivered Fetuses) - Summary	23
Table 8	Fetal Gross External Alterations – Summary	25
Table 9.	Clinical Observations - Individual Data	27
Table 10.	Necropsy Observations - Individual Data	31
Table 11.	Maternal Body Weights - Individual Data	35
Table 12.	Maternal Feed Consumption Values - Individual Data	42
Table 13.	Caesarean-Sectioning Observations - Individual Data	4 6
Table 14.	Litter Observations (Caesarean-Delivered Fetuses) - Individual Data	50
Table 15.	Fetal Sex, Vital Status and Body Weight - Individual Data	54
ATTACHME	NT 1 - PROTOCOL AND AMENDMENT	58

TITLE: ORAL (GAVAGE) DOSAGE-RANGE DEVELOPMENTAL TOXICITY STUDY OF N-EIFOSE IN RATS

ARGUS RESEARCH LABORATORIES, INC. PROTOCOL NUMBER: 418-011P SPONSOR'S STUDY NUMBER: T-6316.7

ABSTRACT

Fifty-six presumed pregnant Crl:CD®BR VAF/Plus® (Sprague-Dawley) rats were randomly assigned to seven dosage groups [eight per group (Groups I through VII)]. Suspensions of the N-EtFOSE were administered orally via gavage once daily to these naturally-bred female rats on days 6 through 17 of presumed gestation (DGs 6 to 17) at dosages of 0 (Vehicle), 1, 5, 10, 20, 25 and 35 mg/kg/day. The dosage volume was 5 mL/kg, adjusted daily on the basis of the individual body weights recorded immediately before administration of the test article.

Checks for viability were made twice daily. Clinical observations were recorded daily before dosage, approximately one hour after administration and then four to six hours later. These observations were also recorded once daily during the postdosage period. Body weights were recorded daily during the dosage and postdosage periods and feed consumption values were recorded on DGs 0, 4, 6, 8, 10, 12, 14, 16, 18 and 20.

All rats were sacrificed on DG 20 and examined for the number and distribution of corpora lutea, implantation sites and uterine contents. A gross necropsy of the thoracic, abdominal and pelvic viscera was performed. Fetuses were weighed and examined for gross external alterations and sex.

All rats survived until scheduled sacrifice. Clinical observations during gestation considered treatment-related were limited to single rats with chromorhinorrhea, chromodacryorrhea or emaciation at the 20 and 35 mg/kg/day dosages. Clinical observations of localized alopecia and emaciation were confirmed at necropsy. No additional necropsy observations occurred.

Body weight gains and absolute and relative feed consumption values for the entire dosage period (calculated as DGs 6 to 18), the entire interval after initiation of treatment (DGs 6 to 20) and the entire gestation period (DGs 0 to 20) were reduced in the 10 mg/kg/day and higher dosage groups, compared to the control group.

Reduced fetal body weights occurred at the 25 and 35 mg/kg/day dosages, relative to the control group (-8.5% and -13.8%, respectively). No other Caesarean-sectioning or litter parameters were affected by dosages of the test article as high as 35 mg/kg/day. One litter in the 35 mg/kg/day dosage group consisted of two early resorptions and 13 fetuses with cleft palate (two also had whole body edema). These fetal findings were considered genetic in origin and not test article-related.

Based on the results of this dosage-range finding study, dosages of 0, 1, 5, 10 and 20 mg/kg/day were recommended for the full developmental toxicity study of N-EtFOSE in rats.

I. Purpose:

The purpose of this study was to provide information for the selection of dosages to be used in the developmental toxicity (embryo-fetal toxicity and teratogenic potential) study of N-EtFOSE administered orally via gavage to CrI:CD®BR VAF/Plus® presumed pregnant female rats.

II. Methods¹:

The test article, N-EtFOSE [lot/batch number FM-3929 (30035, 30037, 30039)], was received on 20 May 1998, and stored at room temperature. The vehicle was 2% Tween® 80 in reverse osmosis membrane processed deionized water (R.O. deionized water). The Tween® 80 was received from J.T. Baker, Philipsburg, New Jersey, on 22 May 1998, and was stored at room temperature. The R.O. deionized water is available from a continuous source at the Testing Facility and is maintained at room temperature. The prepared vehicle was stored at room temperature. Test article formulations were prepared daily.

Fifty-six presumed pregnant Crl:CD®BR VAF/Plus® (Sprague-Dawley) rats were randomly assigned to seven dosage groups [eight per group (Groups I through VII)]. Suspensions of the test article were administered orally via gavage once daily to these naturally-bred female rats on days 6 through 17 of presumed gestation (DGs 6 to 17) at dosages of 0 (Vehicle), 1, 5, 10, 20, 25 and 35 mg/kg/day. The dosage volume was 5 mL/kg, adjusted daily on the basis of the individual body weights recorded immediately before administration of the test article.

Checks for viability were made twice daily. Clinical observations were recorded daily before dosage, approximately one hour after administration and then four to six hours later. These observations were also recorded once daily during the postdosage period. Body weights were recorded daily during the dosage and postdosage periods and feed consumption values were recorded on DGs 0, 4, 6, 8, 10, 12, 14, 16, 18 and 20.

a. Detailed descriptions of all procedures used in the conduct of this study are provided in the appropriate sections of this report and in the attached protocol and amendments. Deviations from the Protocol and Standard Operating Procedures of the Testing Facility are available in the raw data.

All rats were sacrificed on DG 20 and examined for the number and distribution of corpora lutea, implantation sites live and dead fetuses and early and late resorptions. A gross necropsy of the thoracic, abdominal and pelvic viscera was performed. Fetuses were weighed and examined for gross external alterations and sex.

III. Results:

A. <u>Mortality, Clinical and Necropsy Observations (Summary - Table 1;</u> Individual Data - Tables 9 and 10)

A.1. Mortality

All rats survived until scheduled sacrifice.

A.2. Clinical Observations

Clinical observations during gestation considered treatment-related were limited to single rats with chromorhinorrhea, chromodacryorrhea or emaciation at the 20 and 35 mg/kg/day dosages.

All other clinical observations were considered unrelated to the test article because: 1) the incidences were not dosage-dependent; and/or 2) they occurred in only one rat. These observations included localized alopecia on the limbs, underside, back and/or neck.

A.3. Necropsy Observations

Clinical observations of localized alopecia and emaciation were confirmed at necropsy. No additional necropsy observations occurred.

B. <u>Maternal Body Weights and Body Weight Changes (Figure 1; Summaries - Tables 2 and 3; Individual Data - Table 11)</u>

Maternal body weight gains in the 10 mg/kg/day and higher dosage groups were decreased, compared to the control group on gestation days (DGs) 6 to 8 and 8 to 10. Body weights were decreased for the 25 mg/kg/day and higher dosages on DGs 10 to 12, 12 to 14 and 14 to 16. Maternal body weight gains in the 1, 5, 10, 20, 25 and 35 mg/kg/day dosage groups were generally comparable to control values postdosage (DGs 18 to 20).

Reflecting these effects of the test article, weight gains for the entire dosage period (calculated as DGs 6 to 18), the entire interval after initiation of treatment (DGs 6 to 20) and the entire gestation period (DGs 0 to 20) were reduced in the 10 mg/kg/day and higher dosage groups, compared to the control group.

Maternal body weights and body weight gains for the 1 and 5 mg/kg/day dosage groups were generally comparable to control values over each interval tabulated.

C. <u>Maternal Absolute (g/day) and Relative (g/kg/day) Feed Consumption</u> Values (Summaries - Tables 4 and 5; Individual Data - Table 12)

Absolute and relative feed consumption values for the 10 mg/kg/day and higher dosage groups were decreased, compared to the control group at all tabulated intervals during the dosage period (DGs 6 to 8, 8 to 10, 10 to 12, 12 to 14, 14 to 16 and 16 to 18). Maternal feed consumption values for the 1, 5, 10, 20, 25 and 35 mg/kg/day dosage groups were generally comparable to control values postdosage (DGs 18 to 20).

Reflecting these effects of the test article, absolute and relative feed consumption values for the entire dosage period (calculated as DGs 6 to 18), the entire interval after initiation of treatment (DGs 6 to 20) and the entire gestation period (DGs 0 to 20) were reduced in the 10 mg/kg/day and higher dosage groups, compared to the control group.

Absolute and relative feed consumption values for the 1 and 5 mg/kg/day dosage groups were generally comparable to control values over each interval tabulated.

D. <u>Caesarean-Sectioning and Litter Observations (Summaries - Tables 6 through 8; Individual Data - Tables 13 through 15)</u>

Caesarean-sectioning observations were based on 8 (100%), 7 (87.5%), 8 (100%), 8 (100%), 8 (100%), 8 (100%) and 8 (100%) pregnant rats with live litters in the seven respective dosage groups.

Reduced fetal body weights occurred at the 25 and 35 mg/kg/day dosages, relative to the control group (-8.5% and -13.8%, respectively). This observation was considered an effect of the test article because it was dosage-dependent

and occurred at the dosages in which there was maternal toxicity observed (decreased body weight and feed consumption values).

No other Caesarean-sectioning or litter parameters were affected by dosages of the test article as high as 35 mg/kg/day. The litter averages for corpora lutea, implantations, litter size, live fetuses, resorptions (early and late), dams with any resorptions and percent live male fetuses were comparable among the 0 Vehicle), 1, 5, 10, 20, 25 and 35 mg/kg/day dosage groups. No dams had all resorbed conceptuses, there were no dead fetuses and all placentae appeared normal.

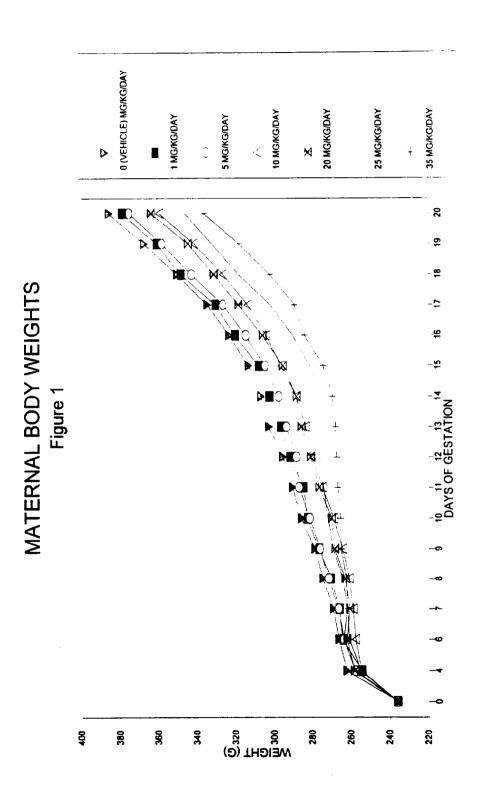
Totals of 109, 93, 116, 110, 118, 116 and 114 live fetuses were evaluated for external gross alterations in the seven respective dosage groups. No fetal gross external alterations were observed at dosages up to 25 mg/kg/day. One litter (10650) in the 35 mg/kg/day dosage group consisted of two early resorptions and 13 fetuses with cleft palate (two also had whole body edema). These fetal findings were considered genetic in origin and not test article-related.

IV. Conclusion:

Based on the results of this study, dosages of 0 (Vehicle), 1, 5, 10 and 20 mg/kg/day of N-EtFOSE are recommended for the developmental toxicity study in rats (418-011). The 1 mg/kg/day dosage is expected to be a no-observable-effect-level (NOEL) for both maternal and embryo-fetal toxicity, and the 20 mg/kg/day dosage is expected to produce maternal toxicity (decreased maternal body weight and feed consumption values) and minimal developmental toxicity (decreased fetal body weights and possibly delayed ossification).

10080 96

Alan M. Hoberman, Ph.D., DABT Date


Director of Research

Raymond G. York, (Ph.D., DABT Date

Associate Director of Research and

Study Director

418-011P:PAGE 10

ORAL (GAVAGE) DOSAGE RANGE DEVELOPMENTAL TOXICITY STUDY OF N.ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T 6316.7) TABLE 1 (PAGE 1): CLINICAL AND NECROPSY OBSERVATIONS - SUMMARY PROTOCOL 418 011P:

DOSAGE GROUP DOSAGE (MG/KG/DAY) a	ē	I II 0 (VEHICLE) 1	i G		111		10	
MAXIMUM POSSIBLE IN	NCIDENCE	120/ 8 120/ 8	120		120/ 8		120/	
HORTALITY		0			0		0	
100011780 31008013.		0 /0	0	0	15/	7	6	0
Month and American		0 /0	0	0	8	-	6	0
	E CLUB CONT.	0 /0	0	0	1	-	6	0
		0 /0	0	0	6	0	6	0
	NECK	0 /0	/0	0	1/	-	6	0
EMACIATION		0 /0	/0	0	/0	0	/0	0
CHROMORHINORRHEA		0 /0	/ 0	0 /	/0	0	6	0
CHROMODACRYORRHEA		0 /0	٥	0	/0	0	0	0

MAXIMUM POSSIBLE INCIDENCE = (DAYS X RAIS)/NUMBER OF RAIS EXAMINED PER GROUP ON DAYS 6 THROUGH 20 OF PRESUMED GESTATION.

N/N = TOTAL NUMBER OF OBSERVATIONS/NUMBER OF RAIS WITH OBSERVATION.

a. Dosage occurred on days 6 through 17 of presumed gestation.

PERSISTENT ADVERSE CLINICAL OBSERVATIONS WERE CONFIRMED AT NECROPSY, NO ADDITIONAL GROSS LESIONS WERE IDENTIFIED

PROTOCOL 418-011P: ORAL (GAVAGE) DOSAGE-RANGE DEVELOPMENTAL TOXICITY STUDY OF N. ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T.6316.7) TABLE 1 (PAGE 2); CLINICAL AND NECROPSY OBSERVATIONS - SUMMARY

DOCACE CROITE	1	>			117	II
DOSAGE (MG/KG/DAY) a		20	25	ю	35	
NAXIMUM POSSIBLE INC.	NCIDENCE	120/ 8	120/	8	120/	&
MORTALITY		0		0	0	
LOCALIZED ALOPECIA:	TOTAL	0 /0	7	1	20/	2
	TIEBS	0 /0	0	0	12/	-
	INDERSIDE	0 /0	7	1	/B	1
	BACK	0 /0	9	1 /9	8	
	NECK	, 0	•	0 \	/0	0
EMACIATION		0 /0	0	0 /0	*	
CHROMORHINORRHEA		0 /0	0	0 /	1/	
CHROMODACRYORRHEA		3/ 1	0	0 /0	/0	0

MAXIMUM POSSIBLE INCIDENCE = (DAYS x RATS)/NUMBER OF RATS EXAMINED PER GROUP ON DAYS 6 THROUGH 20 OF PRESUMED GESTATION.
N/N = TOTAL NUMBER OF OBSERVATIONS/NUMBER OF RATS WITH OBSERVATION.
B. Dosage occurred on days 6 through 17 of presumed gestation.

PERSISTENT ADVERSE CLINICAL OBSERVATIONS WERE CONFIRMED AT NECROPSY, NO ADDITIONAL GROSS LESIONS WERE IDENTIFIED

418-011P:PAGE 13

10 171355 PROTOCOL 418-011P: ORAL (GAVAGE) DOSAGE-RANGE DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7) 359.1 + 27.6 303.8 ± 20.7 326.2 ± 22.1 341.2 ± 25.5 288.2 ± 19.6 296.1 ± 21.8 268.9 ± 17.2 274.8 ± 18.7 280.4 ± 18.0 283.4 ± 20.4 236.0 ± 8.1 255.0 ± 11.8 257.8 ± 12.9 259.0 ± 14.3 260.9 ± 18.6 264.4 ± 16.5 313.4 ± 22. 375.0 ± 9.9 9.0 263.9 ± 10.2 286.9 ± 11.0 236.4 ± 8.4 266.5 ± 293.4 + 288.4 ± 258.0 ± 304.4 ± 314.5 ± 271.8 ± 297.5 ± 178.7 ± 32.3 307.8 ± 17.8 348.0 + 23.6 264.4 ± 16.3 266.3 ± 14.9 296.6 ± 16.5 302.4 ± 16.5 320.0 ± 21.6 236.4 ± 12.6 254.7 ± 10.3 270.4 ± 16.6 276.6 ± 16.2 284.4 ± 17.9 291.7 ± 18.6 330.1 ± 22. 360.6 ± 26. 313.1 ± 21.9 323.0 ± 24.0 334.4 ± 24.0 350.1 ± 29.0 367.2 ± 29.0 385.6 ± 31.8 302.6 ± 20.5 306.8 ± 21.9 274.6 ± 17.0 285.8 ± 19.0 295.4 ± 18.2 235.9 ± 10.3 262.4 ± 15.2 266.4 ± 13.9 269.4 ± 16.6 278.9 ± 17.2 290.4 ± 19.4 (VEHICLE) DAY = DAY OF GESTATION
a. Dosage occurred on days 6 through 17 of gestation. TABLE 2 (PAGE 1): MATERNAL BODY WEIGHTS - SUMMARY MEAN+S.D. MEAN+S.D. MEAN S. D. MEAN+S.D. MEAN+S.D. MEAN S.D. MEAN+S.D. MEAN S.D. MEAN+S.D. MEAN+S.D. MEAN+S.D. HEAN S.D. MEAN+S.D. HEAN +S.D. WEAN S. D. MEAN+S.D. MEAN+S.D. DOSAGE GROUP
DOSAGE (MG/KG/DAY) a 9 BODY WEIGHT 17 18 19 2 2 = 7 13 Ξ 16 RATS TESTED DAY PREGNANT DAY

10 171356

DOSAGE GROUP DOSAGE (MG/K	DOSAGE GROUP DOSAGE (MG/KG/DAY)a		V 20	VI 25	VII 35
RATS TESTED	178D	Z	80		! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
PREGNANT	·	z	œ	œ	۵
BODY WEIGHT (G)	GHT (G)				
DAY	•	MEAN+S.D.	236.2 ± 8.0	236.0 ± 8.5	236.5 ± 9.2
DAY	•	MEAN+S.D.	258.5 ± 8.2	257.9 ± 12.6	255.2 ± 11.3
DAY	v	MEAN+S.D.	262.1 ± 8.2	264.0 ± 14.2	261.1 ± 10.5
DAY	۲	MEAN+S.D.	260.8 ± 8.1	262.0 ± 15.8	261.9 ± 9.4
DAY	8 0	MEAN+S.D.	263.1 ± 9.0	264.4 ± 16.5	262.6 ± 7.2
DAY	ø	MEAN+S.D.	268.5 ± 12.5	269.2 ± 16.3	265.0 ± 9.3
DAY	10	MEAN+S.D.	270.1 ± 12.6	272.1 ± 15.2	265.6 ± 11.4
DAY	:	MEAN+S.D.	276.5 ± 13.7	274.1 ± 15.0	266.9 ± 10.9
DAY	12	MEAN+S.D.	280.9 ± 12.5	276.0 ± 17.8	267.2 ± 12.2
DAY	13	MEAN+S.D.	285.6 ± 15.3	277.0 ± 16.7	267.8 ± 16.9
DAY	7.	MEAN+S.D.	288.1 ± 12.9	276.8 ± 18.7	269.4 ± 20.7
DAY	15	MEAN+S.D.	295.1 ± 17.1	281.0 ± 19.2	274.0 ± 25.8
DAY	16	MEAN+S.D.	305.6 ± 18.2	289.9 ± 21.6	283.8 ± 30.1
DAY	17	MEAN+S.D.	318.2 ± 18.6	301.6 ± 23.5	289.0 ± 34.6
DAY	18	MEAN+S.D.	330.9 ± 21.3	318.0 ± 22.3	302.0 ± 39.7
DAY	19	MEAN+S.D.	344.2 ± 22.5	332.0 ± 22.4	318.1 ± 41.8
2	;				

DAY = DAY OF GESTATION
a. Dosage occurred on days 6 through 17 of gestation.

DOSAGE GROUP DOSAGE (MG/KG/DAY) &		I 0 (VEHICLE)	11	111 S	10
RATS TESTED	2		1	6	6 0
PREGNANT	z	ω.	r	65	6 0
BODY WEIGHT CHANGE (G)	=				
DAYS 0 - 6	MEAN+S.D.	+30.5 ± 10.3	+28.0 ± 7.2	+27.5 ± 5.8	+21.8 ± 6.4
DAYS 6 - 8	MEAN+S.D.	+8.2 ± 4.3	+6.0 ± 3.4	+7.9 ± 2.3	+3.1 ± 11.4
DAYS 8 - 10	MEAN+S.D.	+11.1 ± 2.9	+12.3 ± 1.5	+9.6 ± 3.1	+8.0 + 5.0
DAYS 10 - 12	MEAN+S.D.	49.6 ± 4.0	+9.0 ± 5.4	+7.0 ± 2.9	+11.5 ± 6.7
DAYS 12 - 14	MEAN+S.D.	+11.4 ± 5.0	+10.7 ± 5.8	+9.1 ± 3.1	+7.9 ± 3.2
DAYS 14 - 16	MEAN+S.D.	+16.2 ± 6.7	+17.6 ± 8.0	+17.0 ± 2.2	+15.5 ± 3.2
DAYS 16 - 18	MEAN+S.D.	+27.1 ± 7.4	+28.0 ± 4.7	+28.0 ± 4.5	+22.5 ± 4.0
DAYS 6 - 18	MEAN+S.D.	+83.8 ± 20.5	+83.6 ± 10.4	+78.6 + 8.8	+68.5 ± 13.1
DAYS 18 - 20	MEAN+S.D.	+35.5 ± 7.0	+30.7 ± 11.4	+32.5 ± 5.1	+32.9 ± 6.8
DAYS 6 - 20	MEAN+S.D.	+119.2 ± 24.4	+114.3 ± 21.2	+111.1 ± 11.1	+101.4 ± 17.7
00 - 0 3840	MEAN+S.D.	+149,8 + 33.1	+142.3 + 26.4	+138.6 + 12.2	+123.1 ± 20.5

DAYS * DAYS OF GESTATION

a. Dosage occurred on days 6 through 17 of gestation.

