FINAL REPORT
Epidemiology, 220-3W-05
Medical Department
3M Company
St. Paul, MN 55144

Title: Fluorochemical Exposure Assessment of Decatur Chemical and Film Plant Employees

Final Report Date: August 11, 1999
Study Start Date: September 3, 1998
Protocol Number: EPI-0016
IRB Approval (\#98082)
Exempt: Expedited: X
IRB Approval Date: September 3, 1998
Study Archive Number: ARCH-021

Principal Investigator:	Geary W. Olsen, DVM, PhD ${ }^{1}$
Co-investigators:	Perry W. Logan, MS 2
	Cathy A. Simpson, RN ${ }^{2}$
	Kristen J. Hansen, PhD^{3}
	Jean M. Burris, RN, MPH
	Michele M. Buriew, MS
	John C. Schumpert, MD, MPH
	Jeffrey H. Mandel, MD, MPH

Study Director:
Jeffrey H. Mandel, MD, MPH

1. 3M Medical Department, 220-3W-05, St. Paul, MN 55144-1000
2. 3M Decatur, EHS\&R, P.O. Box 2206, Decatur, Alabama 35609-2206
3. 3M Environmental Laboratory, 2-3E-01, St. Paul, MN 55144-1000

QUALITY ASSURANCE STATEMENT

TITLE OF STUDY: Fluorochemical Exposure Assessment of Decatur Chemical and Film Plant Employees

The above study was examined for quality assurance in keeping with the spirit of The Guidelines for Good Epidemiology Practices for Occupational and Env ronmental Epidemiologic Research as published by the Chemical Manufacturers Association Epidemiology Task Group. The final report was determined to be an accurate reflection of the data obtained. The dates of Quality Assurance activities on this study are listed below.

Study Initiation Date: 09/03/98
Study Completion Date: 08/11/99

TYPE OF AUDIT:	DATE OF AUDIT	DATE FINDINGS REPORTED TO PRINCIPAL INVESTIGATOR AND STUDY DIRECTOR	DATE FINDINGS REPORTED TO BM						
MANAGEMENT				$	$	Protocol, Draft Protocol Addenda, Data File, Draft Final Report	$06 / 28 / 99$	$06 / 28 / 99$	$08 / 99$
:---	:---:	:---:	:---:						
Final Report	$08 / 09 / 99$	$08 / 09 / 99$	$08 / 09 / 99$						

Archiving: All raw data and the final report will be filed in the Occupational Medicine epidemiology archive system.

Signatures (and date) of QA Audit Team

Cocinnev 4. 9 mana_ - 8/9/99

Abstract

In the past, employees at the 3 M Decatur chemical plant have voluntarily participated in a fluorochemical medical surveillance program. Analy sis of the surveillance data has not shown significant associations between the err.ployees' clinical chemistry and hematology tests and either total serum organic fluorine or serum PFOS (perfluorooctane sulfonate) levels. However, the voluntary nature of the historical medical surveillance program did not provide for a complete understanding of the distribution of fluorochemical serum levels in the Decatur workforce. Therefore, the purpose of this study was to collect data by randomly sampling emplovees in the Decatur chemical plant in order to determine the distribution of employee serum fluorochemical levels according to demographics, current and longest held jobs, years vorked and building locations. In addition, a random sample of the neighboring 3M Decatur film plant employee population, located at the same site, was tested to deter nine fluorochemical serum levels in order to characterize the differences between the two plant populations.

A total of 232 employees was randomly selected for serum sampling: 186 (80%) participated in the blood collection which occurred in the Fall, 1998. Fin additional 77 employees requested blood testing for the determination of fluorocherr ical levels. Of the random sample of employees who participated, 126 were from the che nical plant and 60 from the film plant. There were 61 volunteers from chemical and 16 'olunteers from film; thus, all chemical participants numbered 187 employees and all f.Im participants numbered 76 employees. At the time of blood collection, employees responded to a twopage questionnaire that inquired about their current and longest held j c bs, the buildings
they had worked in (if chemical employees), and possible routes of oral ngestion of fluorochemicals through cigarette smoking, chewing gum, chewing tobacco and hand washing practices.

Sera samples were extracted using an ion-pairing extraction procedure. The extracts were quantitatively analyzed for PFOS (perfluorooctane sulfoni te), PFHS (perfluorohexane sulfonate), POAA (perfluorooctanoic acid), PFOSAA (N-ethyl perfluorooctanesulfonamido acetate) PFOSA (perfluorooctane sulfonate amide), M570 (N-methyl perfluorooctanesulfonamido acetate) and M556 (perfluorooc anesulfonamido acetate) using high-pressure liquid chromatography/electrospray tanden mass spectrometry (HPLC/ESMSMS) and evaluated versus an extracted curve. PFOS, PFHS, POAA, PFOSAA and PFOSA levels were determined by Northwest Bioanalytical Laboratory. M570 and M556 levels were determined by the 3M Envirc nmental Laboratory.

The overall arithmetic means (and range) and the geometric means and (95% confidence interval) of the random sample of chemical employees ($\mathrm{n}=126$) for the seven fluorochemicals are presented below (in ppm):

Chemical Plant

Arithmetic Mean (and Range)			Geometric Mean (and 950, CI)		
PFOS	1.505	(0.091-10.600)	PFOS	0.941	(0.787-1.126)
PFHS	0.345	(0.005-1.880)	PFHS	0.180	(0.145-0.223)
POAA	1.536	(0.021-6.760)	POAA	0.899	(0.722-1.120)
PFOSAA	0.023	(0.001-0.269)	PFOSAA	0.008	(0.6.06-0.011)
M570	0.151	(0.008-0.992)	M570	0.081	(0.667-0.098)
PFOSA	0.062	(0.0005-0.612)	PFOSA	0.013	(0.(109-0.018)
M556	0.052	(0.001-0.406)	M556	0.022	(0.0.18-0.029)

The overall arithmetic means (and range) and geometric means (95% confidence interval) of the random sample of film plant employees $(n=60)$ for the seven fluorochemicals are presented below:

Film Plant

Arithmetic Mean (and Range)			Geometric Mean (and 950 CI)		
PFOS	0.172	(0.015-0.946)	PFOS	0.136	(0.114-0.161)
PFHS	0.023	(0.001-0.210)	PFHS	0.014	(0.(11-0.018)
POAA	0.071	(0.006-0.298)	POAA	0.049	(0.1 139-0.062)
PFOSAA	0.004	(0.001-0.038)	PFOSAA	0.003	(0.102-0.003)
M570	0.020	(0.001-0.454)	M570	0.008	(0.106-0.01
PFOSA	85\%	samples < LLOQ*	PFOSA	85\%	sarples < LL
M556	0.008	(0.0001-0.307)	M556	0.003	(0.102-0.004

LLOQ $=$ lower limit of quantitation for PFOSA ranged from $0.001-0.310 \mathrm{ppm}$.

The above values showed high variability according to the employees' demographics, work history and building locations. Among the random sample ($\mathrm{n}=$ 126) of chemical employees, cell operators had the highest serum leve s of PFOS (geometric mean $=1.970 \mathrm{ppm})$ and PFHS $($ geometric mean $=0.697 \mathrm{ppm})$. However, sera from chemical operators and maintenance workers had the highest levils of other fluorochemical analytes (PFOSAA, M570, PFOSA and M556) a charatteristic likely due to their work in Buildings 3 and 4 N with fluorochemical alcohols, ami des and acrylates. For example, chemical operators had a geometric mean level of 0.131 ppm for M570 compared to 0.033 ppm for cell operators, 0.042 for mill operators anc 0.079 ppm for waste operators. POAA levels were above the geometric mean of 1.030 ppm for employees with current jobs of cell operators (1.428 ppm), chermical o oerators (1.887 $\mathrm{ppm})$, maintenance workers (1.095 ppm), mill operators (1.266 ppm) and waste operators (1.542 ppm). Employees with the job categories of engineeı/lab and secretary
had the lowest serum fluorochemical levels. PFHS, and to a lesser extent PFOS, were positively associated with years worked in the chemical plant. The remaining fluorochemical analytes were not routinely associated with years worked in the chemical plant by job categories. We did not observe an association between hand to-mouth usage or hand cleanliness (frequency of washing hands) and serum fluorochemical leveis.

Like their male counterparts, female chemical operators appeared to have increased PFHS levels with years worked. However, unlike their male counterparts, there was no apparent modest linear association between PFOS and years worked among female chemical operators. Whether this is due to different work practices, exposure patterns or pharmacokinetics once absorbed, remains to be determined. The sample size itself ($\mathrm{n}=10$ female chemical operators in random sample), is an important, limiting factor in the interpretation of these data.

The data also indicate significantly lower serum fluorochemical ievels among employees who have only worked in the film plant (i.e., defined as thost employees in the random sample who have worked only in the film plant with no prior work on the D-1 maker located in the film plant or previous work history in chemical. The D-1 maker uses FX-1801, a methyl FOSE amide). There were significantly lower serum fluorochemical levels among these employees who have only worked in the film plant when compared to those who are current chemical plant employees. Comparing the geometric means for each fluorochemical from the random sample of chemical operators and those employees who only have worked in the film plant, we observed the following ratios (in ppm):
PFOS (1.481/0.110); PFHS (0.428/0.015); POAA (1.887/0.052); PFOSAA (0.01 1/0.002); M570 (0.229/0.022); and M556 (0.044/0.003). Except for PFOSAA, these ratios suggest a 10 -fold or greater difference between chemical operators and film plant employees who
work several hundred yards away from Building 3. This only film plant employee group had a geometric mean value for PFOS that is approximately 3-4 times higner than the pooled geometric mean (0.029 ppm) from 64 samples obtained from 18 U.S. blood banks. Thus, we suspect that occupational exposure to PFOS does occur within the film plant although at much lower levels than among employees working at the chemical plant. Additionally employees who worked on the D-1 maker have serum PFOS levels approximately 3 times higher than those employees who have never worked on the D-1 maker nor have worked in the chemical plant (i.e., the only film plant emoloyees).

We did not observe an association between hand-to-mouth usage 3 hand cleanliness (frequency of washing hands) and serum fluorochemical leve s. It is possible an association might have been masked because industrial hygiene had instituted an aggressive educational campaign several months prior to the collection of blood samples in this study; thus current practices may not be indicative of past practices. Because the half-life of PFOS is estimated to be 1000 days or more, such an association may not be discoverable with this study design.

A limitation to this study design which must be considered in the interpretation of the data was our inability to more accurately quantify an employee's work history experience. Decatur work history records provide department numbers ind job titles but they do not provide information regarding where someone worked (e.g., what building(s) or with what specific fluorochemicals). Self-reported work history information obtained by questionnaire was highly correlated with Decatur work history record information; nevertheless, the specificity of where someone worked and with what chemicals was not known. Because many operations are in batch mode, the likelihood of determining specificity of historical workload fluorochemical exposure among chemical operators
was not possible.
The present study's sera fluorochemical levels, observed by job categories and building locations, strongly support the recommendations borne from recertly conducted industrial hygiene assessments. These recommendations include specific engineering controls to reduce inhalation exposure, appropriate personal protective equipment to prevent overexposure and appropriate personal hygiene practices among employees to remove skin concentrations.

Finally, PFOS and POAA serum levels measured in this study are timilar to those that have been previously reported via past biennial medical surveillance activities. Results of previous epidemiologic studies have not associated the serum PFOS or POAA levels observed in this study population with hepatic, lipid or hormone abnormalities.

INTRODUCTION

In the past, employees at the 3 M Decatur chemical plant have viluntarily participated in a fluorochemical medical surveillance program. The surveillance program analyzed for total serum organic fluorine levels until the mid-1990's when serum perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (POAA) cetermination, quantifiable by high performance liquid chromatography mass spectron etry, became incorporated in the biennial medical surveillance examinations. Analy is of the surveillance data has not shown significant associations between the employees' clinical chemistry and hematology tests and either total serum organic fluorine ievels [Roach, 1982; Schuman, 1982] or serum PFOS levels [Olsen et al., 1999]. Hou ever, the voluntary nature of the medical surveillance program may not lend itself to an appropriate characterization of the distribution of fluorochemical serum levels as it is not based on random sampling methods. Therefore, the purpose of this stuly was to collect data from the necessary distribution by randomly sampling employees in the Decatur chemical plant in order to determine the distribution of employee serum fluorochemical levels according to demographics, current and longest held jobs, years worked and building locations. In addition, a random sample of the neighboring 3M Decatur film plant employee population, located at the same site, was tested to deter mine fluorochemical serum levels in order to characterize the differences ber ween the two plant populations.

The film plant employees have served as a comparison popula ion in a prior health study (Mandel and Johnson, 1995) due to their (assumed) nonor cupational exposure to fluorochemicals. However, their actual senum fluorocherr ical levels had not been discerned. Epidemiologic studies at the Decatur plant can be more fully appreciated
if the distributions of employee senum fluorochemical levels at both the chemical and film plants are better understood.

METHODS

Description of Decatur Facility

The 3M Decatur site is located in Decatur, Alabama which started production in the early 1960's. The site consists of two plants, Specialty Film "film plant" and Specialty Materials "chemical plant". Both plants are in the Specialty Materials Manufacturing Division (SMMD). The chemical plant is located sever il hundred yards directly east of the Film Plant. The main buildings located on the site a re Buildings 1, 2, $3,5,14,15,17,19,31,36,38,40,42,48,49,51,57,59$ and 61 (see Alppendix A). Buildings 14,15 and 19 are considered film plant buildings. Buildings $1,2,3,31,38,40$, $42,48,49,51$ and 61 are considered chemical plant buildirgs. Buildin $; 5$ is the boiler house that controls site utilities such as chilled water, plant steam, plan nitrogen and breathing air. Building 5 is located southwest of the chemical plant. Building 17 serves as the maintenance and stockroom building located just west of Buildirg 5 servicing mainly the chemical plant. Buildings 36 and 57 are site wastewater tre atment buildings located east of the chemical plant.

The major production buildings in Decatur film plant are Build ngs 14, 15 and 19. Polyester and non-polyester films are produced in Building 14. Mainte nance, locker rooms, and dining facilities are all located in areas of Building 14. Res in used in film production is manufactured in Buildings 15 and 19. The only process n the film plant using fluorochemicals is run on the D-1 film line (called the D-1 make). The process
uses FX-1801 in the production of film used for a limited number of products. Curently, no other processes in the film plant use fluorochemicals in production.

The three major products produced in the chemical plant are protestive chemicals, performance chemicals, and fluoroelastomers. The three product groups are referred to as focus factories. Fluorochemicals identified in this study are used in all focus factory groups to some extent. Production for all focus factories takes place in B aildings 2, 3, 4, $38,40,42,49,51$ and 61 . The chemical plant's main office areas, warehouse and quality control labs are located in Building 1. The chemical plant's dining facility and locker rooms are located in Building 31.

Raw materials and intermediates for each product group may flow through many different production buildings before they are packaged for shipping. The flow of protective chemicals follow a path starting at Building 3 to Buildings 2 or 49 to Buildings $3,4,38$ or 51 . The protective chemicals group is the primary producer 0^{*} perfluorooctane sulfonyl fluoride (POSF) and perfluorohexane sulfonyl fluoride (PHSF) based chemistry. Octyl mercaptan or hexyl mercaptan is reacted with chlorine and ammonium fluoride to produce octane sulfonyl fluoride (OSF) or hexant sulfonyl fluoride (HSF) in Building 3 and is referred to as the 'cell feed'. The cell feed is sent to Buildings 2 and 49 where it is reacted in electrochemical cell systems to produce POSF or PHSF. POSF is the major sulfonate based fluorochemical produced at Decatur. PHSF is produced mainly for fire suppression liquids. Most of the POSF produced is piped to Building 3 where amides, alcohols, acrylates and other fluorochemical polymers are produced. These fluorochemical polymers are then used in all production buildings to produce intermediates and finished goods.

The performance chemicals are mostly made up of inert liquids and fire suppression liquids. The inert liquids follow a path starting at Buildings .2 or 49 to Buildings 40 or 42. Inert liquids consist of mostly perfluoronated alkanes, and do not contain sulfonate or carboxylic acid compounds. Fire suppression liquids are primarily based on sulfonate chemistries starting with POSF and PHSF. Fire suppression products are made in Building 3 and packaged in Building 4.

Fluorochemicals are used in the production of fluoroelastomer products. The first part of the fluoroelastomers is called latex, which is produced in Buildings 4,38 and 51. The latex is then coagulated, washed and milled in Buildings 4 and 61. POSF based compounds are the primary fluorochemicals of interest used in the major ty of fluoroelastomer products. POAA is also used in a limited number of fluoroelastomer product runs. POAA is used in the production of latex that is eventually coagulated, washed, and milled in Buildings 4 and 61. This POAA containing product is run infrequently, only several times per year. POAA is also a by-product within the electrolytic cells and is carried through up to product. It is believed to be a result of increased oxidation within the cells. POAA was produced in Building 2 and subsequently worked up in Building 3 more than 20 years ago and had not been produced in Decatur since the time of this study. POAA production is expected to resume in Buildings 2 and 49 in the near future.

Sample Size Determination

Three critical factors were considered to decide the sample size or this study.
First, it was important that a sample be randomly chosen from the emp oyee populations of both the chemical and film plants. Second, the sample size was drive n by the need to provide confidence that the exposure in the film plant is small relative t) that of the chemical plant. Third, the sample size had to adequately characterize the exposure levels within the chemical plant workplace. In addition, all employees in the chemical and film plant had to be offered the opportunity to know their fluorochemical le' els via blood testing, although they may not be part of the random sample. The rand m sample size in this study of more than 200 subjects was based on: 1) the lower $95 \% \mathrm{c}$ onfidence bound of the hypothesized mean difference between the serum fluorochemica levels of the chemical plant; and 2) to allow for adequate characterization of serum fluorochemical differences by job and building within the chemical plant (see study protocol for details). There was an added degree of uncertainty in estimating sample size be ause approximately 10 percent of the film plant employees may have had pr or work experience in the chemical plant. Also, an unknown number of film plant workers had worked on the D-1 maker where a PFOS-based fluorochemical (FX 18)1, a methyl FOSE amide) has been used.

The random sample was chosen by the following methods: a) a I full-time current chemical and film plant employees were identified via a current plant 10 oster that listed departments and supervisors; b) using a random number generator algurithm, a sample of employees was chosen which was proportionate to the number of emp oyees who worked in the various chemical departments, auto and chemical markets group. Decatur EHS\&R, Dyneon, and the film plant. We included in the random sample all identified Decatur
site employees who were assigned to the wastewater treatment plant (Buildings 36 and
57). Altogether, there were 232 employees randomly chosen to participite in the study
(Table 1). A total of $186(80 \%)$ participated and $46(20 \%)$ refused. The film plant random sample had the lowest participation rate (71%). In addition to te 186 random sample participants, there were 77 employees from the chemical $(\mathrm{n}=61$) and film ($\mathrm{n}=$ 16) plants who requested their serum be tested for fluorochemical level:. Hereafter, these individuals will be called the "volunteers."

Employee Study Participation

Study participation required the following: 1) a signed consent $f, r m$ by the employee; 2) a written response to a brief questionnaire (Appendix B) t at inquired about current and past work history along with the frequency of hand washing and use of gum, chew (tobacco) and cigarette habits of the employee while at work; and 3) a venipuncture with the collection of two vials of blood (approximately 2) cc) for the determination of the seven fluorochemicals. The study protocol was approved by the 3 M Institutional Review Board (IRB).

Each randomly chosen employee (film and chemical) received: letter of invitation to participate that was jointly signed by the plant manager (N r. Jim King) and the 3M Medical Department director (Dr. Larry Zobel). There was pla it-wide communication which described the purpose of this study and encoural ed employee participation. All study participants, who were either randomly chosen or who volunteered, were informed of their own individual results by a letter sint to them from the 3M Medical Department in July, 1999. Aggregate results of the stı dy were also communicated at that time to the employees.