TABLE 3 (PAGE 2): M				
DOSAGE GROUP DOSAGE (MQ/KG/DAY) a		v 20	VI 25	VII 35
RATS TESTED	2	: : : : : : : : : : : : : : : : : : :	1	8
PREGNANT	Z	۵	ω	6 0
BODY WEIGHT CHANGE (G)				
DAYS 0 · 6	MEAN+S.D.	+25.9 ± 7.6	+28.0 ± 9.4	+24.6 ± 6.6
DAYS 6 . 8	MEAN+S.D.	+1.0 + 4.8	+0.4 ± 4.5	+1.5 ± 6.7
DAYS 8 . 10	MEAN+S.D.	47.0 ± 5.6	+7.8 ± 4.5	+3.0 ± 7.2
DAYS 10 - 12	MEAN+S.D.	+10.8 + 3.6	+3.9 ± 7.6	+1.6 ± 10.5
DAYS 12 - 14	MEAN+S.D.	+7.2 ± 2.4	+0.8 ± 6.2	+2.1 ± 13.4
DAYS 14 - 16	MEAN+S.D.	+17.5 ± 7.9	+13.1 ± 11.3	+14.4 ± 11.1
DAYS 16 - 18	MEAN+S.D.	+25.2 ± 4.8	+28.1 ± 9.3	+18.2 ± 11.7
DAYS 6 - 18	MEAN+S.D.	+68.8 ± 15.4	+54.0 ± 13.9	+40.9 ± 42.3
DAYS 18 · 20	MEAN+S.D.	+32.6 ± 3.4	+27.8 ± 7.6	+34.1 ± 4.5
DAYS 6 - 20	MEAN+S.D.	+101.4 ± 16.1	+81.8 ± 11.9	+75.0 ± 44.6
00 0 0000	MEAN+S D	+127.2 + 21.0	+109.8 + 14.0	+99.6 + 44.4

DAYS - DAYS OF GESTATION a. Dosage occurred on days 6 through 17 of gestation.

PROTOCOL 418-011P:	ORAL (GAVAGE) DOSAC	SE-RANGE DEVELOPMENTAL T	OXICITY STUDY OF N-EtFO	ORAL (GAVAGE) DOSAGE RANGE DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER:	TUDY NUMBER: T-6316.7)
TABLE 4 (PAGE 1):	MATERNAL ABSOLUTE	MATERNAL ABSOLUTE FEED CONSUMPTION VALUES (G/DAY)	; (G/DAY) SUMMARY		
DOSAGE GROUP DOSAGE (MG/KG/DAY) a		1 0 (VEHICLE)	11	III S	IV 10
RATS TESTED	Z	60			
PREGNANT	z	60	,	6	6 0
FRED CONSUMPTION (G/	/DAY)				
DAYS 0 - 6	MEAN+S.D.	23.6 ± 3.6	21.9 ± 2.9	23.5 ± 1.0	21.3 ± 2.4
DAYS 6 - 8	MEAN+S.D.	25.9 ± 5.4	23.5 ± 2.4	22.0 ± 4.6	19.1 ± 5.6
DAYS 8 - 10	MEAN+S.D.	25.4 ± 3.2	24.1 ± 2.5	24.2 ± 1.1	20.8 ± 2.7
DAYS 10 - 12	MEAN+S D	26.2 ± 3.7	23.1 ± 2.0	24.4 ± 2.2	22.8 ± 2.0
DAYS 12 - 14	MEAN+S.D.	28.1 + 8.2	27.9 ± 5.2	23.5 ± 2.5	22.7 ± 3.3
DAYS 14 - 16	MEAN+S.D.	24.2 ± 2.3	25.1 ± 3.0	23.4 ± 2.5	21.1 ± 2.9
DAYS 16 - 18	MEAN+S.D.	25.9 ± 2.6	25.5 ± 4.4	25.4 ± 1.7	22.2 ± 2.6
DAYS 6 - 18	MEAN+S.D.	25.9 ± 3.4	24.8 ± 1.6	23.8 ± 1.4	21.4 ± 2.6
DAYS 18 - 20	MEAN+S.D.	26.2 ± 3.0	26.2 ± 2.0	24.8 ± 2.2	24.0 ± 3.1
DAYS 6 - 20	MEAN+S.D.	25.9 ± 3.2	25.0 ± 1.6	24.0 ± 1.3	21.8 ± 2.6
DAYS 0 - 20	MEAN+S.D.	25.2 ± 3.1	24.1 ± 1.8	23.8 ± 0.9	21.7 ± 2.3
DAYS - DAYS OF GESTATION	ATION				

DAYS = DAYS OF GESTATION
[] = NUMBER OF VALUES AVERAGED
a. Dosage occurred on days 6 through 17 of gestation.
b. Excludes values that were associated with spillage.

T 6316.	
(SPONSOR'S STUDY NUMBER: T 6316.	
(SPONSOR'S	
TOXICITY STUDY OF N. Etfose IN RATS	
DOSAGE-RANGE DEVELOPMENTAL	
(GAVAGE)	
ORAL	
PROTOCOL 418-011P: ORAL (GAVAGE) DOSAGE-RANGE E	

DOSAGE GROUP DOSAGE (MG/KG/DAY) a		v 20	VI 25	VII 35
RATS TESTED	. X			80
PREGNANT	z	60	æ	80
PEED CONSUMPTION (G/DAY)	(7.)			
DAYS 0 - 6	MEAN+S.D.	24.8 ± 3.3	22.0 ± 2.7	22.6 ± 1.5
DAYS 6 - 8	MEAN+S.D.	21.2 ± 3.3	19.8 ± 3.7	21.1 ± 2.7
DAYS 8 - 10	MEAN+S.D.	22.2 ± 4.4	20.9 ± 2.4	20.1 ± 3.5
DAYS 10 - 12	MEAN+S.D.	23.1 ± 3.0	20.1 ± 2.4	18.9 ± 5.3
DAYS 12 - 14	MEAN+S.D.	23.1 ± 3.4	16.6 ± 3.3	20.1 ± 8.7
DAYS 14 - 16	MEAN+S.D.	22.6 ± 5.4	17.8 ± 5.8	18.1 ± 7.2
DAYS 16 - 18	MEAN+S.D.	23.4 ± 3.7	21.0 ± 3.3	18.6 ± 5.6
DAYS 6 - 18	MEAN+S.D.	22.6 ± 3.3	19.4 ± 2.6	19.5 ± 4.2
DAYS 18 · 20	MEAN±S.D.	23.8 ± 2.1	21.5 ± 1.6	24.2 ± 4.3
DAYS 6 - 20	MEAN+S.D.	22.8 ± 3.1	19.7 ± 2.3	20.2 ± 4.1
DAVE 0 - 20	MEAN+S.D.	23.4 + 2.8	20.4 + 2.1	20.9 + 3.0

Dosage occurred on days 6 through 17 of gestation.

74.5 ± 4.7 75.5 ± 3.9

79.1 ± 5.1 80.4 ± 3.6

5.4

82.1 ± 80.8

80 7.6

MEAN S.D. MEAN S.D.

DAYS 6 - 20 DAYS 0 - 20

83.2 ± 83.8

418-011P:PAGE 19

PROTOCOL 418-011P: OF	RAL (GAVAGE) DOSAC MATERNAL RELATIVE	RAL (GAVAGE) DOSAGE-RANGE DEVELOPMENTAL TOXICITY STUDY OF N Et MATERNAL RELATIVE FEED CONSUMPTION VALUES (G/KG/DAY) - SUMMARY	TOXICITY STUDY OF N ELF S (G/KG/DAY) - SUMMARY	ORAL (GAVAGE) DOSAGE-RANGE DEVELOPMENTAL TOXICITY STUDY OF N ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7) MATERNAL RELATIVE FEED CONSUMPTION VALUES (G/KG/DAY) - SUMMARY	STUDY NUMBER: T-6316.7)
DOSAGE GROUP DOSAGE (MG/KG/DAY) a		I O (VEHICLE)	11	1111	IV 10
RATS TESTED			1	6	60
PREGNANT	z	60	7	60	60
PERD CONSUMPTION (G/K	KG/DAY)				
DAYS 0 · 6	MEAN+S.D.	92.2 ± 11.2	86.7 ★ 9.8	93.1 ± 2.7	85.1 ± 7.1
DAYS 6 - 8	MEAN+S.D.	95.5 ± 16.5	88.1 ± 8.3	82.5 ± 17.8	72.9 ± 19.5
DAYS 8 - 10	MEAN+S.D.	90.7 ± 7.5	87.2 ± 7.6	87.6 ± 4.5	78.4 ± 6.2
DAYS 10 - 12	MEAN+S.D.	8.8 + 0.06	80.5 ± 4.2	85.6 ± 7.8	82.8 ± 3.6
DAYS 12 - 14	MEAN+S.D.	93.4 + 26.7	95.1 ± 23.5	80.3 ± 9.2	79.7 ± 8.5
DAYS 14 - 16	MEAN+S.D.	77.1 ± 7.2	80.8 ± 7.6	76.5 ± 8.1	71.3 ± 7.6
DAYS 16 - 18	MEAN+S.D.	77.3 ± 5.8	76.3 ± 9.6	77.7 ± 5.6	70.4 ± 4.1
DAYS 6 - 18	MEAN+S.D.	86.4 ± 9.6	84.2 ± 5.0	81.4 ± 5.7	75.5 ± 5.3
DAYS 18 - 20	MEAN+S.D.	71.4 ± 7.8	72.4 ± 3.3	69.2 ± 5.5	6.5 ± 6.69

DAYS = DAYS OF GESTATION
[] = NUMBER OF VALUES A
a. Dosage occurred on da
b. Excludes values that

NUMBER OF VALUES AVERAGED
 Dosage occurred on days 6 through 17 of gestation.
 Excludes values that were associated with spillage.

TABLE S (PAGE 2)		MAIBERRAIL RELATIVE FEED CONSOMPTION VALUES (G/KG/DAI) - SUMMAN	S (G/NG/DAI) · SUMMAKI	
DOSAGE GROUP DOSAGE (MG/KG/DAY) a		V 20	VI 25	VII 35
RATS TESTED	Z	80		1
PREGNANT	z	65	60	80
PEED CONSUMPTION (G/	(G/KG/DAY)			
DAYS 0 - 6	MEAN+S.D.	98.1 ± 13.5	9.6.8 + 8.0	90.2 ± 6.1
DAYS 6 - 8	MEAN+S.D.	80.8 ± 10.5	74.5 ± 10.1	80.5 ± 10.4
DAYS 8 - 10	MEAN_S.D.	82.6 ± 13.8	77.7 ± 5.4	75.9 ± 11.8
DAYS 10 - 12	MEAN+S.D.	83.7 ± 9.1	73.1 ± 7.3	70.8 ± 19.3
DAYS 12 - 14	MEAN+S.D.	80.7 ± 9.8	59.8 ± 9.4	74.2 ± 32.8
DAYS 14 - 16	MEAN+S.D.	75.8 ± 16.0	62.3 ± 19.0	63.9 ± 25.3
DAYS 16 - 18	MEAN+S.D.	73.2 ± 9.1	69.2 ± 8.8	62.6 ± 15.4
DAYS 6 - 18	MEAN+S.D.	79.0 ± 8.9	69.2 ± 5.9	71.2 ± 13.4
DAYS 18 - 20	MEAN+S.D.	68.8 ± 4.1	64.9 ± 4.6	76.1 ± 9.3
DAYS 6 - 20	MEAN+S.D.	77.1 ± 7.6	68.4 + 4.6	71.6 ± 11.9
DAYS 0 - 20	MEAN+S.D.	80.8 + 7.1	72.0 + 3.6	75.7 + 7.9

DAYS - DAYS OF GESTATION a. Dosage occurred on days 6 through 17 of gestation.

DOSAGE GROUP DOSAGE (MG/KG/DAY) a		O (VEHICLE)	M R	111	IV 10
RATS TESTED	×	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	80	80
PREGNANT	N (\$)	8 (100.0)	7 (87.5)	8 (100.0)	8 (100.0)
RATS PRECNANT AND CAESAREAN-SECTIONED ON DAY 20 OF GESTATION	z	Φ.	٠	60	ω.
CORPORA LUTEA	MEAN+S.D.	16.0 ± 2.6	15.7 ± 2.6	16.0 ± 1.8	16.0 ± 2.7
IMPLANTATIONS	MEAN+S.D.	14.0 ± 4.5	13.6 ± 3.2	15.2 ± 1.8	14.4 ± 1.7
LITTER SIZES	MEAN+S.D.	13.6 ± 4.6	13.3 ± 3.0	14.5 ± 1.7	13.8 ± 1.8
LIVE PETUSES	N MEAN <u>+</u> S.D.	109 13.6 ± 4.6	93 3 4 3.0	116 14.5 ± 1.7	13.8 ± 1.8
DEAD PETUSES	z	0	0	0	0
RESORPTIONS	MEAN+S.D.	0.4 ± 0.7	0.3 ± 0.5	0.8 ± 1.2	0.6 ± 0.7
EARLY RESORPTIONS	N MEAN+S.D.	3 0.4 ± 0.7	0.3 ± 0.5	0.8 + 1.2	0.5 ± 0.8
LATE RESORPTIONS	N MEAN+S.D.	0.0 + 0.0	0.0 + 0.0	0.0 + 0.0	0.1 ± 0.4
DANS WITH ANY RESORPTIONS	S N(8)	2(25.0)	2(28.6)	3 (37.5)	4(50.0)
DAMS WITH ALL CONCEPTUSES RESORBED	z g	0	o	٥	0
DAMS WITH VIABLE FETUSES	N(3)	8(100.0)	7 (100.0)	8(100.0)	8(100.0)
	17/17	00000	7 (1 00 0)	8(100.0)	8(100.0)

DOSAGE GROUP DOSAGE (MG/KG/DAY) a	1	v v 20	VI 25	VII 35
RATS TESTED	Z		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S
PREGNANT	N (\$)	8 (100.0)	8 (100.0)	8(100.0)
RATS PREGNANT AND CAESAREAN-SECTIONED ON DAY 20 OF GESTATION	z	Φ	6 0	œ
CORPORA LUTEA	MEAN+S.D.	15.5 ± 2.1	15.9 ± 2.8	16.2 ± 3.4
IMPLANTATIONS	MEAN+S.D.	15.1 ± 1.7	14.9 ± 2.8	15.1 ± 2.2
LITTER SIZES	MEAN+S.D.	14.8 ± 1.8	14.5 ± 2.6	14.2 ± 2.4
LIVE PETUSES	N MEAN±S.D.	118	116 14.5 ± 2.6	114 14.2 ± 2.4
DEAD PETUSES	z	0	c	0
RESORPTIONS	MEAN+S.D.	0.4 + 0.5	0.4 ± 0.7	0.9 ± 1.1
EARLY RESORPTIONS	N MEAN+S.D.	3 0.4 + 0.5	3 0.4 ± 0.7	0.9 ± 1.1
LATE RESORPTIONS	N MEAN±S.D.	0.0	0.0 ± 0.0	0.0 ± 0.0
DAMS WITH ANY RESORPTIONS	NS N(1)	3(37.5)	2 (25.0)	4 (50.0)
DAMS WITH ALL CONCEPTUSES RESORBED	N Sas	0	0	0
DAMS WITH VIABLE FETUSES	(4) N S	8(100.0)	8 (100.0)	B(100.0)
DISCONTRE ADDEARED NORMAL	(AL N(8)	8(100.0)	8 (100.0)	8(100.0)

DOSAGE GROUP DOSAGE (MG/KG/DAY) a		O (VEHICLE)	כרב)	II		III		10	
LITTERS WITH ONE OR MORE LIVE PETUSES	Z			7		œ		6 2	
IMPLANTATIONS	MEAN+S.D.	14.0 ±	4 .5	13.6 ±	3.2	15.2 ±	1.8	14.4 ±	1.7
LIVE PETUSES	N MEAN+S.D.	109	4.6	93 13.3 ±	3.0	116	1.7	13.8 ±	1.8
LIVE MALE PRTUSES	z	49		42		65		80	
* LIVE MALE PETUSES/LITTER	MEAN+S.D.	43.1 ± 14.3	14.3	42.8 ±	22.2	50.5	13.0	46.7 +	13.8
LIVE PETAL BODY WEIGHTS (GRAMS)/LITTER	MEAN+S.D.	3.40 +	0.47	3.43 +	0.22	3.28 ±	0.17	3.34 ± 0.16	0.16
NALE FETUSES	MEAN S.D.	3.53 ± 0.47	0.47	3.56 ±	0.23	3.37 ±	0.21	3.42 ±	0.19
PEMALE PETUSES	MEAN+S.D.	3.30 ±	0.44	3.36 ±	0.21	3.18 ±	0.15	3.25 ± 0.16	0.16
* RESORBED CONCEPTUSES/LITTER	MEAN+S.D.	2.7 + 5.6	5.6	1.8 +	3.0	4. 6. +1	6.9	+1	5.0

: LITTER OBSERVATIONS (CAESAREAN-DELIVERED FETUSES) . SUMMARY
LITTE
2):
PAGE
7
TABLE

DOSAGE GROUP DOSAGE (MG/KG/DAY) a		20		VI 25		VII 35	1
LITTERS MITH ONE OR MORE LIVE PETUSES	. Z	6	1	6 0		6	
IMPLANTATIONS	MEAN S.D.	15.1 ±	1.7	14.9 ±	8.2	15.1 ±	2.2
LIVE PETUSBS	N MEAN+S.D.	118	1.8	116 14.5 ±	2.6	114	2.4
LIVE MALE PETUSES	z	99		59		88	
* LIVE MALE FRTUSES/LITTER	MEAN+S.D.	55.3	9.1	49.2 ± 13.8	13.8	50.4 ± 15.3	15.3
LIVE PETAL BODY WEIGHTS (GRAMS)/LITTER	MEAN+S.D.	3.24 ± 0.15	0.15	3.11 ± 0.18	0.18	2.93 ±	9.46
HALE PETUSES	MEAN+S.D.	3,34 ±	0.17	3.21 ±	0.21	3.03 ± 0.45	0.45
PEMALE FETUSES	MEAN+S.D.	3.13 ± 0.14	0.14	3.03 ±	0.20	2.83 ± 0.44	44.0
* RESORBED CONCEPTUSES/LITTER	MEAN+S.D.	2.6 + 3.6	3.6	2.4 +	4.	+1 +1	7.5

Dosage occurred on days 6 through 17 of gestation.

-	
NOMBEK:	
S STUDY	
(SPONSOR	
RATS	
Z	
N-Et FOSE	
OF.	
Y STUDY OF N	
ENTAL TOXICITY	
DEVELOPMENTAL TOXICITY STUDY OF N.ELFOSE IN RATS (S	
DOSAGE - RANGE	
(GAVAGE)	
ORAL (
PROTOCOL 418-011P: ORAL (GAVAGE) DOSAGE-RANGE DEVELOPMENTA	

DOSAGE GROUP DOSAGE (MG/KG/DAY) a		I 0 (VEHICLE)	11	111 5	10
LITTERS EVALUATED PETUSES EVALUATED LIVE	Z Z Z	8 109 109	93	116 116	8 110 110
BODY: EDEMA LITTER INCIDENCE PETAL INCIDENCE	N (#)	(0.0)0	0.0 0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0(0.0)0
PALATE: CLEFT LITTER INCIDENCE PETAL INCIDENCE	X X	0.0000	0 (0 0 0)	0(0.0)0	0(0.0)0

160.1	
NUMBER	
STODIS	
PROTOCOL 418-011P: ORAL (GAVAGE) DOSAGE RANGE DEVELOPMENTAL TOXICITY STUDY OF N. ELFOSE IN RATS (SPUNSUK'S STUDY NUMBER: 1	
RATS	
Z	
ELFOSE	
F	
STUDY	
FOXICITY	۲.
MENTAL 1	SUMMAR
10013	SNC
DEVE	MIIC
ANGE	ALTER
GE-R	NAL
DOSA	XTER
/AGE)	30SS F
(GA	5
ORAL	9
19:	. 10
18-01	2040
0L 4	•
PROTOC	TABLE & (DAGE 2). FETAL GROSS EXTERNAL ALTERATIONS

DOSAGE GROUP DOSAGE (MG/KG/DAY) a		2 0	VI 25	35	
LITTERS EVALUATED FETUSES EVALUATED LIVE	222	118 118	116 116 116	8 9 11 9 9 11 9 11	
BODY: EDEMA LITTER INCIDENCE PETAL INCIDENCE	N (8)	0(0.0)0	0 (0.0)	1(12.5) 2(1.8)b,c	
PALATE: CLEFT LITTER INCIDENCE PETAL INCIDENCE	(#) N	(0.0)0	0.0 0.0)	1(12.5) 13(11.4)b,c	
a. Dosage occurred on day b. Petus 10650-1 had othe	ys 6 through 17 er gross externer der gross externer	on days 6 through 17 of gestation. ad other gross external alterations. had other gross external alterations.			