Fluorochemical Analyses

All blood was collected in the months of October and November, 1998 at the Decatur plant by MedAccess (an occupational health clinic located in Decatur, Alabama) under the direction of Cathy Simpson, RN who centrifuged the blood to obtain the serum and then shipped the samples to the 3M Medical Department (St. Paul MN). Split samples were catalogued by Diane Madsen and Jean Burris and then s nt to either Northwest Bioanalytical (Dr. David Vollmer) for determination of per luorooctane sulfonate (PFOS), perfluorooctane sulfonate amide (PFOSA), perfluo ohexane sulfonate (PFHS) , perfluorooctanoic acid (POAA) and N-ethyl perfluorooctane ulfonamido acetate (PFOSAA) or to 3M Environmental Laboratory (Dr. Kris Hans en) for determination of N -methyl perfluorooctanesulfonamido acetate (M570) and perfluorooctanesulfonamido acetate (M556).

In both laboratories, sera samples were extracted using an ion-p airing extraction. procedure. The extracts were quantitatively analyzed for PFOS, PFHS, POAA, PFOSAA, PFOSA, M570 and M556 using high-pressure liquid chromatography/electrospray tandem mass spectrometry (HPLC/ESM ;MS) and evaluated versus an extracted curve. There were minor differences bel ween the analytical methods used at Northwest Bioanalytical and 3M Environm ental Laboratory. Most notably, Northwest Bioanalytical evaluated analyte levels versus a curve extracted from human sera. Endogenous levels of certain fluorochemicals were Jetermined in the standard matrix and additional fluroochemical was spiked into the mat ix. The total amount of each specific fluorochemical (endogenous + spiked) was us:d to construct an extracted standard curve. For the analysis conducted at the 3 M Enviro amental

Laboratory, the difficulties presented by the endogenous levels of fluo ochemical in samples of "blank" test matrix were circumvented by utilizing rabbit si ra as a surrogate matrix. Previous research had shown that rabbit sera contains the low st level of endogenous fluorochemicals when compared to sera from bovine, rat, nonkey and human.

As a quality control check, the 3 M Environmental Laboratory : creened PFOS levels in approximately 10% of the sera analyzed at Northwest Bioana ytical. While most of the results agreed to within $\pm 25 \%, 14$ of the 40 samples checked st towed lower $(> \pm$ 25%) values when analyzed at 3 M . It is expected that these discrepan ies are due to differences in curve slope and intercepts arising from the analytical ditferences described above. Given that Northwest Bioanalytical satisfactorily completed a nethod validation for PFOS using human sera and given that most values were in close ogreement with those obtained by the 3 M Environmental Laboratory using a rabbit ser a curve, data from both laboratories were considered accurate to within the parameters $\mathrm{d} f$ fined by their methods. Details of both laboratories' methods and final reports are reported elsewhere [Vollmer, 1999; Hansen, 1999].

Data Analysis

Each employee's questionnaire data and computerized work hi itory records were reviewed to determine whether the employee was: a) a current chemic il employee (regardless of any work experience in the film plant); b) a film plant \& mployee with no history in chemical; or c) a film plant employee with prior history in c semical. Employees who were considered Decatur 'site' employees (e.g., safety industrial hygiene) and who stated they currently worked in one or more chemic: I buildings were considered to be chemical employees in the data analyses.

Employees were asked to provide their current and longest-hel job. A review of these job titles by an industrial hygienist (PWL), epidemiologists (GW), JMB) and occupational health nurse (CAS) categorized the entries into eight job ، lassifications for the chemical plant: cell operators, chemical operators, engineers/laborstory, maintenance, mill operators, secretaries, supervisors/management and waste operators. Film plant current jobs (and longest held jobs) were categorized into four job clas: ifications: engineers/laboratory, film processors, maintenance and administrative. These classifications were done prior to any data analyses. The individual's isual job assignment when he/she worked overtime was not analyzed as most pe sons reported this was the same as their current (or longest held) job. Employees were $\mathfrak{\text { sked on the study }}$ questionnaire to indicate the number of years they have worked in cher iical. This information correlated with a review of records from the epidemiology unit's Decatur work history database for those employees with 7000 level department codes; thus these self-reported data were used to assess years worked in chemical. On th 2 other hand, years worked in film were calculated from the epidemiology unit's Dec atur work history database because this information was not requested on the study quest onnaire. Chemical employees who had worked previously in the film plant wert identified and classified as to their time of service in the film plant (<1980, 1980-1989 and 1990-1998).

Age was calculated from the employee's date of birth from the f pidemiology unit's Decatur work history database. Body mass index ($\mathrm{kg} / \mathrm{m}^{2}$) was ca culated based on the information provided by the employee on the questionnaire. An inc ex of hand-tomouth contact was calculated based on whether the person smoked cigi rettes, chewed
tobacco or chewed gum. An index of hand washing was based on whe'her or not the employee said they always washed their hands before eating while at work.

Through the use of SAS and JMP and employing standard statis tical techniques (student's t test, chi square, ANOVA, single and multivariable regressi in using linear and nonlinear analyses), data analyses concentrated on the following is sues: 1) compare responders and nonresponders in the random sample by their demograp hic characteristics (e.g., age, gender, years worked); 2) compare mean serum fluorochemi :al levels within the chemical plant by a) employee demographics, b) self-reported wor i history data based from the study questionnaire including current job, longest-held ob. years worked in chemical and in which chemical buildings; c) work history informat on supplemented with data from the 3 M epidemiology unit's computenzed comprehensi e work history record database for the Decatur site, and d) personal habits (also identilied on the study questionnaire) that were hypothesized to increase the likelihood of oral ingestion of fluorochemicals (e.g., hand washing, cigarette smoking, chewing tobac io and chewing gum); and 3) likewise, compare mean serum fluorochemical levels within the film plant by similar factors. To prevent misclassification of potential workplace exposure experience to fluorochemicals within the film plant, we analyzed samp es from film plant employees according to those who have and have never worked in the :hemical plant as weil as those who were identified as having worked on the D-1 maker ocated in the film plant. Film plant employees who had never worked on the D-1 maker 10 ever worked in chemical are hereafter referred to as "only film plant employees."

Because the serum distributions for PFOS, PFHS, POAA, PFO iAA, M570, PFOSA and M556 appeared log normally distributed (a skewed distrib ttion), natural log transformations of the fluorochemicals were performed to calculate germetric means
($e^{\text {(sum } \ln x / n}$) and statistical calculations regarding central tendency were primarily based on the geometric mean. The random variable X is said to have a \log nc rmal distribution if $\log X$ is normally distributed, that is, if X is of the form e^{Y} where Y i normal (i.e., the nomal bell shaped curve). The pertinent properties of a log normal distribution can then be derived from properties of the normal distribution. The mean and vi riance are of the normally distributed Y, that is, of $\log X$. The \log normal distribution fi ads applications in a wide variety of fields including exposure assessments in nature (whet eer of humans, mammals, etc).

Provided in Appendices C and D are the histograms of the seve 1 fluorochemicals as measured for employees in the chemical and film plants, respectivel ', using statistics derived from the normal distribution along with the natural log transfo mation of the distribution. The Shapiro-Wilk W test suggests the necessity of the los transformation. Measures of central tendency routinely presented throughout this repo t will include the arithmetic mean and range, and the geometric mean and associated 956 , confidence interval. Comparisons of geometric means were conducted using the s udent's t test with statistical significance considered at $p<.05$.

All fluorochemical measurements were reported in parts per mi lion (ppm) to the third decimal point. For statistical purposes, serum fluorochemical va ues that were less than the lower limit of quantitation (LLOQ) were assumed the midpoir t between zero and the LLOQ. Of the total number $(\mathrm{n}=186$) of employees considerer to be currently working in chemical who participated in the study (126 from the rando n sample and 60 volunteers), the following numbers (in parentheses with percentage) hid reported LLOQ's by the measured fluorochemical: $\operatorname{PFOS}(1,0.5 \%) ;$ PFHS $(1,(.5 \%) ; \operatorname{POAA}(0$, $0 \%) ; \operatorname{PFOSAA}(49,26 \%) ; \operatorname{M570}(0,0 \%) ; \operatorname{PFOSA}(36,19 \%)$; and M5:6(8,4\%). Of the sample and 16 volunteers), the following numbers (in parentheses) had reported LLOQ's by the measured fluorochemical: $\operatorname{PFOS}(1,1 \%) ; \operatorname{PFHS}(2,2 \%) ; \operatorname{POAA}(0,0 \%)$; PFOSAA ($29,38 \%$); M570 ($0,0 \%$); PFOSA ($65,86 \%$) and M556 (32, 42\%). We chose not to analyze PFOSA among the film plant employees because 85% of them had serum PFOSA measured at less than LLOQ which resulted in minimum variability for statistical considerations. The LLOQ for PFOSA ranged, between analyses, from 0.001 to 0.010 ppm. Analyses focused on the random sample but aggregate data anal yses were also conducted for all participants (random sample and volunteers) stratifiec by the two plants.

RESULTS

Comparison of random sample responders and nonresponders

Responders $(\mathrm{n}=186)$ and nonresponders $(\mathrm{n}=46)$ from the random sample were compared by age, gender and years worked and found to be alike. Among the chemical random sample, the average age was 42 years compared to 43 for nonresponders. Responders and nonresponders have worked, on average, 16 years. There was a similar 5 to 1 ratio of male to female employees for the responders and nonresponders among chemical employees.

Film plant employees who responded were, on average, 46 years of age, had worked 19 years and the ratio of male to female was 5 to 1 . Nonresponders were 48 years of age, had worked 25 years and had a 7 to 1 male to female ratio. Thus, nonresponders in the film plant random sample were slightly older, worked longer and a greater percentage were males.