PROTOCOL 418-011P: ORAL (GAVAGE) DOSAGE.RANGE DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

OC INCINETY IN THE BOARD OF STREET	PETABLAND OBCODINATIONS TANDIUTHINE DATA
	SSERVITORS TRUTTLES DATA
RAT #	DESCRIPTION
DOSAGE GROUP I	0 (VEHICLE) MG/KG/DAY
10601	NO ADVERSE PINDINGS
10602	NO ADVERSE FINDINGS
10603	NO ADVERSE FINDINGS
10604	NO ADVERSE FINDINGS
10605	NO ADVERSE FINDINGS
10606	NO ADVERSE FINDINGS
10607	NO ADVERSE FINDINGS
10608	NO ADVERSE PINDINGS
DOSAGE GROUP II	1 MG/KG/DAY
10609	NO ADVERSE PINDINGS
10610	NO ADVERSE PINDINGS
10611	NO ADVERSE FINDINGS
10612	NO ADVERSE FINDINGS
10613	NO ADVERSE PINDINGS
10614	
10615	ADVERSE
10616	NO ADVERSE FINDINGS
NOTIFICIAL CONTINUES CONTI	

10 171370

PROTOCOL 418-011P: ORAL (GAVAGE) DOSAGE-RANGE DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RAIS (SPONSOR'S STUDY NUMBER: T-6316.7)

7 20)

DG . DAY OF PRESUMED GESTATION a. Observation confirmed at necropsy.

ORAL (GAVAGE) DOSAGE-RANGE DEVELOPMENTAL TOXICITY STUDY OF N.Et FOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

RAT #	DESCRIPTION
DOSAGE GROUP V	20 MG/KG/DAY
10633 10634 10635 10637 10637 10639 10639	NO ADVERSE PINDINGS NO ADVERSE FINDINGS NO ADVERSE FINDINGS NO ADVERSE PINDINGS CHROWODACRYORRHEA NO ADVERSE PINDINGS NO ADVERSE PINDINGS NO ADVERSE PINDINGS NO ADVERSE PINDINGS
DOSAGE GROUP VI	25 MG/KG/DAY
10641 10642 10642 DG(14-20) 10644 DG(15-20) 10645 10646 10646	NO ADVERSE FINDINGS NO ADVERSE FINDINGS LOCALIZED ALOPECIA: UNDERSIDE a LOCALIZED ALOPECIA: BACK a NO ADVERSE PINDINGS NO ADVERSE FINDINGS NO ADVERSE FINDINGS NO ADVERSE FINDINGS NO ADVERSE FINDINGS NO ADVERSE PINDINGS

DAY OF PRESUMED GESTATION
 Observation confirmed at necropsy.

TOCOL 418-011P: ORAL (GAVAGE) DOSAGE-RANGE DEVELOPMENTAL TOXICITE STORES	tanging DATA
PROTOCOL 418-011P: ORAL (GAVAGE) DC	

418-011P:		AVAGE) DOSAGE-RANGE DEVELOP	ORAL (GAVAGE) DOSAGE-RANGE DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)
TABLE 9 (PAGE 4):		CLINICAL OBSERVATIONS . INDIVIDUAL DATA	L DATA
RAT #		DESCRIPTION	
DOSAGE GROUP VII	OUP VII	35 MG/KG/DAY	
10649		NO ADVERSE FINDINGS LOCALIZED ALOPECIA: LOCALIZED ALOPECIA:	UNDERSIDE a BACK a
	DG(17- 20)	NO ADVERSE PINDINGS NO ADVERSE PINDINGS	
10652	DG(8- 19) DG(20)		LIMBS APPARENT
10654	2	NO ADVERSE FINDINGS NO ADVERSE PINDINGS CHROMORHINORRHEA	

10656 DG(12) CHROMOR DG * DAY OF PRESUMED GESTATION a. Observation confirmed at necropsy.

PROTOCOL 418-011P: ORAL (GAVAGE) DOSAGE-RANGE DEVELOPMENTAL TOXICITY STUDY OF N ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7) TABLE 10 (PAGE 1): NECROPSY OBSERVATIONS - INDIVIDUAL DATA

POCAGE CROITE	TAX	DAY OF	PREGNANCY	DOSAGES	
(MG/KG/DAY)	NUMBER	NECROPSY	STATUS	ADMINISTERED	OBSERVATIONS a
→ · · · · · · · · · · · · · · · · · · ·					
0 (VEHICLE)	10901	DG 20	O.	12	ALL TISSUES APPEARED NORMAL.
	10602	DG 50	۵.	12	ALL TISSUES APPEARED NORMAL.
	10603	DG 20	۵	12	ALL TISSUES APPEARED NORMAL.
	10604	DG 20	Δ	12	ALL TISSUES APPEARED NORMAL.
	10605	DG 20	۵	12	ALL TISSUES APPEARED NORMAL.
	10606	DG 50	۵۰	12	ALL TISSUES APPEARED NORMAL.
	10607	DG 50	۵.	12	ALL TISSUES APPEARED NORMAL.
	10608	DG 20	ď	12	ALL TISSUES APPEARED NORMAL.
11					
	10609	DG 50	o.	12	ALL TISSUES APPEARED NORMAL.
	10610	DG 50	a N	12	ALL TISSUES APPEARED NORMAL.
	10611	DG 50	۵.	12	ALL TISSUES APPEARED NORMAL.
	10612	DG 50	٥.	12	ALL TISSUES APPEARED NORMAL.
	10613	DG 30	۵.	12	ALL TISSUES APPEARED NORMAL.
	10614	DG 20	۵.	12	ALL TISSUES APPEARED NORMAL.
	10615	20	Δ,	12	ALL TISSUES APPEARED NORMAL.
	10616	DG 50	۵.	12	ALL TISSUES APPEARED NORMAL.

P = PREGNANT NP = NOT PREGNANT
DG = DAY OF PRESUMED GESTATION
a. Refer to the individual clinical observations table (Table 9) for external observations confirmed at necropsy.

T-6316.7) PROTOCOL 418-011P: ORAL (GAVAGE) DOSAGE-RANGE DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: TABLE 10 (PAGE 2): NECROPSY OBSERVATIONS - INDIVIDUAL DATA

DOSAGE GROUP (MG/KG/DAY)	RAT NUMBER	DAY OF NECROPSY	PREGNANCY STATUS	DOSAGES ADMINISTERED	OBSERVATIONS &
		1 1 1 1 1 1	• • • • • • • • • • • • • •		
	10617	DG 50	d.	12	ALL TISSUES APPEARED NORMAL.
1	10618	DG 20	ď	12	ALL TISSUES APPEARED NORMAL.
	10619	DG 50	۵.	12	TISSUES APPEARED
	10620	DG 20	۵.	12	TISSUES APPEARED
	10621	DG 30	۵.	12	TISSUES APPEARED
	10622	DG 20	۵.	12	ALL TISSUES APPEARED NORMAL.
	10623	DG 50	۵.	12	ALL TISSUES APPEARED NORMAL.
	10624	DG 20	ية.	12	ALL TISSUES APPEARED NORMAL.
ΛĬ					
-	10625	DG 20	۵.	12	rissues Appeared
•	10626	DG 50	۵.	12	ALL TISSUES APPEARED NORMAL.
	10627	DG 50	۵.	12	TISSUES APPEARED
	10628	DG 20	۵.	12	ALL TISSUES APPEARED NORMAL.
	10629	DG 50	۵	12	ALL TISSUES APPEARED NORMAL.
	10630	DG 20	۵.	12	TISSUES APPEARED
	10631	DG 20	Δ.	12	ALL TISSUES APPEARED NORMAL.
	10632	DG 50	۵	12	ALL TISSUES APPEARED NORMAL.

PREGNANT NP = NOT PREGNANT
 DG = DAY OF PRESUMED GESTATION
 a. Refer to the individual clinical observations table (Table 9) for external observations confirmed at necropsy.

PROTOCOL 418-011P: ORAL (GAVAGE) DOSAGE-RANGE DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

DATA	
INDIVIDUAL	
520	•
SNOTTAVABSED VPGCADAN	
ASGUGUAN	
;	
action of a love	
5	
104 F	

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
DOSAGE GROUP (MG/KG/DAY)	RAT NUMBER	DAY OF NECROPSY	PREGNANCY STATUS	DOSAGES ADMINISTERED	OBSERVATIONS a
λ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			, , , , , , , , , , , , , , , , , , ,	
30	10633	DG 50	۵.	12	ALL TISSUES APPEARED NORMAL.
	10634	DG 20	Ω.	12	ALL TISSUES APPEARED NORMAL.
	10635	DG 50	۵.	12	ALL TISSUES APPEARED NORMAL.
	10636	DG 50	ca.	12	ALL TISSUES APPEARED NORMAL.
	10637	DG 20	۵	12	ALL TISSUES APPEARED NORMAL.
	10638	DG 50	C.	12	ALL TISSUES APPEARED NORMAL.
	10639	DG 20	۵.	12	ALL TISSUES APPEARED NORMAL.
	10640	DG 20	Ω.	12	ALL TISSUES APPEARED NORMAL.
VI					
35	10641	DG 50	a	12	TISSUES APPEARED
ì	10642	DC 30	۵	12	ALL TISSUES APPEARED NORMAL.
	10643	DG 20	۵.	12	•
	10644	DG 50	Δ.	12	TISSUES APPEARED
	10645	DG 20	<u>.</u>	12	ALL TISSUES APPEARED NORMAL.
	10646	DG 50	c.	12	ALL TISSUES APPEARED NORMAL.
	10647	DG 50	Δ,	12	ALL TISSUES APPEARED NORMAL.
	10648	DG 50	a.	12	ALL TISSUES APPEARED NORMAL.

PRECHANT NP = NOT PREGNANT
 DG = DAY OF PRESUMED GESTATION
 Refer to the individual clinical observations table (Table 9) for external observations confirmed at necropsy.

PROTOCOL 418-011P: ORAL (GAVAGE) DOSAGE-RANGE DEVELOPMENTAL TOXICITY STUDY OF N.ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 10 (PAGE 4); NECROPS	NECROPSY OBSERVATIONS - INDIVIDUAL DATA	NS - INDIVI	DUAL DATA		
		1			
DOSAGE GROUP (MG/KG/DAY)	RAT	DAY OF NECROPSY	PREGNANCY STATUS	DOSAGES ADMINISTERED	OBSERVATIONS a
VII 35	10649 10650 10651 10652 10653 10654	DG 20 DG 20 DG 20 DG 20 DG 20 DG 20	a a a a a a a a	21 22 22 22 22 22 22 22 22 22 22 22 22 2	ALL TISSUES APPEARED NORMAL.
	10656	DG 20	۵.	12	Cancal Me Cancal

P. PREGNANT NP = NOT PREGNANT
 DG = DAY OF PRESUMED GESTATION
 a. Refer to the individual clinical observations table (Table 9) for external observations confirmed at necropsy.

171377

418-011P:PAGE 35

PROTOCOL 418-011P: ORAL (GAVAGE) DOSAGE-RANGE DEVELOPMENTAL TOXICITY STUDY OF N.ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7) TABLE 11 (PAGE 1): MATERNAL BODY WEIGHTS - INDIVIDUAL DATA

	30400	DOSAGE GROUP 1		0	O (VEHICLE) MG/KG/DAY	s/ KG/DAT					1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PREGNANCY STATUS	DAY 0	• • • • • • • • • • • • • • • • • • •	9	,	€	6	10	11	12	13	14	15	16
10601 P	218.	236.	244.	242.	247.	252.	257.	265.	270.	274.	274.	282.	295.
10602 P	227.	253.	263.	270.	273.	281.	287.	291.	295.	308.	311.	318.	331.
10603 P	242.	276.	286.	292.	300.	303.	314.	318.	321.	335.	341.	348.	364
10604 P	245.	278.	280	290.	293.	299.	306.	312.	315.	322.	325.	334.	344.
10605 P	238.	261.	260.	261.	263.	267.	270.	274.	282.	285.	289.	297.	301.
10606 P	232.	273.	275.	271.	280.	284.	294.	301.	310.	313.	321.	325.	333.
10607 ₽	250.	273.	269.	272.	277.	280.	285.	291.	288.	295.	301.	301.	304
10608 P	235.	249.	254.	257.	264.	265.	273.	271.	282.	289.	292.	300.	312.
	DAY 17	18	19	20) { ! ! ! !	1	, , , , , , , , , , , , , , , , , , ,				1 1 1	1	1
10601 P	310.	319.	335.	361.									
10602 P	338.	361.	371.	399.									
10603 P	377.	400.	412.	432.									
10604 P	353.	371.	390.	414.									
10605 P	315.	329.	347.	362.									
10606 P	348.	363.	392.	405.									
10607 P	310.	315.	332.	338.									
10608 P	324.	343.	359.	374.									

P - PRECNANT NP = NOT PRECNANT (VALUES EXCLUDED FROM AVERAGES)
DAY = DAY OF PRESUMED GESTATION
ALL MEIGHTS MERE RECORDED IN GRAMS (G).

PROTOCOL 418-011P:		ORAL (GAVAGE) DOSAGE RANGE DEVELOPMENTAL TOXICITY STUDY OF N.ECFUSE IN KAIS ISTUNSOK'S STUDY NUMBER:	DOSAGE RA	INGE DEVE	LOPMENTAL	TOXICITY	STUDY	OF N-ECFOSI	N KAIS	SPONSOR	i innie e		17.0160-1
TABLE 11 (PAGE 2):	18 2):	MATERNAL BODY WEIGHTS . INDIVIDUAL DATA	OY WEIGHTS	INDIVI	DUAL DATA								
RAT #	DOSAGE	AGE GROUP II		1 MG/	1 MG/KG/DAY	1 1 1 1 1 1	1					1 1	
PREGNANCY	DAY 0	-	9	7	60	6	10	11	12	13	14	15	16
10609 P	241		276.	278.	286.	289.	296.	302.	309.	313.	321.	330.	342.
10610 NP	235		250.	251.	255.	248.	256.	. 797	261.	. 892	259.	263.	271.
10611 P	256		285.	282.	289.	295.	301.	306.	307.	313.	314.	321.	340.
10612 P	219		251.	255.	260.	265.	272.	276.	283.	290.	292.	298.	315.
10613 P	245		280.	282.	285.	291.	296.	297.	309.	310.	321.	324.	342.
10614 P	230		258.	262.	267.	274.	281.	276.	288.	291.	290.	300.	309.
10615 P	225		241.	243.	245.	250.	259.	256.	258.	268.	279.	280.	288.
10616 P	239.	. 251.	260.	262.	261.	272.	274.	278.	288	291.	300.	302.	304.
	DAY 17	10	19	20			1 1	(1 1 4 4 5 1 1 1 1 1 1 1 1	1				
10901	351		386.	412.									
10610 NP	366		265.	265.									
10611 P	353.		389.	409.									
10612 P	325		357.	383.									
10613 P	354		384.	408.									
10614 P	311		331.	337.									
10615 P	297		325.	344.									
10616 P	320		352.	358.									,
D = DREGNANT	TON = dN		PREGNANT (VALUES EXCLUDED FROM AVERAGES	KCLUDED	FROM AVERA	(GES)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1					
	1		1										

DAY = DAY OF PRESUMED GESTATION
ALL WRIGHTS WERE RECORDED IN GRAMS (G)

\<u>^</u>1

PROTOCOL 418-011P: ORAL (GAVAGE) DOSAGE-RANGE DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7) TABLE 11 (PAGE 3): MATERNAL BODY WEIGHTS - INDIVIDUAL DATA

RAT #	DOSAGE	AGE GROUP III		S MG	S MG/KG/DAY			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1				
PREGNANCY	Y DAY 0	-	u	,	60	6	10	11	12	13	7.	15	36
10617 9	242	265.	270.	272.	277.	281.	286.	287.	291.	292.	295.	302.	312.
10618 P	244	264	273.	276.	280.	285.	291.	299.	300.	306.	310.	316.	327.
10619 P	223	243.	249.	253.	260.	264.	274.	278.	283.	293.	294.	304	316.
10620 P	229	258	265.	. 366	272.	277.	280.	286.	290.	302.	300.	307.	317.
10621 P	230.	256.	251.	256.	263.	267.	270.	279.	276.	280.	289.	293.	305
10622 P	236.	. 700	268.	270.	274.	276.	280	287.	288.	288.	294	297.	909
10623 P	240.	248.	258.	260	264.	267.	272.	273.	280.	282.	287.	. 366	305
10624 P	247.	270.	277.	279.	284.	292.	298.	306.	299.	304.	311.	320.	328
	DAY 17	18	61	20					4	1		•	
10617 P	316.	334.	344.	371.									
10618 P	339.	351.	366.	384.									
10619 P	327.	341.	355.	380.									
10620 P	324.	342.	352.	377.									
10621 P	321.	339.	358.	373.									
10622 P	328.	340.	365.	369.									
10623 P	313.	334.	345.	357.									
10624 P	341.	359	377.	389.									

P = PREGNANT NP = NOT PRECNANT (VALUES EXCLUDED FROM AVERAGES)
DAY = DAY OF PRESUMED GESTATION
ALL WEIGHTS WERE RECORDED IN GRAMS (G).

17138

PROTOCOL 418-011P: ORAL (GAVAGE) DOSAGE-RANGE DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

RAT #	DOSAGE	DOSAGE GROUP IV		10 MC	10 MG/KG/DAY								
PREGNANCY	DAY 0	•	· •	,	&	6	10	11	12	13	14	15	36
10625 P	242	268.	275.	275.	281.	285.	295.	298.	301.	309.	311.	317.	325.
10626 P	223	234.	237.	239.	240.	243.	250.	252.	256.	259.	262.	264.	272
10627 P	237.	258.	264.	. 799	270.	273.	276.	279.	278.	285.	287.	292.	299.
10628 P	235	254.	253.	256.	262.	265.	270.	278.	285.	289.	292.	302.	311.
10629 P	244	270.	269.	276.	282.	286.	286.	299.	307.	308.	316.	322.	333.
10630	234	254	257.	244.	233.	246.	249.	256.	268.	260.	269.	276.	285.
10631 P	227	244.	243.	248.	248.	252.	252.	255.	262.	264.	272.	279.	291.
10632 P	246.	258.	264.	268.	271.	265.	273.	281.	286.	293.	297.	317.	314.
	DAY 17	81	19	70	1	1 1 1 1							
10625 P	341.	345.	365.	384.									
10626 P	278.	289.	299.	312.									
10627 P	311.	327.	332.	353.									
10628 P	319.	330.	349.	364.									
10629 P	340.	356.	377.	398.									
10630 P	297.	306.	321.	342.									
10631 P	294.	315.	330.	342.									
10632 P	127	142.	357.	378.									

P = PREGNANT NP = NOT PREGNANT (VALUES EXCLUDED FROM AVERAGES)
DAY = DAY OF PRESUMED GESTATION
ALL WRIGHTS WERE RECORDED IN GRAMS (G).

418-011P:PAGE 39

PROTOCOL 418-011P: ORAL (GAVAGE) DOSAGE-RANGE DEVELOPMENTAL TOXICITY STUDY OF N.EFFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 11 (PAGE 5): MATERNAL BODY WEIGHTS - INDIVIDUAL DATA

RAT #	DOSAGE	AGE GROUP V		¥ 00	20 MG/KG/DAY								
PREGNANCY	Y DAY 0	. 4	, y	7		6	10	11	12	13	14	15	16
10633 P	239.	259.	267.	268.	273.	277.	278.	282.	289.	295.	296.	304	312.
10634 P	231.	. 760	260.	256.	264.	269.	272.	280.	282.	290.	290.	303.	318.
10635 P	224.	244.	247.	248.	251.	251.	246.	249.	255.	255.	261.	257.	266.
10636 P	228.	. 260	269.	268.	273.	283.	284.	290.	288.	299.	292.	308.	321.
10637 P	244.	259.	262.	260.	260.	. 766	266.	275.	278.	281.	290.	294.	302.
10638 P	237.	250.	254.	254.	251.	255.	262.	270.	278.	281.	283.	295.	302
10639 P	240.	. 798	268.	272.	271.	285.	284.	293.	298.	304.	306.	311.	322.
10640 P	247.	270.	270.	260.	262.	262.	269.	273.	279.	280.	287.	289.	302.
; ; ; ; ;	DAY 17	801	19	20	f ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	· · · · · · · · · · · · · · · · · · ·	; ; ; ;		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · · · · · · · · · · · · · · · · · ·			
10633 P	326.	334.	351.	372.	,		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
10634 P	327.	342.	352.	376.									
10635 P	277.	285.	293.	314.									
10636 P	330.	356.	366.	387.									
10637 P	318.	326.	340.	363.									
10638 P	316.	326.	342.	358.									
10639 P	331.	347.	362.	376.									
10640 P	313.	331.	348.	362.									

P = PREGNANT NP * NOT PREGNANT (VALUES EXCLUDED FROM AVERAGES)
DAY * DAY OP PRESUMED GESTATION
ALL WEIGHTS WERE RECORDED IN GRAMS (G).

171382

PROTOCOL 418-011P: ORAL (GAVAGE) DOSAGE-RANGE DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7) TABLE 11 (PAGE 6): MATERNAL BODY WEIGHTS - INDIVIDUAL DATA

RAT #	DOSAGE	AGE GROUP VI		25 M	25 MG/KG/DAY								
PREGNANCY	DAY 0		٠	7		5	10	11	12	13	14	15	16
10641 P	240.	256.	264	256.	262.	269.	265.	274.	273.	275.	274.	286.	299.
10642 P	221.	237.	240.	236.	239.	242.	247.	247.	244.	245.	248.	261.	272
10643 P	247.	265.	270.	268	269.	276.	281.	288.	288	292.	291.	298.	311
10644 P	236.	262.	270.	267.	264.	270.	278.	277.	281.	282.	270.	263.	260
10645 P	244.	270.	275.	275.	278.	282.	283.	285.	301.	294.	301.	303.	313
10646 P	233.	249.	249.	247.	246.	250.	255.	258.	261.	262.	256.	254.	267
10647 P	228.	249.	260	261.	. 792	273.	276.	274.	272.	276.	279.	284.	286
10648 P	239.	275.	284.	286.	291.	292.	292.	290.	288.	290.	295.	299.	311
1	DAY 17	100	19	20	1 1 1 1 1 1		: ; ; ; ;	: : : : : : :					
10641 P	304.	314.	329.	349.) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	: : : : : :						
10642 P	281.	297.	304	323.									
10643 P	333.	345.	360.	377.									
10644 P	273.	303.	324.	340.									
10645 P	325.	337.	356.	359.									
10646 P	276.	285.	302.	318.									
10647 P	299.	320.	329.	336.									
10648 P	322.	343.	352.	364.									

P = PREGNANT NP = NOT PREGNANT (VALUES EXCLUDED FROM AVERAGES)
DAY = DAY OF PRESUMED GESTATION
ALL WRIGHTS WERE RECORDED IN GRAMS (G).

418-011P:PAGE 41

ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

TABLE 11 (PAGE 7):	iE 7):	MATERNAL BODY WEIGHTS - INDIVIDUAL DATA	BODY W	EIGHTS -	INDIVIE	UAL DATA						1		
RAT #	DOS	SAGE GROUP VII	VII	1 1 1 1	35 MG/	35 MG/KG/DAY		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
PREGNANCY	r DAY	* (•		ω .	6	10	11	12	13	14	15	16
10649 P 10650 P 10651 P 10653 P 10653 P 10655 P		244. 252. 237. 253. 227. 245. 246. 269. 231. 256. 238. 249.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	258. 256. 251. 2248. 2276. 254. 275.	260. 254. 254. 250. 275. 268. 252.	264. 269. 269. 269. 269. 269. 265.	264. 261. 267. 251. 276. 273.	267. 268. 258. 274. 274. 276.	268. 260. 275. 258. 281. 276. 248.	274. 252. 278. 260. 279. 281. 252.	278. 235. 279. 266. 280. 259. 258.	281. 223. 285. 269. 277. 289. 266.	286. 216. 292. 275. 289. 297. 271.	295. 2013. 2033. 2037. 2035.
	DAY 17			19	20	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,	1				
10649 P	222	:		316. 220.	332. 239.									
10651 P 10652 P 10653 P		293, 304. 300, 316. 313, 327.		316. 331. 347.	343. 350. 364.									
10655 P	4 A			341.	350.		1	1	1	1				:

P = PREGNANT NP = NOT PREGNANT (VALUES EXCLUDED FROM AVERAGES)
DAY = DAY OF PRESUMED GESTATION
ALL WEIGHTS WERE RECORDED IN GRAMS (G).

PROTOCOL 418-011P: ORAL (GAVAGE) DOSAGE-RANGE DEVELOPMENTAL TOXICITY STUDY OF N ELFOSE IN RAIS (SPONSOR'S STUDY NUMBER: T-6316.7) TABLE 12 (PAGE 1): MATERNAL FEED CONSUMPTION VALUES - INDIVIDUAL DATA

5100 501016	>	9	,	0.7	8 - 10 10 - 12 12 - 14		14 - 16	16 - 18	18 - 20	
RAT #	DOSAGI	DOSAGE GROUP I		0 (VEH	0 (VEHICLE) MG/KG/DAY	KG/DAY	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	• • • • • • • • • • • • • • • • • • •		
0601 P	76.	45.	40.	44.	45.	44.	47.	54.	49.	
10602 P	93.	. 26	49.	49.	હ	ris	9	53.	54.	
10603 P	97.	. 26	. 26	54.	. 26	61.	54.	61.	54.	
10604 P	115.	62.	64.	61.	.09	55.	45.	53.	61.	
0605 P	87.	=	4 0	£ 3.	44.	46.	. 4	50.	52.	
10606 P	103.	51.	. 96	53.	57.	55.	51.	54.	. 96	
10607 P	68	47.	. 89	57.	.09	. 06	55.	46.	53.	
10608 P	72.	37.	4 2	4 6.	45.	.	. 3.	4.	•	
RAT #	DOSAG	DOSAGE GROUP II	; ; ; ;	1 MG/k	1 MG/KG/DAY	1 4 1 1 1 1 1	• • • • • • • • • • • • • • • • • • •)))))))) () () () () () ()		
10609 P	97.	50.	49.	50.	50.	51.	50.	53.	53.	
10610 NP	. 88	. ;	;	39.	43.	42.	37.	49.	36.	
10611 P	.71	55.	51.	52.	49.	47.	50.	59.	57.	
10612 P	94.	46.	51.	54.	47.	52.	52.	57.	54.	
10613 P	93.	53.	. 9	.	46.	54.	. 09	62.	57.	
10614 P	94.	£ 3.	51.	.05	48.	58.	53.	44.	47.	
10615 P	61.	38.	41.	•	38.	78.	41.	42.	51.	
10616 P	.92	42.	40	43.	45	5.1	45	40	48	

P = PREGNANT NP = NOT PREGNANT (VALUES EXCLUDED FROM AVERAGES)
DAYS = DAYS OF GESTATION
ALL WEIGHTS WERE RECORDED IN GRAMS (G).

a. Spilled feed precluded the calculation of this value.

418-011P:PAGE 43

PROTOCOL 418-011P: ORAL (GAVAGE) DOSAGE RANGE DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

PREGNANCY STATUS DAYS	- 0	9 - •	68 , y 9	8 - 10	10 - 12	12 - 14 14 - 16 16 - 18	14 - 16	1	18 20	
RAT #	DOSAGE	DOSAGE GROUP III	,	S MG/	S MG/KG/DAY			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
10617 P			45.	45.	45.	40.	45.	49.	49.	
10618 P	. 76	26.	22.	4 8.	50.	52.	51.	55.	53.	
10619 P	98	.63	49.	51.	26.	54.	53.	. 96	. 26 .	
10620 P	95	20	20.	49.	54.	48.	46.	48.	.	
10621 P	.06	46.		47.	.94	51.	48	51.	52.	
10622 P	95	47.	47.	4	46.	42.	36.	47.	. 20 .	
10623 P	. 06	44	45.	47.	44.	46.	48	53.	43.	
10624 P	103	46.	50.	52.	50.	43.	47.	48.	50.	1
RAT #	DOSAGE	DOSAGE GROUP IV	A	10 MG	10 MG/KG/DAY				1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10625 P	91.	50.	45.		.84	46.	4	48	. 05	
10626 P	. 99	33	31.	38.	, 0	35.	35.	37.	36.	
10627 P	. 06	56.	47.	43.	45.	4 0.	34.	46.	. 05	
10628 P	88	42.	=	45.	48.	50.	47.	46.	52.	
10629 P	95.	45.	47.	49.	50.	55.	. 46	51.	55.	
10630 P	. 88	46.	14.	35.	. 44	40.	38.	39.	49.	
10631 P	. 22	.0	36.	38.	40.	47.	45.	39.	41.	
									;	

P = PREGNANT NP = NOT PREGNANT (VALUES EXCLUDED FROM AVERAGES)
DAYS = DAYS OF GESTATION
ALL WEIGHTS WERE RECORDED IN GRAMS (G).

418-011P:PAGE 44

PROTOCOL 418-011P: ORAL (GAVAGE) DOSAGE-RANGE DEVELOPMENTAL TOXICITY STUDY OF N ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

46. 47. 47. 21. 21. 59. 48. 46.
12 - 14 14 - 15 16 - 18 48. 46. 51. 43. 47. 49. 31. 21. 35. 48. 59. 59. 48. 46. 41. 50. 46. 41.
46. 51. 49. 21. 35. 59. 59. 64. 41. 46. 41.
51. 51. 52. 52. 52. 54.

P * PREGNANT NP * NOT PREGNANT (VALUES EXCLUDED FROM AVERAGES)
DAYS * DAYS OF PRESUMED GESTATION
ALL WEIGHTS WERE RECORDED IN GRAMS (G).

88. 88. 88. 88. 88. 88. 88.

37. 53. 53. 40. 48.

38. 441. 111. 12. 26. 38.

33. 33. 338. 40. 39.

41. 35. 46. 47. 37. 38.

10641 P 10642 P 10643 P 10644 P 10646 P 10647 P

MG/KG/DAY

52

DOSAGE GROUP VI

RAT #

PROTOCOL 418-011P: ORAL (GAVAGE) DOSAGE-RANGE DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

PREGNANCY STATUS DAYS 0	1	. 9 9 . 1 1	8 . 9		8 - 10 10 - 12 12 - 14 14 - 15 16 - 18 18 - 20	12 - 14	14 - 16	16 - 18	18 - 20	
RAT #	DOSAGE	DOSAGE GROUP VII		35 10	35 MG/KG/DAY	i i i i i	· · · · · · · · · · · · · · · · · · ·			
10649 P	. 98		41.		43.	41.	39.	38.	43.	
10650 P	87.	. 64	45.	39.	17.	7.	-1	13.	34.	
10651 P	94.	53.	49.	•	45.	42.	45.	51.	. 25	
10652 P	80.	£	40.	38.	41.	39.	42.	÷	. 9	
10653 P	95.	55.	48.	43.	47.	46.	T	35.	62.	
10654 P	89.	.94	44.	46.	45.	46.	.04	36.	52.	
10655 P	82.	47.	37.	25.	39.	64.	£ 3.	43.	55.	
10656 P	90.	42.	33.	42.	. 56	42.	39.	38.	. 4	

P = PREGNANT NP = NOT PREGNANT (VALUES EXCLUDED FROM AVERAGES)
DAYS = DAYS OF PRESUMED GESTATION
ALL WEIGHTS WERE RECORDED IN GRAMS (G).

IN RATS (SPONSOR'S STUDY NUMBER: T 6316.7)

;	
5	
PROTOCOL 418-011P: ORAL (GAVAGE) DOSAGE-RANGE DEVELOPMENTAL TOXICITY STUDY OF PERFORE IN AND CONTROL OF THE CON	
5	
10018	DATA
TOXICITY	TABLE 13 (PAGE 1) CAESAREAN SECTIONING OBSERVATIONS INDIVIDUAL DATA
PMENTAL	IS IND
E DEVELA	ERVATION
SANG	OBS
DOSAGE - F	CTIONING
(GAVAGE)	AREAN SE
ORAL	4
1.	-
418-01	3540)
COL	ŗ
PROTO	21047

			VIABLE	ABLE FETUSES	SES	DEAD	DEAD FETUSES		EARLY F	LESORP	TIONS	EARLY RESORPTIONS LATE RESORPTIONS	ORPTIO		IMPLANTATION SITES	TION	SITES	CORPC	CORPORA LUTEA	TEA
RAT #	SEX	*	RIGHT LEFT HORN		TOTAL	RIGHT LEFT HORN		TOTAL	RIGHT LEFT HORN		TOTAL	RIGHT LEFT HORN		TOTAL	RIGHT LEFT HORN		TOTAL	RIGHT LEPT OVARY	•	TOTAL
DOSAGE GROUP	E GRC	I dox			0	0 (VEHICLE) MG/KG/DAY	MG/	KG/DAY	1) ((1				! !	!	1			1
			•		13		: -				0	0		0	ų	7	13	v	7	13
10901		` -	• =	٠ •	, <u>r</u>	• =				0	-	0	0	0	12	•	16	12	Ŋ	11
20901	n <u>c</u>	2 5	. 6		17		•	0	0	0	D	0	0	0	6	•	17	11	- €	19
10604		10		12	15	•	0	0	0	0	0	0	0	0	m ·	12	15	~ (17	9 :
10605	•	.	œ	e	11	o	0	0	0	7	~	0	0	0	•	so :	13	9 0 1	. م	Ξ:
10606	v	•	ĸ	01	15	0	0	0	0	0	0	0	0	0	ω.	10	15	וח	=	2 :
10607	-	~	-	m	•	0	0	0	0	0	0	0	0	0 (~ ;	m (• ;	n ç	.	3 5
10608	•	11	10	0	19	0	0	0	0	0	0	0	0	0 :	2	,	A	2 :	2 :	3 :
DOSA	GE G	DOSAGE GROUP II	11		_	1 MG/KG/DAY	, , , , , , , , , , , , , , , , , , ,				!			1	1				:	
10609 11	=		7	6	91	0	0	•	0	0	0	0	0	0	7	o	16	7	=	18
10610	NOT		PREGNANT									(•		•	۰	31	a	٥	-
10611	~	13	•	7	15	0	0	0	0	-	-	0	>	.	0 1	0 (9 ;	N C	٠.	
10612	'n	م	7	٢	=	0	0	0	•	0	0	0	0	0		٠,	: :	n :	n 1	• •
10613	50	Ģ	6	9	15	0	0	0	0	-	-	0	0	0	on ,	٠,	9 '	2 '	- 1	÷ ;
10614	-	9	_	9	7	0	0	0	0	0	0	0	0	0	- ·	۰ م	- :	n (- 0	71
10615	٢	4	-	σ	13	0	0	0	0	0	0	0	0	0	•	0	<u>.</u>	'n	,	=
		•													,	1				

M * MALE F = FEMALE PLACENTAE APPEARED NORMAL UNLESS NOTED OTHERWISE.

10 171389

ORAL (GAVAGE) DOSAGE-RANGE DEVELOPMENTAL TOXICITY STUDY OF N ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7) PROTOCOL 418-011P:

		_	VIABLE FETUSES	FETUS	SES	DEAD	DEAD FETUSES		EARLY RI	ESOR P1	LIONS	EARLY RESORPTIONS LATE RESORPTIONS	RPTION		IMPLANTATION SITES	ON SITE		CORPORA LUTEA	LUTEA
RAT #	SEX		RIGHT LEFT HORN		TOTAL	RIGHT LEFT HORN	1	TOTAL	RIGHT LEFT HORN	i .	TOTAL	RIGHT LEFT HORN	FT		RIGHT LEFT HORN	T		RIGHT LEFT OVARY	TOTAL
DOSAGE GROUP III	GROU	11 4			S MC	S MG/KG/DAY			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		, , , ,			t	1	1	1 1	1
0617	,	9	7	9	13				0			0			7 7	14	7	7	7
10618	3	9	•	0	13	0	0	0	-	-	7	0	0	0	5 10	15	7	10	17
0619	,	6	10	9	16	0	0	0	0	0	0	0	0	0	10 6	16	10	7	17
0620	œ	۲	9	0	15	0	0	•	m	0	г	0	0	0	6	18	6	σ,	1.8
0621	0	٠	6	9	15	0	0	0	0	0	•	•	0	0	9	15	10	9	16
0622	<u>ر</u>	•	7	60	15	0	•	0	0	0	0	0	0	0	7 8		7	00	15
0623	۲	'n	-	80	12	0	•	0	0	0	0	0	0	0	4		•	σ	13
0624	11	•	9	11	11	0	•	0	0	0	0	0		•	6 11	11	φ	12	18
DOSAGE GROUP IV	GROU		! !		10	10 MG/KG/DAY)AY		1 1 1 1 1		1								
0625	N.		11	-	15			•			-	0			12	16	13	•	21
10626	_	e	c	7	01	٥	0	0	0	0	•	0		-	3	11	m	σ.	12
0627	9	7	•	•	13	0	0	0	0	-	-	0	•	0	6	7	0	ß	14
0628	•	7	S.	10	15	0	0	0	0	0	0	0	•	0	5 10	1.5	v	10	16
0629	ų	•	6 0	7	15	0	0	0	0	0	•	0	0	0	8	15	∞	7	15
0630	8	s	10	Е	13	0	0	0	0	0	•	0	0	0	10 3	13	10	'n	15
0631	5	2	11	4	15	0	0	0	0	0	0	0	0	0	11 4	15	12	9	18
		,	,	,	;	•	•		•					•	•	1	1		

M = MALE F = FEMALE
PLACENTAR APPRARED NORMAL UNLESS NOTED OTHERWISE.

10 171390

			*	-				1							. !					
			VIABLE	IABLE FETUSES	SES	DEA	DEAD FETUSES		EARLY !	ESOR P1	LONS	EARLY RESORPTIONS LATE RESORPTIONS	ORPTION		IMPLANTATION SITES	TION	SITES	CORPC	CORPORA LUTEA	E
RAT #	X XX		RIGHT LEFT HORN	1	TOTAL	RIGHT LEFT HORN	LEPT	TOTAL	RIGHT LEFT HORN)	TOTAL	RICHT LEFT HORN		TOTAL	RIGHT LEFT HORN		TOTAL	RIGHT LEFT OVARY		TOTAL
DOSAGE GROUP V	GROU	JP V	:		20	20 MG/KG/DAY	DAY		: : :	; ; ;	: : :	· · · · · · · · · · · · · · · · · · ·				,		1		
10633			•	101	14	. 0	0	0	0	. 0		0	0	0	4	10	14	4	Ξ	15
10634			•	6	16	0	0	0	0	0	0	0	0	0	œ	œ	16	6 0	æ	16
10635		ي .	٠	-	::	0	0	0	0	7	,	•	0	0	7	s	12	7	s	12
10636		7	1	60	15	0	0	0	-	0	-	•	0	0	8		16	c o 4	œ ·	9 !
10637	80	7	σı	9	15	0	0	0	0	0	0	•	0	0	6	•	12	ס י	۰ م	15
10638	φ	60	v	œ	=	0	0	0	0	0	0	0	0	0	•	-	* !	، م	.	= !
10639	0	7	80	00	16	0	0	0	0		-	0	0	0	œ	•	17	3 0	•	1
10640 12	12	ıs	1	0.	17	0	•	0	•	•	0	•	•	0	۲	2	17	æ ;	11	61 :
DOSAGE GROUP VI	GROU	V du			25	25 MG/KG/DAY	DAY		4 1 1 1	1 1 4 1 7 1 1 1		, , , , , , , , , , , , , , , , , , ,						1 1 1 1	1	
10641	•		7		13	. 0		0	0	0	0	•	0	0	7	9	13	7	٠	13
10642			_	0	16	0	•	0	0	0	0	0	0	0	7	۰	16	7	10	17
10643		_	•	9	15	0	0	0	0	•	0	•	0	0	6	9	15	6	6 0	11
10644		· Lr	•	10	18	0	0	0	-	-	7	0	0	0	6	11	20	o	=	20
10645	,	_	· w	80	*1	0	•	0	0	0	0	0	0	0	9	60	74	8	6 0	16
10646	7	9	ĸ	80	13	0	0	0	0	•	0	0	0	0	ស	80	13	7	80	12
10647	-	۲	~	60	01	0	0	0	-	•	7	0	0	0	<u>ش</u>	œ	Ξ	m	80	Ξ
9640	1 4		,	•	: :	•	c	c	c	•	c	•	_	_	10	1	ŗ	=	۲	œ

M = MALE F = FEMALE
PLACENTAE APPEARED NORMAL UNLESS NOTED OTHERNISE.