Overall Findings

The arithmetic mean (and range) of the random sample as well is the geometric mean and (95% confidence interval) of chemical employees ($\mathrm{n}=126$) for the seven fluorochemicals are presented below (in ppm):

Chemical Plant

Arithmetic Mean (and Range)			Geometric Mean (and 95 $0^{\circ} \mathrm{Cl}$)		
PFOS	1.505	(0.091-10.600)	PFOS	0.941	(0.787-1.126)
PFHS	0.345	(0.005-1.880)	PFHS	0.180	(0.145-0.223)
POAA	1.536	(0.021-6.760)	POAA	0.899	(0.'22-1.122)
PFOSAA	0.023	(0.001-0.269)	PFOSAA	0.008	(0.106-0.011)
M570	0.151	(0.008-0.992)	M570	0.081	(0.167-0.098)
PFOSA	0.062	(0.0005-0.612)	PFOSA	0.013	(0.109-0.018)
M556	0.052	(0.001-0.406)	M556	0.022	(0.018-0.029)

The arithmetic mean (and range) of the random sample as well as the geometric mean and (95% confidence interval) of the film plant employees $(n=60)$ for the six fluorochemicals are presented below:

Film Plant

Arithmetic Mean (and Range)			Geometric Mean (and 95\% CI)		
PFOS	0.172	(0.015-0.946)	PFOS	0.136	(0.114-0.161)
PFHS	0.023	(0.001-0.210)	PFHS	0.014	(0.011-0.018)
POAA	0.071	(0.006-0.298)	POAA	0.049	(0.039-0.062)
PFOSAA	0.004	(0.001-0.038)	PFOSAA	0.003	(0.1002-0.003)
M570	0.020	(0.001-0.454)	M570	0.008	(0.006-0.011)
PFOSA	85\%	f samples < LLOQ*	PFOSA	85\%	samples < LLOQ*
M556	0.008	(0.0001-0.307)	M556	0.003	(0.002-0.004)

LLOQ = lower limit of quantitation for PFOSA ranged from $0.001-0.010 \mathrm{ppm}$.

Because the above values may be highly variable by employees' demographics, work history and personal habits, subsequent analyses will focus on each plant separately.

Tables 1-21 provide the results from the chemical plant. Tables 22-29 provide the results from the film plant.

Chemical Plant

Provided in tables 2 and 3 are the demographic characteristics by the number of chemical employees (and percent) from the random sample ($n=126$), volunteers ($n=60$) and all chemical participants (both random sample and volunteer, $n=186$). The distribution of demographic characteristics between the random sample: and volunteers were comparable although the random sample had a higher percentage of chemical operators (37%) than did the volunteers (28%).

The mean, median, range and geometric mean of the random sample, volunteers and all chemical participants, is provided in Table 4 for the seven fluorochemicals. The range of PFOS was from $0.091-10.600 \mathrm{ppm}$. Although the geometric means were consistently higher in the random sample than volunteers, only with PFOSA did the geometric mean differ significantly between the random sample (0.013 ppm) and the volunteers (0.006 ppm). It should also be noted that among the randon sample, five employees had serum PFOS levels $\geq 5 \mathrm{ppm}$ compared to none among the volunteers. Because the demographic characteristics and geometric means did not substantially differ between the random sample and volunteers, subsequent tables will report on either the random sample and/or all chemical participants. The volunteers will not be presented separately.

Presented in Table 5 are the demographic characteristics of the random sample of chemical employees by current job category (cell operator, chemical operator, engineer/lab, maintenance, mill operator, secretary, supervisor/management and waste

Page 23 of 85
operator). Supervisors/management (mgmt) and waste operators were the oldest with mill operators the youngest. Mill operators have worked considerably less years, on average, than all other job categories. This is to be expected since mill sperator is an entry level position for new employees. The number (and proportion) cf female employees were similar between the chemical operators and the engineur/lab group.

Provided in table 6 is the mean, median and geometric mean for each of the seven fluorochemical levels by gender, hand-to-mouth contact, wash hands ard whether the individual had worked only in the chemical plant. Geometric mean levels for males were significantly higher than females for PFOS, PFHS, POAA and M570. We did not observe, as hypothesized, that hand-to-mouth contact (via use of cigaretes, chewing tobacco or chewing gum) and less frequent hand washing resulted in higher fluorochemical serum levels. Also, having worked only in chemical di 1 not result in higher serum fluorochemical levels. We did observe that the further bark in time that chemical employees worked in the film plant, the larger their geometric mean values were, as measured in this study. For example, the geometric mean values for chemical employees who last worked in the film plant prior to 1980, between 1980-1989, 19901998 and never worked in the film plant were $1.656 \mathrm{ppm}, 1.551 \mathrm{ppm}, 0.786 \mathrm{ppm}$ and 0.700 ppm , respectively. Of course, this is also a reflection of the number of years worked in the chemical plant (to be presented later in this section). That is, the employees who worked in the film plant prior to 1980 had subsequently the longest continuous work history in chemical since 1980.

Fluorochemical levels by current job category are presented in Table 7. Several observations were noteworthy. First, the distribution of high-to-low glometric mean values varies by current job categories. Cell operators have the highest geometric mean
level of PFOS. The next group are the chemical operators, maintenance and waste operators. Supervisor/mgmt is next, followed by the group consisting of mill operators, engineer/lab and secretary. For PFHS, cell operators have the highest geometric mean level. The next highest group appears to be chemical operators, waste sperators, supervisor/mgmt and maintenance. For POAA, chemical operators appear to have the highest levels followed by the group consisting of cell operators, maintenance, mill operators and waste operators. Chemical operators and maintenance have significantly higher levels of M570 than all other current job categories. Chemical (iperators, maintenance and mill operators have the highest geometric mean values for PFOSAA. PFOSA and M556 values were significantly higher for chemical operators than for most other job categories.

Fluorochemical ratios (PFOS/PFHS, PFOS/POAA, PFOS/(PFOSSA+M570+PFOSA+M556), M570/M556, PFOSAA/M5:16 and PFOSA/M556) are presented by current job category in Table 8. The cell operators had the lowest PFOS/PFHS ratio and the mill operators had the lowest PFCIS/POAA ratio. The largest PFOS/metabolite ratio was for the cell operators.

Tables 9-11 are identical to Tables 7-9, respectively, except that the employees' longest job is analyzed instead of the current job category. Cell operat ors are not included as there was only one cell operator who stated this was his longest job held. The highest PFOS, PFHS and POAA levels were observed among chemical operators. Maintenance and chemical operators had higher M570 and PFOSAA livels. Overall, results did not vary substantially between current job and longest held iob.

Table 12 is restricted to only those chemical employees who stited on the questionnaire that they currently work in just one location (building). Secause building
location is synonymous with job category for cell operators, Buildings $2 / 49$ had the highest PFOS and PFHS levels. Building 3 and Building 4 N represented the areas with the highest POAA levels although only one building, Building 1 , had substantially lower POAA levels when compared to the other locations. M570, PFOSAA and M556 levels were highest in Building 3. Buildings 3 and 4 MX ($\mathrm{MX}=$ mixer/extruder area) appeared to have comparable levels of PFOSA. Among the 5 employees who on y worked in Building 4 N , there was a wide range of PFOSA levels.

Because employees may currently work in only one building bu have had a past history of working in several buildings, we further restricted the analysts to only those employees who said they have only worked in one building throughout their employment. This restricted the number of subjects to just 21 individuals (17% of the random sample) with representation in these Buildings: 1,3 and 4 MX . Table 13 shows that PFOS levels were more than 5 times higher in the sera of Building 3 workers than in the sera of Building 1 or Building 4MX workers. PFHS levels were alr 10 st 10 fold higher. POAA levels were twice as high in sera of Building 3 workers compared to Building 4MX workers and more than 15 times higher than Building 1 workers. M570 and M556 levels were 5 times higher in Building 3 workers than Buildings 1 or 4 MX . PFOSAA and PFOSA levels were comparable between Building 3 and Building 4MX workers and lowest in Building 1.

Tables 14 through 21 provide similar data analyses as the previous tables but now represent the 187 total (random sample and volunteers) chemical participants. There were no substantial differences between the analyses of the random sample and of all chemical participants. For example, among all chemical participants, nill operators were the youngest employees (Tables 14, 17); most female employees were sither in the
current and longest job category of chemical operators or engineer/lab lexcluding secretary) (Tables 15,18); cell operators had the highest PFOS and PFIS serum levels and engineer/lab, secretary and mill operators had the lowest PFOS ard PFHS serum levels (Tables 16, 19); and chemical operators and maintenance workers had the highest levels of M570 and tended to also have the highest serum levels of PFOSAA, PFOSA and M556. Fluorochemical levels stratified by where employees only surrently work (Table 20), or have only ever worked (Table 21), were also comparable with the results from the random sample. All chemical participants who have only worked in Building 1 had lower fluorochemical levels than Building 3 workers for all seven luorochemicals (Table 21). Building 1 workers had lower PFOS, POAA, PFOSAA and PFOSA levels than Building 4MX employees. PFHS, M556 and M570 levels were similar in Building 1 workers and Building 4 MX workers.

A series of multivariable analyses (data not shown) examining each fluorochemical by several independent variables (e.g., age, body mass index, gender, current job, longest-held job, whether employed only in the chemical slant, years worked in the chemical plant) suggested there may be up to three important explanatory variables. These were current (or longest) job, years worked within the chemical plant and gender.

To better visualize the influence of years worked within chemi al on serum fluorochemical levels, we stratified the analyses by current job categories. In other words, the dependent variable (i.e., each specific fluorochemical) was regressed on years worked in chemical for each separate job category. These linear regression analyses employed the untransformed as well as transformed (natural log) dependent variable. Analyses were conducted for the random sample $(\mathrm{n}=126)$ as well as for all chemical
participants ($\mathrm{n}=187$). Presented in Appendix E are the analyses for each fluorochemical for the random sample $(\mathrm{n}=126)$ and then separately for chemical operators, engineer/lab, maintenance, mill operators and supervisors $/ \mathrm{mgmt}$. Cell operators and secretaries are not presented because of their insufficient population.