PROTOCOL 418-011P: ORAL (GAVAGE) DOSAGE-RANGE DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

			VIABLE F	LE FETUSES	S	DEAD FETUSES	FETUS		SARLY R	ESORPI	LIONS	LATE RE	SORPT	SNOI	EARLY RESORPTIONS LATE RESORPTIONS IMPLANTATION SITES	TION	SITES	CORP	CORPORA LUTEA	JTEA
RAT #	SEX		RIGHT LEF	Ŀ	; <u>,</u>	RICHT LEFT HORN TOTAL		TOTAL	RIGHT LEFT HORN TOTA	LEFT	TOTAL	RIGHT LEFT HORN		TOTAL	RIGHT LEFT HORN		TOTAL	RIGHT LEFT OVARY	•	TOTAL
SAGE	DOSAGE GROUP VII	I AI	1) !	35 M	35 MG/KG/DAY	; ;		; ; ; ;	! !	: : : :			; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;			1 1	1		
. 079	_				: =	0			-	-	7	0	0	0	7	9	13	7	9	13
200			ı un		1		•	0	7	-	٣	0	0	0	7	•	16	80	٥	17
10651		. 00	10		17	0	•	0	0	•	0	٥	0	0	10	۲	11	10	•	18
525			-	_	14	0	0	0	0	0	0	0	0	0	7	L	14	7	•	15
653			60	ı,	13	0	0	0	-	0	-	0	0	0	σ.	Ŋ	14	6	'n	Ξ
45.5	7		•		17	0	0	0	0	-	-	0	0	0	σ,	٥	18	σ.	13	33
			. LIT		12	0	0	0	0	0	0	0	0	0	v	7	15	S	٦	13
7 22 2	:		0	•	17	0	0	0	0	0	0	0	0	0	Đ	•	11	0	10	19

TABLE 14 (DACE 1).	LITTER OBSERVATIONS (CAESAREAN DELIVERED FETUSES)	RVATIONS (C	PAESAREAN I	DELIVERED	FETUSES)	INDIVIDUAL DATA	DATA			
. (1 2002)										
	O.N.	NUMBER OF LIVE FETUSES	/B	AV BOD	AVERAGE FETAL BODY WEIGHT (G)		NO2	CONCEPTUSES	SES	
RAT #	MALE	PEMALE	TOTAL	MALE	FEMALE	TOTAL a	2	2		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
DOSAGE	GROUP I	,	O (VEHICLE)	MG/KG/DAY		: : : : : :	; ; ; ; ; ; ; ; ;		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	: : : : : : : : : : : : : : : : : : :
10601	9	7	13	3.54	3.43	3.48	13	0	0.0	
10602	ĸ	10	15	3.71	3.50	3.57	16		6.2	
10603	12	s	17	3.91	3.71	3.85	17	0	0.0	
10604	s	10	15	3.68	3.44	3.52	15	•	0.0	
10605	9	S	11	3.94	3.57	3.78	13	7	15.4	
10606	9	6	15	3.62	3.42	3.50	15	0	0.0	
10607	1	٣	•	2.45	2.30	2.34	-	0	0.0	
10608	a	11	19	3.38	3.06	3.20	19	•	0.0	
DOSAGE	GROUP II	· · · · · · · · · · · · · · · · · · ·	1 MG/KG/DAY	· · · · · · · · · · · · · · · · · · ·	1 1 1 1 1 1	1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1	:
10609	11	5	16	3.37	3.29	3.35	16	•	0.0	1
10610	NOT	PREGNANT								
10611	7	13	15	4.01	3.64	3.69	16		6.2	
10612	s	60	1	3.53	3.48	3.50	14	0	0.0	
10613	60	y	15	3.50	3.39	3.46	16	~	6.2	
10614	7	9	7	3.31	2.96	3.01	7	0	0.0	
10615	7	9	13	3.69	3.44	3.58	13	0	0.0	
10616		•	-	,	,	**	•	•	•	

						1 1 1 1				
	×	NUMBER OF LIVE FETUSES	VE	AV BOD	AVERAGE FETAL BODY WEIGHT (G)	.16	10.3	CONCEPTUSES	SES	
RAT	MALE	PEMALE	TOTAL	MALE	FEMALE	TOTAL a	2	Z	مند	
DOSAGE G	E GROUP III		5 MG/KG/DAY		1 1 1 3 1 1 1 1	1 1 1 1 1 1 1 1				1
10617	7	9	13	3.63	3.32	3.49	14		7.1	
1061	m	10	13	3.40	3.19	3.24	15	7	13.3	
10615	,	6	16	3.18	2.91	3.03	16	•	0.0	
10620	•	7	15	3.38	3.36	3.37	18	-	16.7	
10621	6	9	15	3.62	3.29	3.48	15	0	0.0	
1062	-	60	15	3.02	3.07	3.05	15	0	0.0	
1062	_	S	12	3.44	3.08	3.29	12	0	0.0	
10624	11	φ	17	3.31	3.21	3.28	17	0	0.0	
DOSAGE	3E GROUP IV		10 MG/KG/DAY	AY				, , , , , , , , , , , , , , , , , , ,		, , , , ,
1062		10	15	3.08	3.30	3.22	16	-	6.2	
10626	. ~	0	10	3.73	3.19	3.57	11	-	9.1	
1062	9	٢	13	3.42	3.33	3.37	1		7.1	
10621	80	7	15	3.47	3.38	3.43	15	0	0.0	
1062	9	01	15	3.51	3.26	3.36	15	0	0.0	
10630	8	'n	13	3.42	3.14	3.32	13	0	0.0	
1063		21	15	3.43	3.45	3.44	15	0	0.0	

! ! !	in N	NUMBER OF LIVE FETUSES	E	AV	AVERAGE FETAL BODY WEIGHT (G)	J (6	NO	CONCEPTUSES	SESRESORBED
RAT #	MALE	FEMALE	TOTAL	MALE	FEMALE	TOTAL a	z	Z	
DOSAGE G	GROUP V	2	20 MG/KG/DAY	AY) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
633	6	5	7.	3.54	3.24	3.43	14	•	0.0
634	•	7	16	3.26	3.04	3.16	16	0	0.0
635	v	9	11	3.25	3.11	3.18	12	7	8.3
636	8	7	15	3.54	3.37	3.46	16	-	6.2
637	•	۲	15	3.17	2.92	3,05	15	•	0.0
8696	•	6 0	14	3.50	3.19	3.32	14	0	0.0
639	6	۷	16	3.33	3.16	3.25	17	-	6.3
10640	12	S	17	3.12	3.01	3.09	17	0	0.0
DOSAGE	GROUP VI		25 MG/KG/DAY	AY					
641	•	6	13	3.46	3.31	3.35	13	0	0.0
642	6	7	16	3.12	2.89	3.02	16	0	0.0
543	•	7	15	3.45	3.35	3.40	15	0	0.0
10644	13	ĸ	18	2.90	2.80	2.87	20	7	10.0
645	7	7	14	3.16	3.02	3.09	14	0	0.0
9646	1	9	13	3.05	3.02	3.03	13	0	0.0
1647	-	7	10	3.43	3.02	3.14	11	-	9.1
	•	•	•			•		•	

PROTOCOL 418-011P:	ORAL (GAVAGE	DOSAGE-RA	NGE DEVELO	PMENTAL T	OXICITY STU	DY OF N ELF	OSE IN RU	ATS (SPONSO	ORAL (GAVAGE) DOSAGE-RANGE DEVELOPMENTAL TOXICITY STUDY OF N ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)	T-6316.7)
TABLE 14 (PAGE 4):	LITTER OBSERVATIONS (CAESAREAN-DELIVERED FETUSES) - INDIVIDUAL DATA	RVATIONS (C	AESAREAN - I	DELIVERED	FETUSES) -	INDIVIDUAL	DATA			,
	IUN	NUMBER OF LIVE FETUSES	9)	AV BOD	AVERAGE FETAL BODY WEIGHT (G)		5	CONCEPTUSES	RESORBED	
RAT #	MALE	FEMALE	TOTAL	MALE	FEMALE	TOTAL a	z	Z		; ; ; ; ;
DOSAGE	GROUP VII	1 [7] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	35 MG/KG/DAY	¥						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10649		60	11	2.80	2.54	2.61	13	7	15.4	
10650	S	80	13	1.98	1.85	1.90	16	m	18.8	
10651	6	8	17	3.24	3.16	3.20	11	0	0.0	
10652	60	9	14	3.23	2.94	3.11	14	0	0.0	
10653	9	7	13	3.25	3.04	3.14	14	-	7.1	
10654	7	10	17	3.21	2.95	3.06	18	1	5.6	
10655	6	m	12	3.30	3.07	3.24	12	0	0.0	
10656	11	v	17	3.25	3.07	3.19	11	0	0.0	

, (a)	FETUS #	1	2		4	2	9	7	. 60	6	10	11	12	13	7.	15	16	17	18	19	20	21	22	23
8	DOSAGE GROUP	ROUP		:		. S	(VEHICLE) MG/KG/DAY	3) MG,	,кд/ру		:		•							, i	. I	1	1	;
RAT #	CL8 6/7	FA	¥	S.	¥	4	FA /	FA		4	5	¥.	Æ	₹										
10602 12/	12/5	3.34 MA	3.64 FA		3.28 3.61 FA MA	3.40 MA	3.40 3.68 3.34 MA FA E	3.34 E	3.24 FA	3.65 FA	3.30 FA	3.65 3.30 3.49 FA FA FA	3.64 3.65 FA / FA	3.65 FA	Ą	¥								
		3.37	٠,	~	3.31	3.69	3.19		3.57	3.58	1.58 3.29	3.58 3.29 3.59	3.71	3.52	3.63	4.00 AB	4.18 FA	ž						
/11 60901	B /11	3.59	3 6		4.14 3.79	.,	6.1	£ 0.		4.1	3.82	17-1	3.80	3.80 3.85	"	4-1	(-)	4.26						
10604 4/12	4/12	£ 5			FA / FA	Æ .	FA	FA	A K		FA FA	AA .	3.60	FA 3.72	FA 3.58	FA 3.81								
10605	9 /8	EA.			£	£		F.			6		A A											
10606	5/11	P &	7 . Q	. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	F. C.	FA MA /		¥.	7. A.	¥ ¥	Ą.	FA		E &										
		3.80	3.56	3.48	3.61	3.68	3.71	3.71 3.68	3.47	3.57	3.07	3.57 3.07 3.40		3.07 3.31	3.42	3.64								
10001	n /n	2.45		~	~																			
10608 10/10	10/10		FA				PA	PA	FA			MA / MA							٤ ;	FA				
		3.13	3.19	3.22	3.22	2.76	3.29	3.29 3.29	2.93	2.95		3.66 3.20	3.12	3.45	3.34	3.44	2.97	3.59	2.86	3.11	,		;	•
20	SAGE	DOSAGE GROUP 1	=	; ; ;	• • •	. Z	1 MG/KG/DAY	Ä							1	, , , ,						:		
10609 7/11	7/11	1		X	FA	Æ	Æ	¥	MA / MA				Æ	Ą		Ę	¥							
01301		3.39 NOT		3.15 3.29	3.64	3.45		3.07	3.73 3.07 3.27	3.17	3.28	3.43	3.29	3.29 3.29	3.23	3.18	3.68							
					2	i	;	i	í	6	Ē	G.	G	¥ a	ů	ď	3							
1001	,	7 8	7.60	3.39	3.82	3.56	4.06		3.59 3.93	3.47		~		3.82	~	ന	~							
10612	6 /6								FA / MA		FA FA	FA	FA	MA C	FA									
/01 51301	7 / 01	3 . 2 3 FA	00.8 8	. 4 F		£ .		3 . Z		Y X	MA / MA		Ę ¥			FA	ы							
	}	3.18	۳,	~	-	-	_	•••	~	•	3.39	(*)	177	3.59	3.87	3.47								
10614	2/ 1	F. /	/ FA	FA	FA	FA	¥ ~	FA 2																
10615	5/9		FA						¥	Æ	FA		Ā											
		3.59	**,	3.61		3.50 3.50	_	3.57		m		-	1.1	-										
10616	2 /9	P.	£	¥	FA	FA	¥	MA / FA	Æ	Ψ	ď		Σ											
		3.33	3 3.56	3.66	3.41	3.06		3.39 3.39	3.70	3.36	3.33	3.49	3.54	3.30										

T-6316,7)	
(SPONSOR'S STUDY NUMBER:	
1P: ORAL (GAVAGE) DOSAGE-RANGE DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)	RETAL GEY VITAL STATUS AND BODY WEIGHT - INDIVIDUAL DATA
ORAL (G	FFTAL
PROTOCOL 41B-011P:	. IC abear of block

PETUS # 1 DOSAGE GROUP I			:		1			1					1							:		1 1 1	1
DOSAGE GRC	-	7	m	4	5	9	7	0	6	10	11	12	13	14	15	16	17	18	19	20	21	22	53
:					MG/	5 MG/KG/DAY					· ·							1	1				;
						: 5	5		3		. 44	4	<u>.</u>	FA									
	¥ ,	٠ د کو	¥ .	. אר ר אר ה	٠,	ב ק	, אר הי		_	3.69	3.07 3	3.54	,	3.56									
10618 7/10			. Y		_	4	. K					¥	Œ	Ŧ	Ę								
:	3.67	,		-	3.54	2.97	3.07	_	_	3.26		3.14		3.22	3.26	;							
10619 10/ 7	ž	PA				ž				FA /						. E							
	3.36	3,38	'n	v	3.12	3.17	_	m		2.60	2.99	•			_	2 . 20	â	d					
10620 9/9		ž	ш	ы ы	ą į	¥.;	¥,	ED .	F.	FA	MA .		¥ .	¥ 2	ξ. ζ.	•	£ .	3.46					
	_	4.00	;		3.52	3.51	3.28	5	7 40 40		07.0		1 4		E E)	:					
10621 10/ 6					£ ,	£ .	. CE .	.,	, ,		_	~	3.50		3.83								
	_	_	_		 V .	7	•						4		8								
10622 7/8		₹.		¥ .	¥ ;	χ,	_		٤ ۶	¥ 6			מי	, ,	, ak								
		3.20	_	٠,	0.0	7.65	7. 7	5, 7	01.5				1	2	3								
10623 4/ 9		ž	£	_	FA	¥	¥	E.	L'A	¥		¥ ;											
	3.96	3.28	3.40 3	3.34	3.24	3.81	3.41	3.02	3.13	. 04	3.40	3.46	8	5	:	ź	6						
10624 6/12	4	4	£	₹	FA	¥	ž						Y.	¥ ;	¥	Ě	٤,						
	3.20	3.11	3.23 3	3.44	3.40	3.32	3.17	3.27	3.20	3.36	3.40	3.35	3 . 06	3.10	٠. در	77.5	3.48	,					i
DOSAGE GROUP		IV		:	10 MG	10 MG/KG/DAY	ÄY	:	, , ,	1 1 1							1	1	,				
0 / 61 36361	3	4	44	4	¥	<u>~</u>	PA	5	E A	Ę	Ą	Æ.	ď.	Æ	¥	FA							
•	44	60	2.76	3.49	3.34	l	3.33	3.52	_	3.16		3.13	3.26	3.59	3.20	2.98							
9 /r 9cy01	4	Æ	¥.		≨	FA	Ĕ	Ā	ΑM	FA	Ä												
;	3.71	4.02	3.74	1.68	3.78	3.42	3.57	3.76	3.51	2.44	3.72												
10627 9/ 5	FA	FA	FA	Ä	Ä	Æ	FA	FA	FA /	FA	A A	ഥ	Ā										
ì	3.25	3.30	3.17	3.77	3.49	3.50	3.56	3.40	3.17	3.47	3.74		3.40	~									
10628 6/10	FA	FA	¥	¥	PA/	/ FA	¥	FA	Ä	ΕÀ	FA	Ψ	Æ	ď.	Æ								
•	3.24	3.66	3.59	3.63	3.30	3.05	3.41	3.48	3.28	3.43	3.50	3.52	3.44	3.24	3.65								
10629 8/7	FA	¥	FA	FA	FA	FA	FA	FA /	¥	ξ	ΕA	¥	ΡA	ζ I									
;	3.13	3.60	3.39	3.65	3.31	2.94	3.50	2.85	3.51	3.22	3.34	3.50	3.22	3.46	3.75								
2 /01 05901	¥	FA	Ę	ž	Ĕ	Ä	Ψ	FA	ΕÀ	FA /	¥	Ψ	Ψ										
,	3.08	3.10	3.26	3.52	3.33	3.40	3.33	3.08	3.26	3.00	3.51	3.62	3.61										
10631 12/ 6	ž	FA	Æ	FA	FA	FA	ΕA	ΕĀ	Ψ	ĄΣ	FA /	FA	ΕÀ		ΕÀ								
	3.32	3.61	3.30	3.52	3.23	3.20	3.39	3.30	3.44	3.63	3.52	3.54	3.48	•	3.71								
9 /8 (6301	FA	5	¥	ш	Ψ	FA	FA	Ξ	FA	FA	FA	¥	Æ	FA	ΕÀ	Æ							
ò		. 5	7		1 28	_	1.49		3.01	3.12	3.10	2.63	3.40	3.26	3.07	3.48							

T-6316.7) 22 ORAL (GAVAGE) DOSAGE-RANGE DEVELOPMENTAL TOXICITY STUDY OF N·ELFOSE IN RAIS (SPONSOR'S STUDY NUMBER: 21 1 2.74 2.66 2.89 3.02 2.81 2.95 2.90 2.89 2.73 FA MA MA FA 2.97 3.13 3.09 2.76 MA MA FA 20 L = LATE RESORPTION "/" DENOTES POSITION OF CERVIX MA MA FA FA MA FA FA MA/MA MA MA FA FA FA FA FA 3.12 2.77 3.12 2.73 3.15 2.95 2.75 3.26 3.12 3.19 3.17 3.03 2.76 2.81 2.59 17 15 FA FA FA PA / PA FA HA MA MA 13.50 3.45 3.35 3.57 3.00 3.46 3.53 3.59 3.61 13 - INDIVIDUAL DATA 12 11 FA / MA MA / MA 01 3): FETAL SEX, VITAL STATUS AND BODY WEIGHT 8 ~ 25 MG/KG/DAY 20 MG/KG/DAY 'n £ DOSAGE GROUP VI DOSAGE GROUP V PROTOCOL 418-011P: 8 /6 7/10 10645 8/8 10646 7/8 10648 11/ 7 15 (PAGE 10641 7/6 10647 3/8 FETUS # 10638 6/8 10639 8/9 10640 8/11 RAT # CLB 10634 10642 10643 10636 10637 10635

= ALIVE E = EARLY RESORPTION L = LATE RESORPT FETAL BODY WEIGHTS WERE RECORDED IN GRAMS (G).

M = MALE F = FEMALE A CLs = CORPORA LUTEA/OVARY

PROTOCOL 418-011P: ORAL (GAVAGE) DOSAGE-RANGE DEVELOPMENTAL TOXICITY STUDY OF N-ELFOSE IN RATS (SPONSOR'S STUDY NUMBER: T-6316.7)

CL8 7/ 6 PA E PA MA FA MA MA/FA E FA FA 2.36 2.61 2.85 2.44 2.80 2.75 2.35 2.61 2.30 8/ 9 PA PA PA E E PA MA/ E MA MA FA 2.01 1.75 2.08 2.01 1.75 2.08 7/ 8 MA MA PA	FA 3.08 MA FA 11.64 2.02 MA MA
PA E FA MA FA MA NA / FA E FA FA 2.36 2.36 2.30 PA PA PA P E F PA MA / E MA MA FA 2.01 1.75 2.08 2.02 1.5 2.09 1.75 2.09 PA MA PA PA PA PA MA MA PA 3.04 3.34 3.03 3.13 2.96 3.35 3.25 3.03 3.14 3.22 2.99 MA MA PA PA MA PA PA MA PA PA NA PA 3.07 3.29 3.51 3.07 3.27 3.00 2.88 3.19 3.21 3.20 3.45	FA 3.08 MA FA FA MA 1.64 2.02 1.95 1.95 MA MA FA MA
PA PA PA B E PA HA	MA FA FA MA 1.64 2.02 1.95 1.95 MA MA FA MA
FA HA FA FA FA FA HA HA HA HA FA / HA 3.04 3.34 3.03 3.13 2.96 3.35 3.25 3.03 3.14 3.22 2.98 HA HA HA FA / FA HA FA HA FA HA FA / FA HA FA HA 3.07 3.29 3.51 3.07 3.27 3.00 2.88 3.19 3.21 3.20 3.45	MA MA FA MA
7/ 8 MA MA MA PA HA MA FA/ FA MA FA MA 3 3.07 3.29 3.51 3.07 3.27 3.00 2.88 3.19 3.21 3.20 3.45	
KO KO / G KO	FA MR FA 2.72 3.04 2.59
3,20 3,09 2,71 2,90 3,46 2,93 3,22 3,27 2,94	MA 3.55
MA PA FA MA MA PA FA FA / MA	E FA MA MA MA FA FA 2.813.463.373.243.012.87
MA PA FA / FA MA MA MA MA NA NA 3.40 3.17 3.23 2.82 3.53 3.32 3.03 3.21 3.10	HA 3.52
FA MA FA FA MA MA MA MA / MA FA 3.30 3.12 2.85 3.22 3.35 3.33 3.52 3.13 3.22 3.11	FA MA FA MA MA MA 3.36 3.45 2.56 3.21 2.84 3.25

418-011P:PAGE 58

ATTACHMENT 1 PROTOCOL AND AMENDMENT

418-011P PAGE 59

Argus Research Laboratories, Inc. 905 Sheehy Drive, Building A Horsham, Pennsylvania 19044 T: (215) 443-8710 F: (215) 443-8587

PROTOCOL 418-011P

SPONSOR'S STUDY NUMBER: T-6316.7

STUDY TITLE:

Oral (Gavage) Dosage-Range Developmental Toxicity Study

of N-EtFOSE in Rats

PURPOSE:

The purpose of this study is to provide information for the

selection of dosages to be used in the developmental

toxicity (embryo-fetal toxicity and teratogenic potential) study

of N-EtFOSE administered orally via gavage to

Crl:CD®BR VAF/Plus® presumed pregnant female rats.

TESTING FACILITY:

Argus Research Laboratories, Inc.

905 Sheehy Drive, Building A

Horsham, Pennsylvania 19044-1297

Telephone: (215) 443-8710

Telefax:

(215) 443-8587

STUDY DIRECTOR:

Raymond G. York, Ph.D., DABT

Associate Director of Research

SPONSOR:

3M Toxicology Services

3M Center, Building 220-2E-02 St. Paul, Minnesota 55144-1000

STUDY MONITOR:

Marvin T. Case, D.V.M., Ph.D. Telephone: (612) 733-5180

Telefax:

(612) 733-1773

ALTERNATE

STUDY MONITOR:

Andrew M. Seacat, Ph.D.

Telephone: (612) 575-3161

Telefax:

(612) 733-1773

418-011P:PAGE 60

Protocol 418-011P Page 2

REGULATORY CITATIONS:

U.S. Food and Drug Administration (1994). International Conference on Harmonisation; Guideline on detection of toxicity to reproduction for medicinal products. *Federal Register*, September 22, 1994, Vol. 59, No. 183.

U.S. Food and Drug Administration. Good Laboratory Practice Regulations; Final Rule. 21 CFR Part 58.

Japanese Ministry of Health and Welfare (1997). Good Laboratory Practice Standard for Safety Studies on Drugs, MHW Ordinance Number 21, March 26, 1997.

European Economic Community (1989). Council decision on 28 July 1989 on the acceptance by the European Economic Community of an OECD decision/recommendation on compliance with principles of good laboratory practice. Official Journal of the European Communities: Legislation. 32 (No. L 315; 28 October): 1-17.

REGULATORY COMPLIANCE:

This study will be conducted in the spirit of the Good Laboratory Practice (GLP) regulations cited above in that the Testing Facility personnel will adhere to the Standard Operating Procedures for laboratory operations and data collection. The Testing Facility Quality Assurance Unit (QAU) will not audit the protocol, the raw data, the reports or the critical phases of the study.

All changes or revisions of this protocol shall be documented, signed by the Study Director and the Sponsor, dated and maintained with the protocol.

STUDY SCHEDULE:

See ATTACHMENT 1 to the protocol.

Protocol 418-011P Page 3

TEST ARTICLE AND VEHICLE:

Identification:

Test Article:

Name:

N-EtFOSE.

Physical Description:

Waxy solid.

Lot/Batch Number:

FM-3929 (30035, 30037, 30039).

Specific Gravity:

~1.7.

Purity:

99.1%.

Expiration Date:

May, 2000.

Information on the identity, composition, strength and purity of the test article is on file with the Sponsor.

Vehicle:

2% Tween® 80 in Reverse Osmosis Membrane Processed Deionized Water (R.O. Deionized Water). Supplier and lot identification of Tween® 80 to be documented in the raw data.

Neither the Sponsor nor the Study Director is aware of any potential contaminants likely to be present in the vehicle that would interfere with the results of this study. Therefore, no analyses other than those mentioned in this protocol will be conducted.

Safety Precautions:

Gloves, mask, appropriate eye protection and a uniform/lab coat are to be worn during formulation preparation and administration. The Material Safety Data Sheet (MSDS) is attached to the protocol (ATTACHMENT 2).

Storage:

Bulk Test Article:

Room temperature.

Vehicle Components:

Room temperature.

Prepared Vehicle:

Room temperature.

Prepared Formulations:

Frozen (-20°C).

All test article shipments to the Testing Facility should be addressed to the attention of Julian Gulbinski, Manager of Formulations, at the previously cited address and telephone number.

Shipments should include information concerning storage conditions and shipping cartons should be labeled appropriately. The recipient should be notified in advance of shipment.

Protocol 418-011P Page 4

FORMULATION:

Frequency of Preparation:

Formulations (suspensions) will be prepared daily at the Testing Facility. Vehicle will be prepared weekly at the Testing Facility.

Detailed preparation procedures are attached to this protocol (ATTACHMENT 3).

Adjustment for Purity:

The test article will be considered 100% pure for the purpose of dosage calculations.

Testing Facility Reserve Samples:

The Sponsor will reserve a sample (1 g) of each lot of the bulk test article used during the course of this study. The Testing Facility will reserve a sample (5 mL) of each lot of the vehicle components used during the course of this study. Samples will be stored under the previously cited conditions.

ANALYSES:

Samples additional to those described below may be taken if deemed necessary during the course of the study.

Bulk Test Article Sampling:

No analyses of the bulk test article will be conducted during the course of this study. Information on the stability of the bulk test article is on file with the Sponsor.

Analyses of Prepared Formulations:

At the request of the Sponsor, no analyses of prepared test article formulations will be conducted during the course of the study. However, records will be maintained to document how the test article formulations were prepared.

DISPOSITION:

Prepared formulations will be discarded at the Testing Facility. All remaining bulk test article will be returned to the Study Monitor at the previously cited address.

Protocol 418-011P Page 5

TEST SYSTEM:

Species/Strain and Reason for Selection:

The Crl:CD®BR VAF/Plus® (Sprague-Dawley) rat was selected as the Test System because: 1) it is one mammalian species accepted and widely used throughout industry for nonclinical studies of developmental toxicity (embryo-fetal toxicity/teratogenicity); 2) this strain has been demonstrated to be sensitive to developmental toxins; 3) historical data and experience exist at the Testing Facility⁽¹⁻³⁾; and 4) the test article is pharmacologically active in the species and strain.

Number:

Initial population acclimated: 75 virgin female rats.

Population selected for study: 56 mated female rats (8 per dosage group).

Body Weight and Age:

Female rats will be ordered to have body weights of 200 g to 225 g each at receipt, at which time they will be expected to be at least 60 days of age. Actual body weights will be recorded the day after receipt and will be documented in the raw data.

Sex:

Female rats will be given the test article. Male rats of the same source and strain will be used only as breeders and are not considered part of the Test System.

Source:

Charles River Laboratories, Inc.

The rats will be shipped in filtered cartons by air freight and/or truck from Charles River Laboratories, Inc., to the Testing Facility.

Identification:

Rats are permanently identified using Monel® self-piercing ear tags (Gey Band and Tag Co., Inc., No. MSPT 20101). Male rats are given unique permanent identification numbers upon assignment to the Testing Facility's breeder male rat population. Female rats are assigned temporary numbers at receipt and given unique permanent identification numbers when assigned to the study on the basis of day 0 of presumed gestation body weights.

Protocol 418-011P Page 6

ANIMAL HUSBANDRY:

All cage sizes and housing conditions are in compliance with the Guide for the Care and Use of Laboratory Animals⁽⁴⁾.

Housing:

The rats will be individually housed in stainless steel, wire-bottomed cages except during the cohabitation period. During cohabitation, each pair of rats will be housed in the male rat's cage. No nesting materials will be supplied because the female rats will be sacrificed before parturition is expected.

Room Air, Temperature and Humidity:

The animal room is independently supplied with at least ten changes per hour of 100% fresh air that has been passed through 99.97% HEPA filters (Airo Clean® room). Room temperature will be maintained at 64°F (18°C) to 79°F (26°C) and monitored constantly. Room humidity will also be monitored constantly and maintained at 30% to 70%.

Light:

An automatically controlled 12-hour light:12-hour dark fluorescent light cycle will be maintained. Each dark period will begin at 1900 hours EST.

Diet:

Rats will be given Certified Rodent Diet® #5002 (PMI Nutrition International) available ad libitum from individual feeders.

Water:

Water will be available ad libitum from individual bottles attached to the cages or from an automatic watering access system. All water will be from a local source and passed through a reverse osmosis membrane before use. Chlorine will be added to the processed water as a bacteriostat; processed water is expected to contain no more than 1.2 ppm chlorine at the time of analysis. Water is analyzed monthly for possible bacterial contamination and twice annually for possible chemical contamination.

Contaminants:

Neither the Sponsor nor the Study Director is aware of any potential contaminants likely to be present in the certified diet or in the drinking water at levels that would interfere with the results of this study. Therefore, no analyses other than those routinely performed by the feed supplier or those mentioned in this protocol will be conducted.

418-011P:PAGE 65

Protocol 418-011P Page 7

RANDOMIZATION AND COHABITATION:

Upon arrival, male and female rats will be assigned to individual housing on the basis of computer-generated random units. After acclimation, virgin female rats will be cohabited with breeder male rats, one male rat per female rat. The cohabitation period will consist of a maximum of five days. Female rats with spermatozoa observed in a smear of the vaginal contents and/or a copulatory plug observed in situ will be considered to be at day 0 of presumed gestation and assigned to individual housing.

Healthy mated female rats will be assigned to dosage groups based on computergenerated (weight-ordered) randomization procedures.

ADMINISTRATION:

Route and Reason for Choice:

The oral (gavage) route was selected for use because: 1) in comparison with the dietary route, the exact dosage can be accurately administered; and 2) it is one of the possible routes of human exposure.

Method and Frequency:

Female rats will be given the test article once daily on days 6 through 17 of presumed gestation, the period of organogenesis. Dosages will be adjusted for the most recently recorded body weight and given at approximately the same time each day.

Rationale for Dosage Selection:

Dosages will be selected by the Sponsor on the basis of previous studies conducted with the test article.

Protocol 418-011P Page 8

Dosage Levels, Concentrations and Volumes:

Dosage Group	Number of Rats	Dosage (mg/kg/day)	Concentration (mg/mL)	Dosage Volume (mL/kg)	Argus Batch Number
ı	8	0 (Vehicle)	0	5	B-418-011P-A(Day.Month.Year)
11	8	1	D.2	5	B-418-011P-B(Day.Month.Year)
(1)	8	5	1	5	B-418-011P-C(Day.Month.Year)
IV	8	10	2	5	B-418-011P-D(Day Month Year)
	8	20	4	5	B-418-011P-E(Day.Month.Year)
VI	8	25	5	5	B-418-011-P-F(Day Month Year)
VII	8	35	7	5	B-418-011-P-G(Day.Month.Year)

The test article will be considered 100% pure for the purpose of dosage calculations.

TESTS, ANALYSES AND MEASUREMENTS:

Viability:

All Periods:

At least twice daily.

Clinical Observations and/or General Appearance:

Acclimation Period:

Weekly.

Predosage Period:

Day 0 of presumed gestation.

Dosage Period:

Twice daily. Once approximately one hour postdosage and then four to six hours later.

Postdosage Period:

Once daily.

Clinical observations may be recorded more frequently than cited above, if deemed appropriate by the Study Director and/or Study Monitor.

Body Weights:

Acclimation Period:

Weekly.

Predosage Period:

Days 0 and 4 of presumed gestation.

Dosage Period:

Daily.

Postdosage Period:

Daily.

Protocol 418-011P Page 9

Feed Consumption Values (recorded and tabulated):

Predosage Period:

Days 0 and 4 of presumed gestation.

Dosage Period:

Days 6, 8, 10, 12, 14 and 16 of presumed gestation.

Postdosage Period:

Days 18 and 20 of presumed gestation.

Feed consumption values may be recorded more frequently if it is necessary to replenish the feed. These intervals will not be tabulated.

Mating Performance:

Mating will be evaluated daily during the cohabitation period and confirmed by observation of spermatozoa in a smear of the vaginal contents and/or a copulatory plug observed *in situ*.

Caesarean-Sectioning Observations:

Rats will be Caesarean-sectioned on day 20 of presumed gestation. The fetuses will be removed from the uterus and placed in individual containers. The rats will be examined for number and distribution of:

Corpora Lutea.

Implantation Sites.

[Placentae that appear abnormal (size, color or shape) will be noted in the raw data.]

Live and Dead Fetuses.

(A live fetus is defined as one that responds to stimuli; a dead fetus is defined as a term fetus that does not respond to stimuli and that is not markedly autolyzed; dead fetuses demonstrating marked to extreme autolysis are considered to be late resorptions.)

Early and Late Resorptions.

(A conceptus is defined as a late resorption if it is grossly evident that organogenesis has occurred; if this is not the case, the conceptus is defined as an early resorption.)

418-011P:PAGE 68

Protocol 418-011P Page 10

Fetal Observations:

Fetuses will be examined for sex and for gross external alterations. Late resorptions and dead fetuses will be examined for gross external alterations to the extent possible. The body weight of each fetus will be recorded. Only body weights of live fetuses will be used to determine litter fetal body weight averages. Fetuses with gross external alterations will be fixed in Bouin's solution; all other fetuses will be discarded. Representative photographs of fetal gross external alterations will be taken.

METHOD OF SACRIFICE:

Rats will be sacrificed by carbon dioxide asphyxiation. Live fetuses will be sacrificed by an intraperitoneal injection of euthanasia solution (Beuthanasia®-D Special, manufactured by Schering-Plough Animal Health).

NECROPSY:

Gross lesions will be retained in neutral buffered 10% formalin for possible future evaluation (a table of random units will be used to select one control group rat from which all tissues examined at necropsy will be retained, in order to provide control tissues for any possible histopathological evaluations of gross lesions). Unless specifically cited below, all other tissues will be discarded.

Scheduled Sacrifice:

On day 20 of presumed gestation, female rats will be Caesarean-sectioned, and a gross necropsy of the thoracic, abdominal and pelvic viscera will be performed. Uteri of apparently nonpregnant rats will be stained with 10% ammonium sulfide to confirm the absence of implantation sites⁽⁵⁾.

Rats Found Dead or Moribund:

Rats that die or are sacrificed because of moribund condition, abortion or premature delivery will be examined for the cause of death or moribund condition on the day the observation is made. The rats will be examined for gross lesions. Pregnancy status and uterine contents of female rats will be recorded. Aborted fetuses and/or delivered pups will be examined to the extent possible, using the same methods described for fetuses. Uteri of apparently nonpregnant rats will be stained with 10% ammonium sulfide to confirm the absence of implantation sites⁽⁵⁾.

418-011P:PAGE 69

Protocol 418-011P Page 11

STATISTICAL EVALUATION:

Averages and percentages will be calculated. Litter values will be used where appropriate. Additional procedures and/or analyses may be performed if deemed appropriate.

DATA ACQUISITION, VERIFICATION AND STORAGE:

Data will be hand- and/or computer-recorded. Records will be reviewed by the Study Director and/or appropriate management personnel within 21 days after generation. All original records will be stored in the archives of the Testing Facility. All original data will be bound and indexed. A copy of all raw data will be supplied to the Sponsor upon request. Preserved tissues will be stored at the Testing Facility at no charge for one year after mailing of the draft final report, after which time the Sponsor will be contacted to determine the disposition of these materials.

RECORDS TO BE MAINTAINED:

Protocol and Amendments.

Test Article, Vehicle and/or Reagent Receipt, Preparation and Use.

Animal Acquisition.

Randomization Schedules.

Mating History.

Treatment (if prescribed by Staff Veterinarian).

General Comments.

Clinical Observations and/or General Appearance.

Body Weights.

Feed Consumption Values.

Caesarean-Sectioning and Fetal Observations.

Gross Necropsy Observations.

Organ Weights (if required).

Photographs (if required).

Study Maintenance (room and environmental records).

Feed and Water Analyses.

Packing and/or Shipment Lists.

Protocol 418-011P Page 12

KEY PERSONNEL:

Executive Director of Research: Mildred S. Christian, Ph.D., ATS

Director of Research: Alan M. Hoberman, Ph.D., DABT

Associate Director of Research and Study Director: Raymond G. York, Ph.D., DABT

Director of Laboratory Operations: John F. Barnett, B.S. Manager of Study Coordination: Valerie A. Sharper, M.S.

Manager of Animal Operations and Member, Institutional Animal Care and

Use Committee: Dena C. Lebo, V.M.D.

Manager of Regulatory Compliance: Kathleen A. Moran, M.S.

Consultant, Veterinary Pathology: W. Ray Brown, D.V.M., Ph.D., ACVP

REPORT:

A letter report for the purpose of dosage selection for the full study will be prepared immediately following completion of the in-life phase.

A summary report will be prepared including: abstract, summaries of the methods, results and conclusion; table of contents; copy of the protocol; amendments; summary and individual tables; and reports of supporting data (if appropriate). The report will be included as an appendix to the full study report. The Sponsor will receive one copy of the draft report and two copies of the final report.

INSTITUTIONAL ANIMAL CARE AND USE COMMITTEE STATEMENT:

The procedures described in this protocol have been reviewed by the Testing Facility's Institutional Animal Care and Use Committee. All procedures described in this protocol that involve study animals will be conducted in a manner to avoid or minimize discomfort, distress or pain to the animals.

The Sponsor's signature below documents the fact that information concerning the necessity for conducting this study and the fact that this is not an unnecessarily duplicative study may be obtained from the Sponsor. No alternative (*in vitro*) procedures were available for meeting the stated purposes of the study.

Protocol 418-011P Page 13

REFERENCES:

- Christian, M.S. and Voytek, P.E. (1982). In Vivo Reproductive and Mutagenicity Tests. Environmental Protection Agency, Washington, D.C. National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.
- Christian, M.S. (1984). Reproductive toxicity and teratology evaluations of naltrexone (Proceedings of Naltrexone Symposium, New York Academy of Sciences, November 7, 1983), J. Clin. Psychiat. 45(9):7-10.
- 3. Lang, P.L. (1988). Embryo and Fetal Developmental Toxicity (Teratology)
 Control Data in the Charles River Crl:CD®BR Rat. Charles River Laboratories,
 Inc., Wilmington, MA 01887-0630. (Data base provided by Argus Research
 Laboratories, Inc.)
- Institute of Laboratory Animal Resources (1996). Guide for the Care and Use of Laboratory Animals. National Academy Press, Washington, D.C.
- Salewski, E. (1964). Färbemethode zum makroskopischen Nachweis von Implantationsstellen am Uterus der Ratte. Arch. Pathol. Exp. Pharmakol. 247:367.

Protocol 418-011P Page 14

PROTOCOL APPROVAL:

FOR THE TESTING FACILITY

George E. Dearlove, Ph.D., DABT
Associate Director of Research

Raymond G. York, Ph.D., DABT Associate Director of Research

Study Director

Dena C. Lebo, V.M.D.

Member, Institutional Animal Care and

Use Committee

FOR THE SPONSOR

Marvin T. Case, D.V.M., Ph.D.

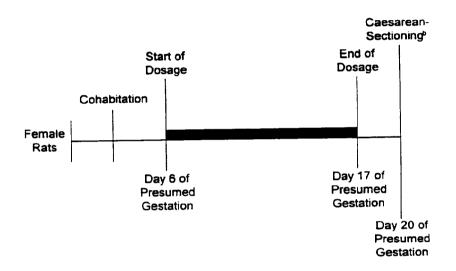
Study Monitor

11 June 1998
Date

Date

Date

Date


418-011P:PAGE 73

ATTACHMENT 1 SCHEMATIC OF STUDY DESIGN AND STUDY SCHEDULE

ATTACHMENT 1

418-011P:PAGE 74 Protocol 418-011P Page 1 of 2

STUDY SCHEMATIC DOSAGE-RANGE DEVELOPMENTAL TOXICITY STUDY

Dosage Period.

- For additional details see "Tests, Analyses and Measurements" section of the protocol.
- Fetal evaluations (all fetuses external examinations). b.

Protocol 418-011P

Page 2 of 2

ATTACHMENT 1

SCHEDULE*

Arrival Date - Acclimation Begins. 16 JUN 98 Cohabitation Period. 22 JUN 98 PM - 27 JUN 98 AM Day 0 of Presumed Gestation. 23 JUN 98 - 27 JUN 98 Dosage Period (Days 6 through 17 of 29 JUN 98 - 14 JUL 98 presumed gestation). Caesarean-Sectioning Period (Day 20 of 13 JUL 98 - 17 JUL 98 presumed gestation). Letter Report. 24 JUL 98 Summary Report.

29 SEP 98

The study initiation date is the date the Study Director signs the protocol. a.

ATTACHMENT 2 MATERIAL SAFETY DATA SHEET

N-E+FOSE 418-011P:PAGE 77

MATERIAL SAFETY **3M** 3M Center DATA SHEET St. Paul, Minnesota 55144-1000 1-800-364-3577 or (612) 737-6501 (24 hours) Copyright, 1998, Minnesota Mining and Manufacturing Company. All rights reserved. Copying and/or downloading of this information for the purpose of properly utilizing 3M products is allowed provided that: 1) the information is copied in full with no changes unless prior agreement is obtained from 3M, and 2) neither the copy nor the original is resold or otherwise distributed with the intention of earning a profit thereon. DIVISION: 3M CHEMICALS TRADE NAME: FC-10 FLUORAD Brand Fluorochemical Alcohol 98-0211-1113-7 00-51135-09495-2 98-0211-1183-0 00-51135-09542-3 98-0211-1575-7 00-51135-02145-3 98-0211-6620-6 00-51135-10439-2 ID NUMBER/U.P.C.: ZF-0002-0572-2 -ISSUED: January 29, 1998 SUPERSEDES: November 05, 1997 DOCUMENT: 10-3778-7 C.A.S. NO. PERCENT 1. INGREDIENT PERFLUOROOCTANESULFONAMIDO ALCOHOL.... 1691-99-2 80.0
PERFLUOROHEXANESULFONAMIDO ALCOHOL.... 34455-03-3 3.0
PERFLUOROHEPTANESULFONAMIDO ALCOHOL.... 68555-73-7 2.0
PERFLUOROBUTANESULFONAMIDO ALCOHOL.... 34449-89-3 2.0
PERFLUOROPENTANESULFONAMIDO ALCOHOL.... 68555-72-6 1.0 80.0 - 90.0 - 7.0 - 6.0 2. PHYSICAL DATA BOILING POINT:..... ca. 118 C @ 1 mm Hg VAPOR PRESSURE:.... < 10 mmHg Calc @ 20 C VAPOR DENSITY:.... > 1.0 Air=1 Calc @ 20 C. EVAPORATION RATE:..... < 1.0 BuOAc=1 SOLUBILITY IN WATER:.... neglig. SPECIFIC GRAVITY:..... ca. 1.7 Water=1 (of melt) PERCENT VOLATILE:..... 0 % MELTING POINT:..... N/D 10 171419 Abbanisticas N/D Not Determined N/A - Not Applicable CA - Approximately

SDS: FC-10 FLUORAD Brand Fluorochemical Alcohol anuary 29, 1998	PAGE 2
2. PHYSICAL DATA (continued)	
APPEARANCE AND ODOR: Amber waxy solid	
3. FIRE AND EXPLOSION HAZARD DATA	
FLASH POINT:	
EXTINGUISHING MEDIA: Water, Carbon dioxide, Dry chemical, Foam	
SPECIAL FIRE FIGHTING PROCEDURES: Wear full protective clothing, including helmet, self-containe positive pressure or pressure demand breathing apparatus, bunk and pants, bands around arms, waist and legs, face mask, and protective covering for exposed areas of the head.	ed, ker coat
UNUSUAL FIRE AND EXPLOSION HAZARDS: See Hazardous Decomposition section for products of combustion	٦.
4. REACTIVITY DATA	
STABILITY: Stable	
INCOMPATIBILITY - MATERIALS/CONDITIONS TO AVOID: Not applicable.	
HAZARDOUS POLYMERIZATION: Hazardous polymerization will not occ	ur.
HAZARDOUS DECOMPOSITION PRODUCTS: Carbon Monoxide and Carbon Dioxide, Oxides of Nitrogen, Oxide Sulfur, Hydrogen Fluoride, Toxic Vapors, Gases or Particulate	es of es.
5. ENVIRONMENTAL INFORMATION	
SPILL RESPONSE:	ng 10 17142
physical and health hazards, respiratory protection, ventilal personal protective equipment. Collect spilled material. Contesting Place in a U.S. DOT-approved container.	C_DII, C
NA MAT ANNIGHTE CA	- Approximately

MSDS: FC-10 FLUORAD Brand Fluorochemical Alcohol January 29, 1998	PAGE 3
5. ENVIRONMENTAL INFORMATION (continued)	
RECOMMENDED DISPOSAL: Incinerate in a permitted hazardous waste incinerator in the of a combustible material. Combustion products will include Dispose of waste product in a facility permitted to accept waste.	ne presence de HF.
ENVIRONMENTAL DATA: Laboratory tests showed no biodegradation. 96-Hr. LD50 Far (Pimephales promelas) - No mortality at water saturation. statistically significant effect on % hatch, % survival, w length in 30 day Fathead Minnow egg fry study. Lab tests fold bioconcentration of FC-10 into muscle fillets of chan	eight, and showed 200
REGULATORY INFORMATION: Volatile Organic Compounds: N/A. VOC Less H2O & Exempt Solvents: N/A.	
This product complies with the chemical registration requi	irements of
EPCRA HAZARD CLASS: FIRE HAZARD: No PRESSURE: No REACTIVITY: No ACUTE: Yes	CHRONIC: Yes
6. SUGGESTED FIRST AID	
EYE CONTACT: Immediately flush eyes with large amounts of water. Get in medical attention.	mmediate
SKIN CONTACT: Immediately wash skin with soap and large amounts of wate contaminated clothing. If signs/symptoms occur, call a ph Wash contaminated clothing before reuse and dispose of co shoes.	
<pre>INHALATION: If signs/symptoms occur, remove person to fresh air. If signs/symptoms continue, call a physician.</pre>	
IF SWALLOWED: Call a physician IMMEDIATELY. If swallowed, induce vomit: immediately as directed by medical personnel. Never give mouth to an unconscious person.	ing anything by
	10 17142

418-011P PAGE 80

MSDS: FC-10 FLUORAD Brand Fluorochemical Alcohol January 29, 1998

PAGE 4

7. PRECAUTIONARY INFORMATION

EYE PROTECTION:

Avoid eye contact. Wear safety glasses with side shields.