From the scatterplots and models presented in Appendix E, the following were observed. (Note: in Appendices fluorochemicals are presented in the following order PFOS, PFHS, POAA, PFOSAA, M570, PFOSA and M556. For the scatterplots, upper and lower 95% confidence curves are provided of the fitted line. First, for the entire random sample, only the PFHS model fit the data well with 22 percent of the variation of PFHS explained by an increase in years worked in chemical. PFOS le vels increased modestly with years worked in chemical although the variance explained remained small ($\mathrm{r}^{2}=.10$). Although intercepts may have been significant for other fluorochemical models for the entire random sample, the variance explained was consistently quite small (i.e., less than 3 percent); thus such models have minimum prediction. Among chemical operators the most significant observation was the finding of a linear increase of PFHS levels with increasing years worked in chemical. Thirty-four percent of the variation in PFHS was explained. There were weaker positive linear associations hetween POAA or PFOS and years worked in chemical. On the other hand, there appeared to be a suggestion that the highest levels of the fluorochemical analytes (PFOSAA, M570, PFOSA and M556) were most often observed among chemical operators with just one or two years of experience. Among the engineer/lab group, there was a weak association between serum PFOS levels and years worked in chemical. The strongest association observed among maintenance workers was the linear increase of PFHS levels with years worked in chemical. Like the chemical operators, a significant amoun of variation was
explained (26 percent) although the data were sparse. Among the supervisor/mgmt group, PFOS, PFHS and POAA increased with years worked in chemical.

Approximately 15 percent of the variation was explained in each modet. Model fit was poor for the mill operators because all but two had worked for 5 years or less; thus only scatterplots are presented (not regression models).

The natural \log transformations are presented in Appendix F for all chemical employees ($\mathrm{n}=126$) in the random sample as well as for the two current job categories with the most numbers (chemical operators and engineer/lab). For the entire random sample, a weak association $\left(r^{2}=.08\right)$ is observed for PFOS and years worked in chemical and a stronger association ($\mathrm{r}^{2}=.23$) for PFHS. For chemical operators the strongest association $\left(r^{2}=.34\right)$ is with PFHS and years worked in chemical. Although the latter association was not observed among the engineer/lab category with the nontransformed variable (see Appendix E), the natural log transformation of PFHS was: significantly associated $\left(\mathrm{r}^{2}=.19\right)$ with years worked in chemical (see Appendix F).

Presented in Appendix G are similar scatterplots and regression models for all chemical participants by current job category. There remained a positive association between PFHS or PFOS serum levels and years worked in chemical, with the stronger of these two associations for PFHS. Because of more subjects, scatterplots are also now shown for cell operators. These plots suggest, again, an increase in PFOS, PFHS and now also POAA levels among current cell operators with years worked in chemical. Among chemical operators the strongest association remained with PFHS, with weaker linear associations observed for PFOS and POAA with years worked in chemical.

Among the engineer/ab group, there remained a positive linear association between either PFHS or PFOS with years worked in chemical. There were positive linear
associations for PFOS, PFHS and POAA with years worked in chemic al among both the maintenance and supervisor/mgmt groups. Too few mill operators with 5 or more work years in chemical were sampled to conduct a meaningful analysis. The scatterplot data do show a wide range of serum POAA levels among mill operators with just one year of work experience in chemical.

The scatterplots in Appendix H represent the log transformations for all chemical participants and the two most numerous job categories: chemical operators and engineer/lab. Again, the scatterplots suggest a consistently strong pos tive association between serum PFHS levels and years worked in chemical and a lesse association with PFOS and years worked in chemical.

Presented earlier in Table 6 was the observation that serum fluorochemical levels were lower among female workers. Whether this was due to a smaller proportion of female workers in job categories where exposure would be the highest, younger female workers and/or female employees with less work experience in chemical remained to be resolved. To address this issue we focused on those two job categories that had the most female subjects within the random sample as well as all chemical participants: chemical operators and the engineer/lab group. Presented in Tables 22 and 23. by gender, are the demographic characteristics and serum fluorochemical levels for the random sample of chemical operators and the engineer/lab group. Female employees had significantly lower geometric mean serum levels of PFOS, PFHS and POAA. Mulitivariable analyses of chemical operators of each fluorochemical level regressed on gender, years worked in chemical and with and without age are presented in Appendix I for the random sample. For purposes of brevity, only the transformed (natural log) dependent nodels are presented. Gender appeared to be the best predictor of PFOS level (i.e., lower levels among female chemical operators) with years worked in chemical not significantly associated with PFOS. Gender was also significantly associated with POAA levels (lower POAA levels among female workers) adjusting for years worked in chemical and age. Both gender and years worked in chemical appeared to be import ant predictors of PFHS levels among chemical operators. Among the random sample of engineer/lab workers, gender was the most important predictor of PFOS, PFHS, POAA and PFOSAA levels after adjusting for years worked in chemical and age (Appendix.). Data for chemical operators and the engineer/lab group from the all chemical participants showed comparable results (Appendices K and L).

To further clarify this issue, regression analyses were stratified by gender as well as by job category. With male chemical operators as well as with the male engineer/lab group, there was a consistent association of increasing levels of PFOS and PFHS (and POAA for chemical operators only) with increasing years worked, at least for the first several years of work. Scatterplots are found in Appendix M. More questionable is whether such an association remains linear or is polynomial (quadratic) over time. Among female chemical operators the only association observed was for PFHS and years worked. Scatterplots are found in Appendix N. Neither PFOS or POAA levels appeared to increase with years worked in chemical among female chemical operators. The data for the female engineer/lab group are difficult to interpret since 6 of the 9 individuals had less than 5 years of work in chemical. Use of an interaction term (gender x years worked in chemical) in multivariable models was not an important predictor of fluorochemical levels.

Film Plant

Altogether there were 60 current employees who responded to the film plant random sampling. A total of 36 employees had worked only in the filra plant (i.e., 'only in the film plant' refers to film plant workers with no known experience: on the D-1 maker or have had no previous work experience in the chemical plant), 6 film plant employees were known to have worked on the D-1 maker and 18 employees had worked, at some time previously, in the chemical plant but were not on the D-1 maker ((able 24). For all film participants ($\mathrm{n}=76$, random sample and volunteers), a total of 49 had worked only in the film plant, 7 were known to have worked on the D-1 maker and 20 had worked, at some time previously, in the chemical plant.

Among the 60 employees of the random sample, there were no substantial demographic differences (Table 25) between the only film, the D-1 maker and prior chemical history groups. However, there were significant differences in serum fluorochemical levels among these three groups of film plant workers. Those employees who have only worked in the film plant (but not on D-1 maker or previous chemical plant history) had significantly lower mean PFOS levels (Table 26). The geometric mean of PFOS for only film plant workers was $0.110 \mathrm{ppm}(95 \% \mathrm{CI} 0.094-0.129)$ compared to $0.289 \mathrm{ppm}(95 \% \mathrm{CI} 0.159-0.527)$ for employees known to have worked on the D-1 maker and the geometric mean was $0.178 \mathrm{ppm}(0.137-0.233)$ for film plant employees with prior history in chemical. A similar significant association, albeit at a lower ppm level, was observed for POAA. The only film plant employees had significantly lower PFHS levels when compared to film plant workers with a previous history in chemical; their PFHS levels were nonsignificantly lower than those who worked on the D-1 maker. There were no significant differences in sera levels of the remaining fluorochemical
levels among the three groups of film employees. Interestingly, all film plant workers with a previous history of having worked in the chemical plant had M556 values that were below the LLOQ. We do note that the D-1 maker group had comparable levels of M570 to the only film or film with previous history in chemical groups (see Table 26). We had hypothesized the D-1 maker group may have had higher levels because of their use of methyl FOSE amide which may metabolize to the analyte M570 Provided in Table 27 are ratios of fluorochemicals. The median ratios were comparable for these groups of film plant workers in the random sample.

Restricting the analyses to film employees with no D-1 maker or chemical plant experience, there were no significant differences by age for the four current job categories analyzed: engineer/lab, film processor, maintenance and administrative (Table 28). Although their serum levels were substantially below their counterparts in chemical, maintenance employees working in the film plant had significantly higher PFOS, POAA and M570 levels than the engineer/lab group within the film plant (Table 29). Engineer/lab, film processors and administrative workers had comparable fluorochemical serum levels. Median fluorochemical ratios were comparable among these job categories of the random sample of film plant workers (Table 30). Similar findings were observed when all film plant participants were analyzed for demographics and serum fluorochemical levels (Tables 31-33).

Located in Appendix O are scatterplots of the only film group for each fluorochemical regressed on years worked in film. Because maintenance workers had higher levels, on average, than the other three job groups among the only film employees, they are numbered on the graphs. From these analyses there is some suggestion that PFOS and POAA levels may increase within the first few years of working at the Decatur
film plant and then subsequently plateau. However, unlike chemical workers, there is no linear (or quadratic) association observed for PFHS. The remaining fluorochemicals showed no association with years worked in film.

DISCUSSION

The goal of this research effort was to quantify, based on randon sampling, the relationship of employee serum levels of seven fluorochemicals at the Decatur chemical and film plants. In that regard, the data collected and analyzed present a convincing picture of significantly lower serum fluorochemical levels among employees who have only worked in the film plant when compared to those who are current chemical plant employees. For example, comparing the geometric means for each fluorochemical between chemical operators and those employees who only have worked in film, we observed the following ratios: PFOS (1.481/0.110); PFHS (0.428/0.015); POAA (1.887/0.052); PFOSAA (0.01 1/0.002); M570 (0.229/0.022); and M556 (0.044/0.003). These ratios, except for PFOSAA, suggest a 10 -fold or greater difference between chemical operators and film plant employees who work several hundred yards away from Building 3. These only film plant workers appear to have a geometric mean value for PFOS that is approximately 3-4 times higher than the pooled geometric mean (0.029 ppm) from 64 samples obtained from 18 U.S. blood banks; thus, we suspect that occupational exposure to PFOS occurs within the film plant although at much lower levels than among employees working at the chemical plant.

Among film plant employees we also established the fact that workers on the D-1 maker have serum PFOS levels approximately 3 times higher than those who have never
worked on the D-1 maker nor have worked in the chemical plant. Unexplained is the POAA levels of these workers on the D-1 maker as well as the levels observed among other film plant employees.