SKIN PROTECTION:

Avoid skin contact. Wear appropriate gloves when handling this material. A pair of gloves made from the following material(s) are recommended: butyl rubber. Use one or more of the following personal protection items as necessary to prevent skin contact: coveralls.

RECOMMENDED VENTILATION:

Use with appropriate local exhaust ventilation. Provide sufficient ventilation to maintain emissions below recommended exposure limits. If exhaust ventilation is not adequate, use appropriate respiratory protection.

RESPIRATORY PROTECTION:

Avoid breathing of airborne material. Select one of the following NIOSH approved respirators based on airborne concentration of contaminants and in accordance with OSHA regulations: half-mask dust respirator, full-face supplied air respirator.

PREVENTION OF ACCIDENTAL INGESTION:

Do not eat, drink or smoke when using this product. Wash exposed areas thoroughly with soap and water. Wash hands after handling and before eating.

RECOMMENDED STORAGE:

Store away from heat. Keep container closed when not in use.

FIRE AND EXPLOSION AVOIDANCE:

Nonflammable.

OTHER PRECAUTIONARY INFORMATION:

No smoking: Smoking while using this product can result in contamination of the tobacco and/or smoke and lead to the formation of the hazardous decomposition products mentioned in section 4 of this MSDS.

10 171422

HMIS HAZARD RATINGS: HEALTH: 1 FLAMMABILITY: 1 REACTIVITY: 0

PERSONAL PROTECTION: X (See precautions, section 7.)

EXPOSURE LIMITS

INGREDIENT	VALUE	TINU	TYPE	AUTH	SKIN*
PERFLUOROOCTANESULFONAMIDO ALCOHOL PERFLUOROHEXANESULFONAMIDO ALCOHOL	0.1	MG/M3 MG/M3	TWA TWA	3M 3M	Y Y
PERFLUOROHEPTANESULFONAMIDO	0.1	MG/M3	TWA.	3M	Υ
ALCONOL.	Na+	Annlicable	CA -	Approxi	mately

MSDS: FC-10 FLUORAD Brand Fluorochemical Alcohol

Jar.uary 29, 1998

PAGE 5

EXPOSURE LIMITS	(con	tinued)			
INGREDIENT	VALUE	UNIT	TYPE	AUTH	SKIN*
PERFLUOROBUTANESULFONAMIDO ALCOHOL	0.1	MG/M3	TWA	3M	Y
PERFLUOROPENTANESULFONAMIDO ALCOHOL	0.1	MG/M3	TWA	ЭМ	Y
werettow listed substances ind	icated W	with 'Y'	under SKIN	refer	to

* SKIN NOTATION: Listed substances indi the potential contribution to the overall exposure by the cutaneous route including mucous membrane and eye, either by airborne or, more particularly, by direct contact with the substance. Vehicles can alter skin absorption.

SOURCE OF EXPOSURE LIMIT DATA:

3M Recommended Exposure Guidelines - 3M:

8. HEALTH HAZARD DATA

FYF CONTACT: No adverse health effects are expected from eye contact.

SKIN CONTACT:

Product is not expected to be irritating to the skin.

May be absorbed through the skin and persist in the body for an extended time.

INHALATION:

May be absorbed by inhalation and persist in the body for an extended time.

IF SWALLOWED:

Ingestion is not a likely route of exposure to this product.

Illness may occur after a single swallowing of relatively large quantities of this material.

MUTAGENICITY:

Not mutagenic in in-vitro assays.

REPRODUCTIVE/DEVELOPMENTAL TOXINS:

Substance was not teratogenic in the rat at doses as high as 30 milligrams per kilogram per day via oral route.

OTHER HEALTH HAZARD INFORMATION:

This product is not known to contain any substances regulated under California Proposition 65.

A Product Toxicity Summary Sheet is available.

10 171423

. was Applicable CA - Approximately

MSDS: FC-10 FLUORAD Brand Fluorochemical Alcohol
January 29, 1998

SECTION CHANGE DATES

HEADING

SECTION CHANGED SINCE November 05, 1997 ISSUE

Abbreviations: N/D - Not Determined N/A - Not Applicable CA - Approximately

The information in this Material Safety Data Sheet (MSDS) is believed to be correct as of the date issued. 3M MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR COURSE OF PERFORMANCE OR USAGE OF TRADE. User is responsible for determining whether the 3M product is fit for a particular purpose and suitable for user's method of use or application. Given the variety of factors that can affect the use and application of a 3M product, some of which are uniquely within the user's knowledge and control, it is essential that the user evaluate the 3M product to determine whether it is fit for a particular purpose and suitable for user's method of use or application.

3M provides information in electronic form as a service to its customers. Due to the remote possibility that electronic transfer may have resulted in errors, omissions or alterations in this information, 3M makes no representations as to its completeness or accuracy. In addition, information obtained from a database may not be as current as the information in the MSDS available directly from 3M.

418-011P:PAGE 83

ATTACHMENT 3 TEST ARTICLE AND CONTROL ARTICLE PREPARATION PROCEDURE

ATTACHMENT 3

Protocol 418-011P Version: 418-011P (09 JUN 98) Page 1 of 3

TEST ARTICLE AND CONTROL ARTICLE PREPARATION PROCEDURE

	Test A	rticle:	N-EtFOSE					
	Vehick	e:	2% Tween®	80, in R.O	. Water			
Α.	Purpose:	of dosage su	of this proces spensions of n to rats on A	N-EtFOSE	and the	control at	or the prepara ticle for oral	tion
В.	General I	nformation:						
	1.	specify the p	rotocol numb centration, do	er, test arti	cle identi	ification, A	ed. Each labe Argus batch expiration da	
	2a.	Suspensions X Daily	will be prepa —	ared: Weekly	F	or da	ys of use	
	2b.	Vehicle will Daily	be prepared:	Weekiy	F	or da	ys of use	
	3.	Suspensions	s will be prepa	ared at a fil	nal dosaç	ge volume	of 5 mL/kg.	
	4.	X Dust-Half-I	es, lab coat, g Mist Respirat Face Respirat Face Respirat k Suit/Apron	tor tor			faceshield	
	5.	Yes	utions adjusteX_ Base	ed for Free No (Calc Purity	base and ulations	l % Purity based on	100%)	
	6.	Sampling re	quirements:	Cited in pro	otocol.			
	7 .	Storage: C	ited in protoc	ol.				

418-011P:PAGE 85

ATTACHMENT 3

Protocol 418-011P Version: 418-011P (09 JUN 98) Page 2 of 3

TEST ARTICLE AND CONTROL ARTICLE PREPARATION PROCEDURE

NOTE:

Test article will be prepared as a serial dilution from the high dosage to the low dosage. Once the final volumes are achieved, stir bars are to be added to the containers; mixing should occur during sampling and/or administration.

- C. Preparation of Vehicle
 - 1. Add the required amount of R.O. deionized water to an appropriately labeled container. Heat the water to 50°C, ±5°C, add the required amount of Tween® 80 and mix until uniform (See TEST ARTICLE CALCULATIONS).
- D. Test Article Suspension Preparation:
 - To prepare the 7-mg/mL, Group VII suspension, add the required amount of test article (See TEST ARTICLE CALCULATIONS) into an appropriately sized, labeled container. Add the required amount of vehicle and heat the mixture to 80°C, ±5°C for approximately 30 minutes.
 - Once the test article has dissolved; spin over night while the solution cools. (Be sure there is a visible vortex, this will achieve the desired emulsion.)
 - To prepare the 5-mg/mL, Group VI suspension, remove the required amount of stock suspension (Group VII) (See TEST ARTICLE CALCULATIONS), add the required amount of vehicle and mix.
 - To prepare the 4-mg/mL, Group V suspension, remove the required amount of stock suspension (Group VI) (See TEST ARTICLE CALCULATIONS), add the required amount of vehicle and mix.
 - To prepare the 2-mg/mL, Group IV suspension, remove the required amount of stock suspension (Group V) (See TEST ARTICLE CALCULATIONS), add the required amount of vehicle and mix.

418-011P:PAGE 86

ATTACHMENT 3

Protocol 418-011P Version: 418-011P (09 JUN 98)

Page 3 of 3

TEST ARTICLE AND CONTROL ARTICLE PREPARATION PROCEDURE

- To prepare the 1-mg/mL, Group III suspension, remove the required 6. amount of stock suspension (Group IV) (See TEST ARTICLE CALCULATIONS), add the required amount of vehicle and mix.
- To prepare the 0.2-mg/mL, Group II suspension, remove the required 7. amount of stock suspension (Group III) (See TEST ARTICLE CALCULATIONS), add the required amount of vehicle and mix.

Written by: ______

Approved by:

Clarification: Yes (See attached clarification form.)

Initials/Date: Chambothe R. Karyet 7/22/95

Argus Research Laboratories, inc. 905 Sheehy Drive, Building A Horsham, Pennsylvania 19044 T: (215) 443-8710 F: (215) 443-8587

PROTOCOL 418-011P

ORAL (GAVAGE) DOSAGE-RANGE DEVELOPMENTAL TOXICITY STUDY OF N-EIFOSE IN RATS

SPONSOR'S STUDY NUMBER: T-6316.7

Amendment 1 - June 18, 1998

Clinical Observations and/or General Appearance (page 8 of the protocol): Clinical observations during the dosage period will be taken twice daily, prior to dosage administration and once approximately one hour postdosage, rather than once approximately one hour postdosage and then four to six hours later.

Reason for Change:

1.

This change was made at the request of the Sponsor to match the time frames of the other reproductive/developmental toxicity studies using the same test article.

George EDearlove, Ph.D., DABT Date Raymond G. York, Ph.D., DABT Associate Director of Research

Associate Director of Research

and Study Director

Dena C. Lebo, V.M.D.

Date

Marvin T. Case, D.V.M., Ph.D.

Date

18-JUN-98

Date

Member, Institutional Animal Care and

Use Committee

Study Monitor

APPENDIX G HISTORICAL CONTROL DATA

SUMMARY OF REPRODUCTIVE INDICES CD RAT

PERIOD	JUNE 1995	- JUNE 199	7
NUMBER OF STUDIES		9	7
NUMBER OF RATS:	TESTED	213	2
	PREGNANT	196	57
	OUND DEAD		3
•	ABORTED		0
	DELIVERED		0
	DELLAEVED		•
NUMBER OF RATS PREG		195	- 7
CAESAREAN-SECTION	IING	19:	· /
NUMBER OF RATS WITE			
CONCEPTUS LITTER:	LIVE		5
			0
	RESORBED		0
	ABORTED		0
		MEAN or 8	RANGE/STUDY MEAN or %
		MEAN OF &	ribia. Oz -
% PREGNANT		92.8	(64.0-100)
AVERAGE # CORPORA	LUTEA	17.3	(15.2-21.0)
AVERAGE # IMPLANTA	TIONS	15.6	(12.9-18.0)
AVERAGE LITTER SIZ	E		
AVERAGE # LIVE F	ETUSES	14.8	(11.8-17.0)
AVERAGE # DEAD F	ETUSES	0.1	(0-1.1)
AVERAGE # RESORPTI	ONS	0.8	(0-1.6)
AVERAGE # RESORPTI AVERAGE # BARLY			

SUMMARY OF REPRODUCTIVE INDICES CD RAT

	MEAN or %	RANGE/STUDY MEAN or %
AVERAGE & DAMS WITH ANY RESORPTIONS	48.4	(0-75.0)
AVERAGE & DAMS WITH ALL CONCEPTUSES RESORBED	0.1	(0-4.5)
AVERAGE & DAMS WITH ONE OR MORE LIVE FETUSES	99.9	(95.4–100)
AVERAGE SEX RATIO, (% MALES/LITTER)	50.2	(42.1-57.0)
AVERAGE FETAL BODY WEIGHT (G)	3.47	(3.10-3.78)
AVERAGE FOR MALES (G)	3.56	(3.17-3.90)
AVERAGE FOR FEMALES (G)	3.37	(2.98-3.66)
AVERAGE % DEAD OR RESORBED CONCEPTUSES/LITTER	5.0	(0-10.9)

SUMMARY OF MATERNAL NECROPSY OBSERVATIONS CD RAT

P	ERIOD		JUNE 1995 -	JUNE			
#	STUD	IES			120		
#	RATS	TEST	BD .		2579		
	RATS	PREGI	VANT		2387		
-	RATS				4		
#	RATS	ABOR:	red		0		
#	RATS	DELIV	VERED		439		
#	RATS	WITH	100% RESORPTION		1		
-							
					MEAN	DANCI	z /STUDY
_	XTERN			w	MBAN	N	\$,210D1
0	BSERV	ATION	= -	N	•		•
			Red substance around	_			(0.2.3)
			nose and/or mouth	1	0.04	0-1	(0-3.3)
			Incisors misaligned	_			
			broken and/or missing	2	0.08		
			Chromodacryorrhea	2			(0-6.7)
			Alopecia	3	0.12	0-3	(0-10.0)
			White substance present				
			in anterior chamber of				
			eyes	1	0.04	0-1	(0-4-2)
		GR	oss Lesions				
c	HEMEN	DIRIT.	AR LYMPH NODES				
3	OBPLEN	<i>D</i>	Dark red	1	0.04	0-1	(0-3-3)
			Jair 100	_	•	-	,
J	UGULA	R VEI	n				
Ī			Distended with blood	1	0.04	0-1	(0-3.3)
							•
_	HEST						
٠			Subcutaneous fat, dark				
			red on ventral side	1	0.04	0-1	(0-3.3)
			100 ou courter state	_			, ,
4	HORAC	IC CA	VTTY				
•			Filled with light red				
			fluid	1	0.04	0-1	(0-4.0)
				-	J		,,
***	HYMUS	ı					•
1	HIMUS		Discolored areas	າ	0.08	0-2	(0-6.7)
				1			•
			Large	1	0.04	0-1	(0-4.0)
_	w						
A	XILLA	L	••	-	0.04	0 7	(0.4.0)
			Mass present	1	0.04	0-1	(0-4.0)

SUMMARY OF MATERNAL NECROPSY OBSERVATIONS CD RAT

GROSS LESIONS	N	MEAN %	RANGI N	s /study
Adhesion between left lateral lobe and left lateral abdominal wall	1	0.04	0-1	(0-4-0)
STOMACH/INTESTINE Stomach, fluid-filled	1	0.04	0-1	(0-4.0)
Stomach and intestines	•			(,
distance with gas	1	0.04	0-1	(0-4.0)
Intestines, empty	1	0.04	0-1	(0-4.0)
Cecum contained a black				
substance	1	0.04	0-1	(0-4.0)
BACK				
Spine, protrusion of bone				
on dorsal thoracic				
portion	1	0.04	0-1	(0-4.0)
KIDNEY(S)				
Pelvis, slight/moderate				
dilation with or				
without fluid	17	0.66	0-2	(0-12.5)
Pelvis, marked/extreme				
dilation	5			(0-4.0)
Mottled	2		0-1	•
Large	2		0-1	•
Small	1	0.04		(0-4.0) (0-3.4)
Cortex pitted	1	0.04	0-1	(0-3.4)
Left; pelvis contained yellow fluid	1	0.04	0-1	(0-4.0)
ABDOMINAL CAVITY				
Filled with light red				
fluid	1	0.04	0-1	(0-4.0)
SPLEEN				
Two white areas on	_			
serosal surface	1	0.04	U-1	(0-4.0)
BLADDER				
Fluid-filled	1	0.04	0-1	(0-4.0)
Wall thick, contained one calculi	1	0.04	0-1	(0-12.5)

SUMMARY OF MATERNAL NECROPSY OBSERVATIONS CD RAT

GROSS LESIONS	N	MEAN &	RANGE N	s /STUDY %
URETERS				
Distended with clear	1	0.04	0_1	(0-4-0)
fluid	-	0.04	0-1	(0 000)
VAGINA/CERVIX				
Cervix distended with				
fluid	1	0.04	0-1	(0-4-0)
Cervix contained a thick,				_
brown substance	1	0.04	0-1	(0-4.0)
Cervix contained a dark				
red, gelatinous				
substance	1	0.04	0-1	(0-4.0)
Cervix contained green,				
viscous fluid	1	0.04	0-1	(0-4.0)
Vagina contained brown,	_			
viscous fluid	1	0.04	0-1	(0-2.1)
UTERUS				
Contained red-brown fluid				
and one dead, brown				
fetus	1	0.04	0-1	(0-4.0)
Right horn, absent	2			(0-16.7)
Right horn, threadlike	1	0.04	0-1	(0-2.1)
Left horn, lumen absent				
on cervical end;				
ovarian end, distended				
with clear fluid	1	0.04	0-1	(0-4-0)
Right horn, clear masses,				
contained gelatinous				
substance	1	0.04	0-1	(0-4-0)
FORELIMB				
Lesion present	1	0.04	0-1	(0-3.3)

SUMMARY OF FETAL EXTERNAL ALTERATIONS CD RAT

PERIOD	JUNE 1	995 - •	JUNE	1997		
# STUDIES	INCLUDED			86		
	EXAMINED			1745		
	TUSES EXAMINED		2	5613		
4 DIVE ID						
ALTER	ATION					/STUDY
			N	*	N	•
HEAD		_	_		0 1	(0-4-5)
	Exencephaly	Ţ.	5	0.29	0-1 0-1	(0-0.4)
		F	5	0.02 0.06	0-1	(0-2.2)
	Hematoma	L	1	0.00	0-1	(0-2.2)
		F	1	0.06	0-1	•
	Microcephaly	L	1	-		(0-0.3)
		F	1	0.00	0-1	(0-0.3)
EYES			14	0.80	0-2	(0-12-5)
	Eye bulges	L F	15	0.06	0-2	(0-0.9)
	depressed	_	15	0.06	0-1	(0-4.2)
	Lids open	L F	1	0.00	0-1	(0-0.3)
		F L	1	0.06	0-1	(0-4.0)
	Microphthalmia	F	1	0.00	0-1	(0-0.3)
		F	_	0.00	0-1	(0-0.5)
EARS						
EARS	Low set	L	3	0.17	0-1	(0-12.5)
	DOW BEL	F	3	0.01	0-1	(0-0.9)
		-	_			•
SNOUT						
	Short	L	2	0.11	0-1	(0-4.2)
		F	2	0.01	0-1	(0-0.3)
TONGUE						
	Absent	L	1	0.06	0-1	(0-4.0)
		F	1	0.00	0-1	(0-0.3)
PALATE		_	_			40 4 51
	Cleft	L	4	0.23	0-1	(0-4.5)
		P	4	0.02	0-1	(0-0-4)

L: LITTER INCIDENCE F: FETAL INCIDENCE

SUMMARY OF FETAL EXTERNAL ALTERATIONS CD RAT

ALTER	ATION				RANGE	/STUDY
			N	*	N	*
JAWS						
	Micrognathia	L	5	0.29	0-1	(0-4.5)
		F	5	0.02	0-1	(0-0.3)
	Agnathia	L	1	0.06	0-1	(0-12.5)
		F	1	0.00	0-1	(0-0.9)
BODY			2	0.11	0-1	(0-4.5)
	Edema	L F	2	0.11	0-1	(0-0.4)
	Umbilical hernia	L	7	0.40	0-1	(0-16.7)
	Ombilical nernia	F	7	0.03	0-1	(0-1.1)
	Gastroschisis	L	1	0.06	0-1	(0-4.0)
	Gastioschisis	F	1	0.00	0-1	(0-0.2)
	Trunk short	L	3	0.17	0-2	(0-9.1)
	Trunk Bhort	F	3	0.01	0-2	(0-0.7)
	Spina bifida	L	1	0.06	0-1	(0-4.0)
	Spina bilida	F	1	0.00	0-1	(0-0-2)
	Extra limb pro-	L	1	0.06	0-1	(0-4.5)
	truding from back	_	ī	0.00	0-1	(0-0-4)
	Hematoma	L	ī	0.06	0-1	(0-2.4)
	Hema Coma	F	1	0.00	0-1	(0-0.2)
		-	-			(,
PLACENTA						
	Enlarged	L	1	0.06	0-1	(0-16.7)
	-	F	1	0.00	0-1	(0-1.1)
FORELIMBS						_
	Two digits present	L	1	0.06	0-1	(0-4.3)
	on forepaw	F	1	0.00	0-1	(0-0.3)
HINDLIMBS	B-4-4-4		1	0.06	0-1	(0-4.0)
	Rotated	L F	1	0.00	0-1	(0-0-2)
		Ľ	_	0.00	- 1	(0-0.2)
ANUS						
	No opening present	L	2	0.11	0-1	(0-4.5)
	2 2	F	2	0.01	0-1	(0-0.4)