We confirmed several hypotheses for the chemical plant employees. First, cell operators have the highest serum levels of PFOS and PFHS although their serum levels for other fluorochemical analytes were similar to other chemical employees who were involved with the chemical reactors (i.e., chemical operators and maintenance workers). Second, chemical operators and maintenance workers had comparable serum fluorochemical levels. Besides their higher levels of PFOS and PFHS, hey both had significantly higher levels of M570 (the methyl FOSE alcohol metabolite) and to a lesser degree to PFOSAA which is the ethyl FOSE alcohol metabolite (as well as an FC product itself, FC-129). Chemical operators, but not maintenance workers, haci higher levels of PFOSA. Both chemical operators and maintenance workers had moderately higher levels of M556 than the other job categories. These data suggest that, beyond general plantbased environmental exposure to POSF and PHSF (which we assume is primarily through inhalation and conversion to PFOS and PFHS, respectively), the chemical operators and maintenance workers have higher serum levels as a result of their occupational exposure to the fluorochemical products. These occupational exposures may be from the FC alcohols, FC amides, and FC acrylates. Because these fluorochemicals have much lower vapor pressure than POSF and PHSF, these data may indicate that the exposure to these chemical products within the chemical plant is relatively limited to within Building 3 and Building 4 N . Third, waste operators were comparable to chemical operators for serum levels of PFOS and PFHS but, like the cell operators, did not have higher levels of the fluorochemical analytes. Fourth, mill
operators were generally much younger employees and their highest fluorochemical serum level was to POAA. Yet, the mill operators' POAA levels were lower than those of cell operators, chemical operators and maintenance workers. This suggests there is plant-based exposure of POAA well beyond the Building 4 area which may be due to the fact that POAA is a by-product of the electrolytic cell production. Finally, the data support the hypothesis that those individuals (e.g., engineers and secret.ries) who are much less likely to have routine occupational exposure within the chemical plant, do, indeed have lower serum fluorochemical levels. Employees who have only worked in Building 1 which is immediately across the walkway from Building 3, have serum fluorochemical levels that range between 7 (PFOS, PFHS) and 15 times (PFOSAA) lower than employees who have only worked in Building 3.

Our analyses of fluorochemical levels in serum from randomily ;elected employees strengthen the recommendations that were recently made in a Decatur industrial hygiene assessment analysis [Logan, 1998]. There is a strong correlation between the higher employee serum levels in the present study and air, surface and personal monitoring measurements which occurred during the industrial hygiene assessment. In the industrial hygiene assessment, Building 3 had the highest average airbome total fluorochemical levels with each value derived from the total mass of detected target analytes in each sample (POSF, PHSF, FC amides, FC alcohols, FC acrylates) (see below):

Results of Fluorochemical Tube Air Samples

Bldg No.	No. Samples	Average*	Low*	High*
1	19	0.0145	0.000	0.0601
3	66	1.6884	0.0070	38.0583
4	10	0.1269	0.0047	0.5216
Outside air	3	0.0861	0.580	0.1247

Surface wipe sampling was also conducted throughout the chemical plant (Buildings 1, 2, $3,4,17,38,49,51$ and 57). Sample results indicated that fluorochemicals were found in nearly all samples with large variations in concentration. Building 3 had the highest surface fluorochemical contamination with the average surface conceniration greater than $100 \mathrm{ug} / 100 \mathrm{~cm}^{2}$. Also, methyl FOSE alcohol was the largest contributor of fluorochemicals found throughout surface wipes in Building 3. Hand-wipe samplings indicated that employees who had washed their hands had very low levels of fluorochemicals detected. Methyl FOSE alcohol and POAA were the compounds found most often on employees' hands. Thus, the present study's sera fluorochemical levels, observed by job categories and building locations, strongly support the recommendations borne from industrial hygiene assessments. These recommendations itclude specific engineering controls to reduce inhalation exposure, appropriate personil protective equipment to prevent overexposure and appropriate personal hygiene practices among employees to remove skin concentrations.

For the first time we have shown a relationship between serum PFHS levels and the number of years worked in chemical. This finding was observed across various current job categories within chemical which suggests PHSF, due to its high vapor pressure, is likely present throughout the chemical plant premises. The pharmacokinetics of PFHS are unknown, although due to the shorter chain length, we suspect the biological half-life may be less than PFOS.

We observed only a modest association between years worked in the chemical plant and serum PFOS, and to a lesser extent POAA, levels. These associations appear to be more evident among employees within their first five years as demonstrated by significant quadratic associations found with both male chemical operators and
engineers/laboratory personnel.
Like their male counterparts, female chemical operators appear to have increased PFHS levels with years worked. However, unlike their male counterparts, there was no apparent linear association between PFOS and years worked. Whether this is due to different work practices, exposure patterns or pharmacokinetics once absorbed, remains to be determined. Gender-related differences in the toxicokinetics of POAA have been reported for rats although the mechanism of excretion may be species dependent since these gender differences were not observed in mice, rabbits or dogs [Griffith and Long, 1980; Hanhijarvi and Ylinen, 1988]. The half-life of POAA was estimated to be 7 times higher (7 days) in male rats than female rats.

A limitation to this study design which must be considered in the interpretation of the data was our inability to more accurately quantify an employee's work history experience. Decatur work history records provide department numbers and job titles but they do not provide information regarding where someone worked (e.g., what building(s) or with what specific fluorochemicals). Self-reported work history information obtained by questionnaire was highly correlated with Decatur work history record information; nevertheless, the specificity of where someone worked and with what chemicals was not known. Because many operations are in batch mode, the likelihood of determining specificity of workload fluorochemical exposure among chemical operators is not possible. Furthermore, such records do not exist back in time. Nevertheless, with use of the employees current (or longest) job along with additional surrogate variable exposures (years worked in chemical, building number) we were able to compare and contrast fluorochemical levels. The least predictive of these three variables (job type, building and years worked) was years worked with the exception of PFHS where a strong linear
association existed across job categories for PFHS with years worked.
We did not observe an association between hand-to-mouth usage or hand cleanliness (frequency of washing hands) and serum fluorochemical leve s. It is possible an association might have been masked because industrial hygiene had i istituted an aggressive educational campaign several months prior to the collection of blood samples in this study; thus, current practices may not be indicative of past practices. Because the half-life of PFOS is estimated to be 1000 days or more, such an association may not be discoverable with this study design.

The serum levels observed in this study for PFOS and POAA are not different than those that have been previously reported for this study and other 3 M occupational populations [Olsen et al., 1998a, 1998b, 1999]. Olsen et al. [1999] have not associated hepatic or lipid abnormalities with PFOS levels in the Decatur and Antwerp plant populations that underwent voluntary medical surveillance in 1995 and 1997. Hepatic lipid or hormone levels have not been associated with serum POAA levels among 3M Cottage Grove male workers who have experienced higher serum fluorochemical levels than those determined in the present study for these Decatur employees !Gilliland and Mandel 1996; Olsen et al. 1998a; 1998b].

In summary, the objective of this proposed research study was to characterize, via random sampling, the distribution of employee serum levels of PFOS, PFHS, POAA, PFOSAA, M570, PFOSA and M556 at the 3M Decatur chemical and film plants. The data obtained from this exposure assessment investigation are importan: for several reasons. First, these data allow for a better understanding of the expos ure distribution of serum fluorochemical levels in both the chemical and film plant employee populations. Second, these data may serve as future reference regarding human exposure assessment
for the film as well as the chemical plant in the area of health studies and exposure reduction. Third, the data may be used for the construction of an exposure matrix for the anticipated update of the retrospective cohort mortality study of the Decat sr employee population. Finally, this study will allow for the opportunity for employees to know their own serum levels for these seven fluorochemicals and encourage further practices leading to a reduction in their serum fluorochemical levels by the variety of exposure-reduction methods recommended in the Decatur industrial hygiene exposure assessment report [Logan, 1998].

REFERENCES

Griffith F, Long J. Animal toxicity studies with ammonium perfluorooct inoate. Am Ind Hyg Assoc 1980;41:5760583.

Hanhijarvi H , Ylinen M. A proposed species difference in the renal excretion of perfluorooctanoic acid in the beagle dog and rat. In: Beynen A, Solleveld H, eds. New Developments in Biosciences: their Implications for Laboratory Animal Sciences. Dordrecht: Martinus Nijhoff. 1988:409-412.

Hansen K. Laboratory Report: Analysis of FCs in Serum Samples Collected From Employees at 3M Decatur. St. Paul:3M Environmental Laboratory. June, 1999.

Logan PW. 3M Decatur Fluorochemical Industrial Hygiene Exposure A isessment. (Unpublished report.) September 15, 1998.

Gilliland FD, Mardel JS. Serum perfluorooctanoic acid and hepatic enz \quad.mes, lipoproteins and cholesterol: a study of occupationally exposed men. AJIM 1996;26:560568.

Olsen GW, Gilliland FD, Burlew MM, Burris JM, Mandel JS, Mandel JH. An epidemiologic investigation of reproductive hormones in men with occupational exposure to perfluorooctanoic acid. J Occup Env Med 1998a;40:614-622.

Olsen GW, Burris JM, Burlew MM, Mandel JH. An epidemiologic investigation of plasma cholecystokinin and hepatic function in perfluorooctanoic acid poduction workers. (3M unpublished report); 1998b.

Olsen GW, Burris JM, Mandel JH, Zobel LR. Serum perfluorooctane sulfonate and hepatic and lipid clinical chemistry tests in fluorochemical production employees. J Occup Env Med (1999, in press).
Roach DE. Fluorochemical Control Study. 3M Unpublished Report. 3M Company:St. Paul, MN May 25, 1982.

Schuman LM (1982). Letter to Dr. Frank Ubel (3M Medical Director) concerning Fluorochemical Control Study. April 29, 1982.

Vollmer D. Quantitative Determination of PFOS, PFOSA, PFOSAA, POAA and PFHS in Human Serum by LC/MS/MS. Salt Lake City:Northwest Bioanalytical. July 1999.

ACKNOWLEDGEMENT

The investigators greatly appreciate the contributions of Kim Young to this final report.
Table 1. Random sample selection by Decatur departments with percent participation

Dept Number	Dept Name	Total N	Sample Size	Participated (\%)	
				Yes	No
Employees with 090 location codes					
7613	3M/Dyneon Related Decatur	112	30	25 (83)	5 (17)
7620	Decatur Bldg 2 Operations	25	10	7 (70)	$5(30)$
7621	Bldg 49 Operations	1			
7630	Decatur Bldg 3 Operations	113	30	25 (83)	5 (17)
7641	Decatur Bldg 4N Operations	60	15	13 (87)	2 (13)
7609	Decatur SMD Maint-SA\&C	54	15	14 (93)	1 (7)
37	Mfg Servcices Process Eng	2	26	23 (88)	3 (12)
6825	Process Instrumentation \& CN	1			
8038	Supply Chain Resource Unit	1			
7604	Decatur SMD Chem Factory Adm	4			
7605	Decatur SMD Chem Quality Ass	25			
7616	Decatur Chem Ship Rcv Whse	24			
7617	Decatur SMD Logistics	10			
7622	Decatur PCPD FF Admin	24			
5980	Decatur EHS\&R	21	5	$5(100)$	0 (0)
Employees regardless of 090 or 190 location					
6853	Auto \& Chem Mkts Eng	8 (090)	5	4 (80)	1 (20)
6853	Auto \& Chem Mkts Eng	6 (190)			
4290	Auto \& Chem IT NPI/R\&D	1 (190)			
4294	Auto \& Chem IT Mfg - Quality/S	4 (190)			
4297	Auto \& Chem IT CMG Mfg	6 (190)			
Waste water treatment employees					
5984	Decatur Waste Treatment	6	6	6 (100)	0 (0)

Table 2. Number (and percent) of random sample, volunteer and all participant chemical employees by demographic characteristics

	Sample ($\mathrm{N}=126$)		Volunteers ($\mathrm{N}=61$)		All Participants ($\mathrm{N}=187$)	
	N	(\%)	N	(\%)	N	(\%)
Gender \quad - \quad -						
Female	24	(19)	9	(15)	33	(18)
Male	102	(81)	52	(85)	154	(82)
Only Worked						
In Chemical						
Yes	67	(53)	33	(54)	100	(53)
No	59	(47)	28	(46)	87	(47)
Current Job						
Cell Operator	5	(4)	4	(7)	9	(5)
Chemical Operator	47	(37)	17	(28)	64	(34)
Engineer/Lab	23	(18)	14	(23)	37	(20)
Maintenance	11	(9)	6	(10)	17	(9)
Mill Operator	13	(10)	11	(18)	24	(13)
Secretary	4	(3)	1	(2)	5	(3)
Supervisor/Mgmt	18	(14)	8	(13)	26	(14)
Waste Operator	5	(4)	0	(0)	5	(3)
Longest Job						
Cell Operator	1	(1)	2	(3)	3	
Chemical Operator	57	(45)	20	(33)	77	(41)
Engineer/Lab	21	(17)	10	(16)	31	(17)
Film Processor	3	(2)	2	(3)	5	(3)
Maintenance	14	(11)	6	(10)	20	(11)
Mill Operator	14	(11)	12	(20)	26	(14)
Secretary	6	(5)	1	(2)	7	(4)
Supervisor/Mgmt	7	(6)	8	(13)	15	(8)
Waste Operator	3	(2)	0	(0)	3	(2)

	Sample ($\mathrm{N}=126$)		Volunteers ($\mathrm{N}=16$)		All Participants ($\mathrm{N}=187$)	
	N	(\%)	N	(\%)	N	(\%)
Chew Gum - - -						
Always/Frequently	22	(18)	14	(23)	36	(20)
Sometimes	32	(26)	20	(33)	52	(28)
Rarely/Never	70	(56)	26	(43)	96	(52)
Chew Tobacco						
Yes	19	(15)	6	(10)	25	(14)
No	105	(85)	54	(90)	159	(86)
Smoke Cigarettes						
Yes	41				55	(31)
No	82	(67)	46	(77)	128	(69)
Hand to Mouth Contact						
Yes	84	(68)	42	(70)	126	(68)
No	40	(32)	18	(30)	58	(32)
Wash Hands						
Yes	101	(8i)	42	(70)	143	(78)
No	23	(19)	18	(30)	41	(22)

Table 3. Percentage of employees from the random sample, volunteers and all participants who responded that they currently work and ever worked in Decatur buildings/areas

IM
EPI-0006
Page 47 of 85

	Random Sample				Volunteers				All Participants			
	Mean	Geometric Mean	Median	Range	Mean	Geometric Mean	Median	Range	Mean	Geometric Mean	Median	Range
PFOS	1.505	0.941	1.140	0.091-10.600	1.259	0.758	0.877	0.052-4.940	1.424	0.877	0.994	0.052-10.600
PFHS	0.345	0.180	0.170	0.005-1.880	0.272	0.122	0.125	0.001-1.580	0.321	0.159	0.167	0.001-1.880
POAA	1.536	0.899	1.300	0.021-6.760	1.206	0.649	0.908	0.015-4.640	1.429	0.808	1.200	0.015-6.760
PFOSAA	0.023	0.008	0.008	0.001-0.269	0.026	0.007	0.006	0.001-0.234	0.024	0.008	0.008	0.001-0.269
M570	0.150	0.081	0.067	0.008-0.992	0.173	0.068	0.054	0.004-3.100	0.158	0.076	0.063	0.004-3.100
PFOSA	0.062	0.013^{a}	0.012	0.0005-0.612	0.029	0.006	0.007	0.005-0.443	0.051	0.010	0.010	0.001-0.612
M350	v.034	0.022	0.020	v.001-0.400	v.v41	0.020	0.018	$0.005-0.329$	U.U48	0.022	0.023	0.001-0.406

a. significantly different ($\mathrm{p}<.05$) geometric mean than volunteers, student's t test
-M
EPI-0006
Page 48 of 85

	Cell Operator ${ }^{\text {a }}$ ($\mathrm{N}=5$)	Chemical Operator ${ }^{\text {b }}$ $(\mathrm{N}=47)$	$\begin{gathered} \text { Engineer/ } \\ \text { Lab }^{\text {c }} \\ (\mathrm{N}=23) \\ \hline \end{gathered}$	$\begin{gathered} \text { Maintenance }^{\mathrm{d}} \\ (\mathrm{~N}=11) \\ \hline \end{gathered}$	Mill Operator ${ }^{\text {b }}$ $(\mathrm{N}=13)$	Secretary ${ }^{\mathrm{f}}$ $(\mathrm{N}=4)$	$\begin{aligned} & \text { Supervisor/ } \\ & \text { Mgmt } \\ & (\mathrm{N}=18) \\ & \hline \end{aligned}$	Waste Operator $(N=5)$
Age								
Mean	$45^{\text {e }}$	$42^{\text {e, , , } \mathrm{h}}$	$41^{\text {g,h }}$	$41^{8, h}$	35 $5^{\text {ab,beg.gh }}$	$45^{\text {e }}$	47 ${ }^{\text {b,c.c.de }}$	$50{ }^{\text {b,c,c,4e }}$
SE (standard error)	1.2	1.2	1.7	2.5	2.3	4.2	2.0	3.7
Median	44	43	42	42	34	45	45	50
Range	40-50	25-62	23-58	27-52	27-45	42-49	41-57	49-52
BMI								
Mean	25.8	28.3^{1}	27.6	26.9	27.7	$22.4{ }^{\text {b.g }}$	$29.5{ }^{\text {f }}$	25.5
SE	1.5	5.1	5.0	2.8	5.4	2.0	6.1	3.2
Median	25.0	27.8	27.6	26.6	27.3	22.0	27.6	25.8
Range	22.1-30.0	20.2-47.5	18.5-38.4	22.8-32.5	19.6-42.0	20.9-25.1	21.8-47.3	21.8-30.1
Years Worked In								
Mean	$23^{\text {b,de }}$	$11^{\text {e, e, }, ~}$	$15^{\text {e }}$	9^{488}	$3^{\text {ab,b,c,f,g,h }}$	$15^{\text {e }}$	$20^{\text {b,d, },}$	$14^{\text {c }}$
SE	2.0	1.4	2.8	3.0	1.5	4.9	2.5	4.5
Median	24	10	15	4	1	18	24	16
Range	17-29	1-31	1-37	1-26	1-21	2-25	1-36	1-27
	N (\%)	N(\%)						
Gender* - - - - - - - - - - - -								
Female	1 (20)	10 (21)	6 (26)	0 (0)	1 (8)	4 (0)	2 (11)	0 (0)
Male	4 (80)	37 (79)	17 (74)	11 (100)	12 (92)	0 (0)	16 (89)	5 (100)
Only Worked In*								
Chemica!								
Yes	3 (60)	23 (49)	14 (61)	6 (55)	11 (85)	1 (25)	9 (50)	0 (0)
No	2 (40)	24 (51	9 (39)	5 (45)	2 (15)	3 (75)	9 (50)	5 (100)
Hand to Mouth								
Contact								
Yes	3 (60)	35 (76	11 (50)	8 (73)	10 (77)	2 (50)	12 (67)	3 (60)
No	2 (40)	11 (24)	11 (50)	3 (27)	3 (23)	2 (50)	6 (33)	2 (40)
Wash Hands								
Always	5 (100)	40 (87)	16 (73)	10 (91)	12 (92)	2 (50)	13 (72)	3 (60)
Less frequently	0 (0)	6 (13)	6 (27)	1 (9)	1 (8)	2 (50)	5 (28)	2 (40)

*Current job types significantly different, $\mathrm{p}<.05$ chi square statistic
(a-h) comparison for each current job category using student's t ($\mathrm{p}<.05$)

	PFOSAA			M570			PFOSA			M556		
	Mean	Geometric Mean	Median	Mean	Geometric Mean	Median	Mean	Geometri Mean	Median	Mean	Geometr Mean	Median
Gender												
Female	0.011	0.003	0.002	0.077	0.053	0.052	0.037	0.012	0.014	0.025	0.014	0.013
Male	0.026	0.010	0.009	0.168	0.089*	0.073	0.068	0.013	0.011	0.058	0.025	0.028
Hand To Mouth												
Yes	0.026	0.009	0.008	0.153	0.085	0.637	0.050	0.012	0.012	0.054	0.022	0.021
No	0.019	0.007	0.008	0.139	0.079	0.081	0.080	0.013	0.011	0.048	0.026	0.030
Wash hands												
Yes	0.025	0.009	0.009	0.162	0.088	0.672	0.063	0.013	0.013	0.059	0.026*	0.028
No	0.017	0.005	0.003	0.893	0.055	0.632	0.045	0.009	0.009	0.020	0.012	0.015
Worked unly in chemical												
Yes	0.024	0.009	0.008	0.142	0.075	0.063	0.059	0.012	0.013	0.046	0.019	0.019
No	0.022	0.008	0.008	0.160	0.088	0.074	0.065	0.014	0.011	0.058	0.027	0.030