L: LITTER INCIDENCE F: FETAL INCIDENCE

SUMMARY OF FETAL EXTERNAL ALTERATIONS CD RAT

ALTERATION					RANGE	/STUDY
			N	*	N	*
TAIL						
	Threadlike	L	5	0.29	0-1	(0-5.3)
		F	5	0.02	0-1	(0-0.4)
	Agenesis	L	3	0.17	0-1	(0-4.5)
	-	F	3	0.01	0-1	(0-0.3)
	Split	L	1	0.06	0-1	(0-4.5)
	-	P	1	0.00	0-1	(0-0.4)
	Short	L	2	0.11	0-1	(0-4.3)
		F	2	0.01	0-1	(0-0.3)
	Constricted	L	1	0.06	0-1	(0-2.4)
		F	1	0.00	0-1	(0-0-2)

L: LITTER INCIDENCE F: FETAL INCIDENCE

SUMMARY OF FETAL SOFT TISSUE ALTERATIONS CD RAT

P.	ERIOD	JUNE	1995	_	JUNE	1997
#	STUDIES	INCLUDED				36
ŧ	LITTERS	EXAMINED				845
ŧ	FETUSES	EXAMINED				6091

	ALTERATION			RANGE/STUDY			
			N	*	n	*	
BRAIN							
	Lateral ventricles,	L				(0-3.4)	
	moderate dilation	P				(0-0.6)	
	Lateral ventricles,	L				(0-4.2)	
	marked dilation	F				(0-0.6)	
	Third ventricle,	L				(0-4.2)	
	marked dilation	F	1	0.02	0-1	(0-0.6)	
	Lateral and third vent-						
	ricles, irregularly	L				(0-4.2)	
	shaped	F	1	0.02	0-1	(0-0.6)	
EYES							
	Microphthalmia	L	3	0.36	0-1	$\{0-4.0\}$	
	-	F	3	0.05	0-1	(0-0.6)	
PALATE							
	Cleft	L	2	0.24	0-1	(0-4.0)	
		F	2	0.03	0-1	(0-0.6)	
TONGUE							
	Small	L	1	0.12	0-1	(0-4.3)	
		F	1	0.02	0-1	(0-0.6)	
	Absent	L	1	0.12	0-1	(0-4.0)	
		F	1	0.02	0-1	(0-0.6)	
JAW							
	Micrognathia	L	1	0.12	0-1	(0-4.0)	
		F				(0-0.6)	
HEART							
	Septal defect	L	1	0.12	0-1	(0-4.0)	
		F				(0-0.6)	
		-	_			, ,	

L: LITTER INCIDENCE F: FETAL INCIDENCE

SUMMARY OF FETAL SOFT TISSUE ALTERATIONS CD RAT

	ALTERATION				RANGE	/STUDY
			N	*	N	*
VESSELS						
	Innominate, absent	L	8	0.95		(0-8-0)
		F	8			(0-1.2)
	Innominate, arises on	r	_	0.12	-	(0-4.0)
	left	F	_	0.02		(0-0.6)
	Subclavian artery,	L	_	0.12		(0-3.4)
	absent	F	1	0.02		(0-0.6)
	Ductus arteriosus,	L	1	0.12		(0-3.4) $(0-0.6)$
	absent	F	1	0.02		(0-8.3)
	Umbilical artery,	L		1.18		(0-8.3)
	displaced	F L	11			(0-1.2)
	Situs inversus	F	1			(0-0.6)
	Aorta, descends to right	-	_			(0-4.0)
	Aorta, descends to right	F	ī	0.02		(0-0.6)
	Pulmonary artery,	F	_	0.02	0-1	(0-0.0)
	descends to right	L	1	0.12	0-1	(0-4.0)
	behind aorta	F	ī	0.02		(0-0.6)
	Denima Forca	•	_			(,
LUNGS						
	Right apical, cardiac					
	and diaphragmatic	L	1	0.12	0-1	(0-4.0)
	lobes appear as one	F		0.02		(0-0.6)
	Intermediate lobe,	L	1	0.12	0-1	(0-4.0)
	absent	F	1	0.02	0-1	(0-0.6)
BODY						
	Edema	L	1	0.12		(0-4.0)
		F	1	0.02	0-1	(0-0.6)
ABDOMINA	L CAVITY					
	Situs inversus of liver,					
	intestines, stomach,	_		0 10		(0-4.0)
	spleen, pancreas and	l F	1	0.12		(0-0.6)
	kidneys	R,	1	0.02	0-1	(0-0.0)
						*
KIDNEYS	_ , , _,,_,,	_		0.10		(0 3 7)
	Pelvis, slight dilation	L	1			(0-3.7)
		F	1	0.02	0-1	(0-0.6)

L: LITTER INCIDENCE F: FETAL INCIDENCE

SUMMARY OF FETAL SOFT TISSUE ALTERATIONS CD RAT

ALTERATION					RANGE/STUDY	
			N	*	n	8
SPLEEN	Absent	L	1	0.12	0-1	(0-4.0)
		F	1	0.02	0-1	(0-0.5)
URETERS						
	Distended	L	2	0.24	0-2	(0-8.7)
		F	3	0.05	0-3	(0-1.7)

L: LITTER INCIDENCE F: FETAL INCIDENCE

SUMMARY OF FETAL SKELETAL ALTERATIONS CD RAT

PERIOD	•	JUNE	1995	-	JUNE	1997
# STUDIES	INCLUDED					35
# LITTERS	EXAMINED					820
# FETUSES	EXAMINED					6318

RANGE/S	
ALTERATION N % N	*
SKULL	
Frontal(s): incompletely or L 2 0.24 0-1 (0-	-4.2)
not ossified F 2 0.03 0-1 (0-	-0.6)
Parietal(s): not ossified L 2 0.24 0-1 (0-	-4.2)
F 2 0.03 0-1 (0-	-0.6)
Nasal(s): short L 3 0.36 0-1 (0-	-4.2)
F 3 0.05 0-1 (0	-0.6}
Basisphenoid: incompletely L 1 0.12 0-1 (0	-4.0)
ossified F 1 0.02 0-1 (0-	-0.5)
Sphenoid: irregularly shaped L 1 0.12 0-1 (0-	-4.0)
F 1 0.02 0-1 (0	-0.5)
- Orbit: small	-4-0) -
F 2 0.03 0-1 (0	-0.6)
Maxillae and Premaxillae: L 3 0.36 0-1 (0	-4.2)
short F 3 0.05 0-1 (0	-0.6)
Skull: incompletely or L 2 0.24 0-1 (0	-4.2)
not ossified F 3 0.05 0-2 (0	-1.2)
Skull: fused L 1 0.12 0-1 (0	-4.0)
F 1 0.02 0-1 (0	-0.5)
VERTEBRAE	
Cervical: Arch, open L 1 0.12 0-1 (0	•
F 1 0.02 0-1 (0	
: Fused L 1 0.12 0-1 (0	
F 1 0.02 0-1 (0	-0.5)
Thoracic: Centrum, bifid L 71 8.66 0-8 (0	-29.6)
F 77 1.22 0-9 (0	-4.7)
: Centra, unilateral L 8 0.98 0-2 (0	
ossification F 8 0.13 0-2 (0	-1.0)
: Centrum,	
incompletely or L 3 0.36 0-2 (0	-8.3)
not ossified F 4 0.06 0-3 (C)-1.8)

L: LITTER INCIDENCE F: FETAL INCIDENCE

SUMMARY OF FETAL SKELETAL ALTERATIONS CD RAT

			RANGE/STUDY		
ALTERATION		N	*	N	*
VERTEBRAE (CONT.) Thoracic (cont.)					_
: Centra, fused	L	_	0.12		(0-4-2)
	F	_	0.02		(0-0.5)
: Arch, open	L		0.12		(0-4.0)
. Mony open	F	1	0.02		(0-0.5)
: Arch, small	L	1			(0-3.4)
. 120.17	F	1	0.02	0-1	(0-0-5)
Lumbar: Centrum, bifid	L	2	0.24		(0-3.8)
Lumbar.	F	2	0.03		(0-0.5)
: Centra, fused	L	1	0.12	0-1	(0-4.3)
	F	1	0.02	0-1	(0-0.6)
: Centrum, incompletely	L	2	0.24		(0-8.3)
or not ossified	F	3	0.05		(0-1.8)
: Arches, incompletely	L	15	1.83		(0-12.0)
or not ossified	F	21	0.33		(0-2.1)
: 1, present	L	1	0.12		(0-4-3)
; I, present	P	1	0.02		(0-0.6)
: Arch, open	L	1	0.12		(0-4-0)
· radii, 4F	F	1	0.02		(0-0.5)
: Centra, unilateral	L	2	0.24		(0-4.2)
ossification	F	2	0.03	0-1	(0-0.6)
					40 4 3)
Sacral: None, present	L	1	0.12		(0-4.3)
	F		0.02	0-1	(0-0-6) (0-4-0)
: Arch, open	L		0.12		(0-0.5)
	F	1	0.02	0-1	. (0-0.5)
		•	0.12	0-1	(0-4.3)
Caudal: None present	L F		0.02		(0-0.6)
<u>.</u>	E L		0.12		(0-4.3)
: 1, present	F	1			L (0-0.6)
	F	_	0.02		,
RIBS Cervical Rib(s) present	L	31	3.78		5 (0-20.0)
CALATCOL WIN(a) brazes	P	32	0.51		5 (0-2.7)
One or more, wavy	L	44			7 (0-31.8)
OHE OF MOSE, we i	F	73	1.16	0-1	5 (0-8.3)
One or more, incompletely					
ossified (hypoplastic),	L	33			5 (0-22.7)
or not ossified	F	53	0.84	0-	9 (0-5.0)
OF 1100 0-200					

L: LITTER INCIDENCE F: FETAL INCIDENCE

SUMMARY OF FETAL SKELETAL ALTERATIONS CD RAT

			RANGE/STUDY		
ALTERATION		N		N	8
RIBS (CONT.)					
Fused	L	3	0.36	0-1	(0-4.3)
	F	3	0.05	0-1	(0-0.6)
Split	L	2	0.24	0-1	(0-4.0)
	F	2	0.03	0-1	(0-0.5)
Two segments	L	1	0.12	0-1	(0-3.7)
	F	1	0.02	0-1	(0-0.5)
MANUBRIUM					
Duplicated	L	1	0.12		(0-3.B)
	F	1	0.02	0-1	(0-0.4)
STERNEBRAE	_		12.00	0.7	(0.33.3)
One or more incompletely	_	114			(0-33.3)
ossified or not ossified	_	164			(0-6.2) (0-3.8)
Duplicated	L	1	0.12		(0-3.8)
_	F	1	0.02		(0-3.7)
Fused	L F		0.12		(0-0.5)
	L	1			(0-4.2)
Asymmetric	F	1			(0-0.5)
PELVIS					
Pubis(es) and/or Ischium(a):	_	139	16.95		(0-39.1)
incompletely or not ossified	F	224	3.54		(0-9.0)
Pubis(es): incompletely		114	13.90		(0-39.1)
ossified	F	185			(0-8.9)
Pubis(es): not ossified	L	8	0.98		(0-13.6)
	F	8	0.13		(0-1.6)
<pre>Ischium(a): incompletely</pre>	L	50	6.10		(0-16.7)
or not ossified	F	70	1.11	0-9	(0-4-7)
FORELIMBS	_	_			40 4 31
Metacarpals: 1, present	L		0.12		(0-4.3)
_	F	_	0.02		(0-0.6)
: 2, present	L	_	0.12		(0-4.3)
	F		0.02		(0-0-6)
Foredigits: 2, present	L	1	0.12		(0-4.3)
	F	_	0.02		(0-0.6)
Forephalanges: 1, present	L	_	0.12		(0-4.3)
	F	1	0.02	0-1	(0-0.6)

L: LITTER INCIDENCE F: FETAL INCIDENCE

SUMMARY OF FETAL OSSIFICATION SITES SKELETAL AVERAGES CD RAT (CARSAREAN-SECTIONED DAY 20 GESTATION)

(CABBACAMI-BEOTTONES SILL ES CESTIONES

PERIOD:	JUNE	1995	 JUNE	1997
# STUDIES	INCLUDED			33
# LITTERS	EXAMINED			772
# FETUSES	EXAMINED			5944

	FETUS/LITTER		
SKELETAL AVERAGES	Mean	RANGE/STUDY	
HYOID	0.84	(0.69-0.95)	
VERTEBRAE			
CERVICAL	7.00		
THORACIC	13.03	(12.99-13.15)	
LUMBAR	5.97	(5.85-6.00)	
SACRAL	3.00	(2.96-3.00)	
CAUDAL	4.83	(4.35-5.21)	
RIBS (pairs)	13.02	(12.99-13.08)	
STERNUM			
MANUBRIUM	1.00	(0.98-1.00)	
STERNAL CENTERS	3.57	(3.26-3.85)	
XIPHOID	0.99	(0.94-1.00)	
FOREPAWS (Calculated as			
average per limb)			
CARPALS	0.00		
METACARPALS	3.49	(3.33-3.62)	
DIGITS	5.00		
PHALANGES	5.05	(4.90-5.27)	
HINDPAWS (Calculated as			
average per limb)			
TARSALS	0.00		
METATARSALS	3.99	(3.93-4.04)	
DIGITS	5.00		
PHALANGES	4.96	(4.77-5.13)	

SUMMARY OF FETAL OSSIFICATION SITES SKELETAL AVERAGES CD RAT (CAESAREAN-SECTIONED DAY 21 GESTATION)

PERIOD:	JUNE	1995	-	JUNE	1997
# STUDIES	INCLUDED				2
# LITTERS	EXAMINED				48
# PRTUSES					374

	FETUS/LITTER		
SKELETAL AVERAGES	MEAN	RANGE/STUDY	
HYOID	0.97	(0.96-0.97)	
VERTEBRAE			
CERVICAL	7.00		
THORACIC	13.04	(13.02-13.06)	
LUMBAR	5.96	(5.94-5.98)	
SACRAL	3.00		
CAUDAL	7.46	(7.23-7.67)	
RIBS (pairs)	13.03	(13.01-13.05)	
STERNUM			
MANUBRIUM	1.00		
STERNAL CENTERS	3.98	(3.97-3.98)	
XIPHOID	1.00		
FOREPAWS (Calculated as			
average per limb)			
CARPALS	0.00		
METACARPALS	3.98	(3.98-3.99)	
DIGITS	5.00		
PHALANGES	7.64	(7.53-7.75)	
HINDPAWS (Calculated as		•	
average per limb)			
TARSALS	0.02		
METATARSALS	4.61	(4.60-4.62)	
DIGITS	5.00		
PHALANGES	5.84	(5.78-5.89)	
		•	

APPENDIX H STATEMENT OF THE STUDY DIRECTOR

Argus Research Laboratories, Inc. 905 Sheehy Drive, Building A Horsham, PA 19044 Telephone: (215) 443-8710

Telephone: (215) 443-8710 Telefax: (215) 443-8587

PROTOCOL 418-011:

ORAL (GAVAGE) DEVELOPMENTAL TOXICITY

STUDY OF N-EIFOSE IN RATS

SPONSOR'S STUDY NUMBER: T-6316.7

STATEMENT OF THE STUDY DIRECTOR

This final report accurately reflects the raw data obtained during the performance of the study. No significant deviations from the U.S. Food and Drug Administration (FDA) Good Laboratory Practice Regulations; Final Rule^a, the Japanese Ministry of Health and Welfare (MHW) Good Laboratory Practice Standard for Safety Studies on Drugs^b and the European Economic Community (EEC) Council decision on 28 July 1989 on the acceptance by the European Economic Community of an OECD decision/recommendation on compliance with principles of good laboratory practice^c occurred that affected the quality or integrity of the study.

Raymond G. York, Ph.D., DABT Date

Associate Director of Research

and Study Director

a. U.S. Food and Drug Administration. Good Laboratory Practice Regulations; Final Rule. 21 CFR Part 58.

b. Japanese Ministry of Health and Welfare (1988). Good Laboratory Practice Standard for Safety Studies on Drugs, MHW Ordinance Number 21, March 26, 1997.

c. European Economic Community (1989). Council decision on 28 July 1989 on the acceptance by the European Economic Community of an OECD decision/recommendation on compliance with principles of good laboratory practice. Official Journal of the European Communities: Legislation. 32(No. L 315; 28 October): 1-17.

APPENDIX I QUALITY ASSURANCE UNIT FINAL REPORT STATEMENT

SPRIMEDICA

Argus Research Laboratories, Inc. 905 Sheehy Drive, Building A Horsham, PA 19044 Telephone: (215) 443-8710

Telephone: (215) 443-8710 Telefax: (215) 443-8587

QUALITY ASSURANCE UNIT FINAL REPORT STATEMENT

Study Director: Raymond G. York, Ph.D., DABT

Executive Director of Research: Mildred S. Christian, Ph.D., Fellow, ATS

Protocol 418-011: Oral (Gavage) Developmental Toxicity Study of N-EtFOSE

in Rats

Sponsor's Study Number: T-6316.7

The draft protocol for this study was audited for adherence to U.S. Food and Drug Administration (FDA) Good Laboratory Practice Regulations, Japanese Ministry of Health and Welfare (MHW); Good Laboratory Practice Standard for Safety Studies on Drugs, and European Economic Community (1989) council decision on 28 July 1989 on the acceptance by the European Economic Community of an OECD decision/recommendation on compliance with principles of good laboratory practice on 13 JUL 98.

Critical phases of this study were inspected five times; study information and raw data were audited twice (see tables 1 and 2 for dates and phases/data).

The draft final report and the raw data for this study [except for Appendix F, the Pilot Report, which was conducted in the spirit of Good Laboratory Practice (GLP)] were compared and audited for accuracy, for adherence to protocol requirements, and for adherence to U.S. Food and Drug Administration (FDA) Good Laboratory Practice Regulations, Japanese Ministry of Health and Welfare (MHW); Good Laboratory Practice Standard for Safety Studies on Drugs, and European Economic Community (1989) council decision on 28 July 1989 on the acceptance by the European Economic Community of an OECD decision/recommendation on compliance with principles of good laboratory practice between 12 NOV 98 and 02 DEC 98, and for revisions requested by the Sponsor on 10 DEC 98 and 17 DEC 98.

This study was conducted according to U.S. Food and Drug Administration (FDA) Good Laboratory Practice Regulations, Japanese Ministry of Health and Welfare (MHW); Good Laboratory Practice Standard for Safety Studies on Drugs, and European Economic Community (1989) council decision on 28 July 1989 on the acceptance by the European Economic Community of an OECD decision/recommendation on compliance with principles of good laboratory practice.

Barbara J. Patterson, B.A. Date

Director of Operations and Compliance

Date Heather L. Rabuttino, M.S. Date

Quality Assurance Supervisor

and Principal Auditor

TABLE 1

CRITICAL PHASES INSPECTED

Cohabitation

Date of inspection: 21 AUG 98

Date results reported to the Study Director and Management: 21 AUG 98

Test Article Preparation

Date of inspection: 02 SEP 98

Date results reported to the Study Director and Management: 28 SEP 98

Test Article Administration - Gavage

Date of inspection: 03 SEP 98

Date results reported to the Study Director and Management: 28 SEP 98

Blood Collection

Date of inspection: 10 SEP 98

Date results reported to the Study Director and Management: 10 SEP 98

Caesarean-Sectioning

Date of inspection: 10 SEP 98

Date results reported to the Study Director and Management: 28 SEP 98

TABLE 2

RAW DATA AUDIT(S)

The following study information and raw data were audited on 08 OCT 98, and 15 OCT 98 to 17 OCT 98:

Protocol.

Protocol amendments.

List of personnel and computer operator codes.

Error codes and codes for clinical sign observations.

Animal receipt, randomization, physical examination and acclimation.

In-life transaction record.

Feed consumption.

Cohabitation.

Caesarean-sectioning.

Maternal gross observations.

Fetal gross observations.

Fetal fixative assignment.

Fetal visceral examination.

Fetal skeletal examination.

Necropsy.

Tissue packing lists.

Male breeder colony records.

General comments.

Study maintenance records.

Temperature and relative humidity reports.

Feed and water analyses.

Edit requests.

Dosage volumes.

Deviations.

Data review page.

Key for test facility computer back-up record abbreviations.

Blood collection data and packing lists.

The results of this audit were reported to the Study Director and Management on 21 OCT 98.

418-011:PAGE I-5

The following study information and raw data were audited on 08 OCT 98 and 10 OCT 98:

Vehicle receipt, preparation and use. Test article receipt, preparation and use. Test article packing lists.

The results of this audit were reported to the Study Director and Management on 21 OCT 98.