Table 7.							$\begin{aligned} & \text { EPI-0006 } \\ & \text { Page } 51 \text { of } 85 \end{aligned}$	
	Mean, range, geometric mean and 95% confidence interval of geometric mean of serum fluorochemical levels by current job categories among random sample ($\mathrm{N}=126$) of chemical employees							
	Cell Operator ${ }^{\text {a }}$ $(\mathrm{N}=5)$	Chemical Operator ${ }^{\text {b }}$ ($\mathrm{N}=47$)	$\begin{gathered} \text { Engineer/ } \\ \text { Lab }{ }^{c} \\ (\mathrm{~N}=23) \end{gathered}$	$\begin{gathered} \text { Maintenance }^{\mathrm{d}} \\ (\mathrm{~N}=11) \end{gathered}$	Mill Operator ${ }^{e}$ $(\mathrm{N}=13)$	Secretary ${ }^{\mathrm{f}}$ $(\mathrm{N}=4)$	$\begin{gathered} \text { Supervisor/ } \\ \text { Mgmt }^{8} \\ (\mathrm{~N}=18) \\ \hline \end{gathered}$	Waste Operator ${ }^{\text {h }}$ ($\mathrm{N}=5$)
PFOS 0.64978								
Mean Range	$\begin{gathered} 2.903 \\ 0.325-6.840 \end{gathered}$	$\begin{gathered} 1.781 \\ 0.471-7.260 \end{gathered}$	$\begin{gathered} 0.634 \\ 0.095-1.740 \end{gathered}$	$\begin{gathered} 1.672 \\ 0.291-4.060 \end{gathered}$	$\begin{gathered} 0.718 \\ 0.230-2.040 \end{gathered}$	$\begin{gathered} 0.497 \\ 0.220-1.140 \end{gathered}$	$\begin{gathered} 1.879 \\ 0.091-10.600 \end{gathered}$	$\begin{gathered} 2.649 \\ 0.254-7.880 \end{gathered}$
G. Mean	$1.970{ }^{\text {c,e,f }}$	$1.481^{\text {c.e.,.gh }}$	$0.391^{2,6,4,8, h}$	$1.299^{\text {ce,f },}$	$0.589^{\text {a }}$, , d, h	$0.397^{\text {ab,dh }}$	$0.885^{\text {c }}$	$1.504^{c, e, f}$
95\% C.l.	0.732-5.304	1.250-1.755	0.256-0.597	0.822-2.054	0.419-0.828	0.195-0.807	0.480-1.630	0.493-4.589
PFHS 0.444								
Mean	1.062	0.428	0.171	0.237	0.109	0.082	$\begin{gathered} 0.419 \\ 0010-1470 \end{gathered}$	
Range	0.083-1.880	0.071-1.860	0.005-0.905	0.023-0.790	0.028-0.374			
G. Mean	$0.697^{\text {cide, f.fg }}$	$0.308{ }^{\text {c,e,f }}$	$0.078^{\mathrm{gb} \mathrm{bgh}}$	$0.153^{\text {a }}$	$0.074^{\text {n,b,g.g.h }}$	$0.066^{\text {ab.g }}$	$0.215^{\text {c.e.f }}$	$0.232^{\text {c.e }}$
95\% C.I.	0.228-2.130	0.246-0.386	0.046-0.134	0.084-0.280	0.047-0.116	0.031-0.140	0.115-0.402	0.069-0.775
POAA 1.663								
Mean	2.213	2.252	0.376	1.483	1.383	0.183	1.371	
Range	0.126-3.640	0.150-6.760	0.035-2.320	0.211-4.680	0.450-2.340	$0.095-2.611$	0.021-4.540	0.936-2.710
G. Mean	$1.428^{\text {c, }}$,	$1.887^{\text {c.f.f.g }}$	$0.208^{\text {ab,de,f.gh }}$	$1.095^{\text {c,f }}$	$1.266^{\text {c.f. }} \mathrm{s}$	$0.172^{\text {alb,de, g, }{ }^{\text {a }}}$	0.637 ${ }^{\text {b,c,e,f }}$	$1.542^{\mathrm{e}, \mathrm{f}}$
95\% C.I.	0.422-4.833	1.573-2.265	0.134-0.324	0.670-1.791	0.985-1.629	0.113-0.260	0.310-1.308	1.052-2.259
PFOSAA								
Mean	0.006	0.036	0.014	0.034	0.020			
Range	0.001-0.016	0.001-0.269	0.001--0.073	0.001-0.083	0.004-0.038	0.001-0.004	0.001-0.054	0.003-0.017
G. Mean	$0.003^{\text {b,dec }}$	$0.011^{\text {ac, }, \text { t }}$	$0.005^{\text {0,a,e }}$	$0.017^{\text {a,a, }}$	$0.015^{\text {an, }}$	$0.002^{\text {2, }}$	$\stackrel{0.006}{0.003}$	0.000
95\% C.I.	0.001-0.009	0.007-0.018	0.003-0.010	0.007-0.043	0.010-0.024	0.001-0.003	0.003-0.010	0.003-0.013
M570								
Mean	0.035	0.229	0.074	0.268	0.045	0.039	${ }^{0.122}$	${ }_{0}^{0.087}$
Range	0.024-0.056	0.009-0.992	0.008-0.410	0.038-0.701	0.025-0.115	0.010-0.072	0.010-0.553	0.050-0.159
G. Mean	$0.033^{\mathrm{b}, \mathrm{d}}$	$0.131^{\text {ac, c, c.f. }}$	$0.049^{\text {b,d }}$	$0.204^{2 \mathrm{c}, \text { e, ef.g }}$	$0.042^{\mathrm{b}, \mathrm{d}}$	$0.030^{\text {b,d }}$	$0.064^{\text {b,d }}$	0.079
95\% C.I.	0.024-0.045	0.094-0.182	0.034-0.071	0.124-0.335	0.034-0.051	0.013-0.071	0.037-0.111	0.052-0.12t

(a-h) comparisons for each current job category using student's $t, p<0.5$

Table 8. Fluorochemical ratios by current job categories for random sample ($\mathrm{N}=126$) of chemical employees								
	Cell Operator ${ }^{\text {a }}$ $(\mathrm{N}=5)$	Chemical Operator ${ }^{\text {b }}$ $(\mathrm{N}=47)$	$\begin{gathered} \text { Engineer/ } \\ \text { Lab }^{c} \\ (\mathrm{~N}=23) \\ \hline \end{gathered}$	$\begin{gathered} \text { Maintenance }^{d} \\ (\mathrm{~N}=11) \\ \hline \end{gathered}$	Mill Operator ${ }^{\text {e }}$ $(N=13)$	Secretary ${ }^{\dagger}$ $(\mathrm{N}=4)$	$\begin{gathered} \text { Supervisor/ } \\ \mathrm{Mgmt}^{\mathrm{B}} \\ (\mathrm{~N}=18) \\ \hline \end{gathered}$	Waste Operator ${ }^{\text {h }}$ ($\mathrm{N}=5$)
PFOS/PFHS								
Mean	$3.0{ }^{\text {d,e.h }}$	$5.5{ }^{\text {d, } e}$	$5.9{ }^{\text {de }}$	$9.2{ }^{\text {a,b, }, \ldots, \mathrm{B}}$	$8.5{ }^{\text {a,b,g,h }}$	6.1	$5.0{ }^{\text {d, e }}$	$7.1{ }^{\text {a }}$
Median	3.3	5.2	5.2	10.3	8.3	5.8	3.3	6.6
Range	1.5-3.9	1.1-14.8	$1.6-18.8$	$3.7-16.5$	4.3-14.9	$4.8-8.3$	1.9-11.7	$3.2-12.3$
PFOS/POAA								
Mean	$1.5{ }^{\text {e }}$	$0.9{ }^{\text {c, }, \text { f.g }}$	$2.2{ }^{\text {b,dec }}$	$1.2{ }^{\text {e.e.f }}$	$0.5^{\text {a,c,r, }, \mathrm{g}}$	$2.5{ }^{\text {b,d.e., } \mathrm{h}}$	$1.8{ }^{\text {b,e }}$	$1.4{ }^{\text {f }}$
Median	1.0	0.9	1.7	1.3	0.5	2.0	1.6	1.0
Range	1.0-2.6	0.3-3.1	0.7-4.4	0.7-1.5	0.2-0.9	1.7-4.4	0.3-4.8	0.3-2.9
PFOS/Analytes								
Mean	$52.6{ }^{\text {b-h }}$	$7.4{ }^{\text {a,h }}$	$7.4{ }^{\text {a,h }}$	$4.6{ }^{\text {a,h }}$	$6.7^{\text {a }}$	$6.7^{\text {a }}$	$16.7{ }^{\text {a }}$	$26.5{ }^{\text {ae }}$
Median	56.1	4.7	3.9	3.2	4.8	6.9	6.7	9.8
Range	4.9-93.3	$1.3-61.8$	0.8-36.8	$1.4-11.7$	2.5-20.5	3.2-9.7	$1.3-134.2$	0.8-99.4
M570/M556								
Mean	3.5	$3.7{ }^{\text {c,e }}$	$5.8{ }^{\text {b }}$	$3.3{ }^{\text {c,e }}$	$5.8{ }^{\text {b,d }}$	3.2	5.3	3.3
Median	2.8	3.0	5.7	2.7	4.3	3.2	4.2	3.4
Range	2.0-7.5	0.5-8.9	1.9-14.4	$1.2-8.7$	1.2-21.3	2.2-4.3	1.6-9.5	1.0-5.3
PFOSAA/M556								
Mean	$0.4{ }^{\text {e }}$	$0.9{ }^{\text {e }}$	$1.1{ }^{\text {e }}$	$0.8{ }^{\text {e }}$	$2.4{ }^{\text {a-d, }-\mathrm{h}}$	$0.2{ }^{\text {e }}$	$1.1{ }^{\text {e }}$	$0.4{ }^{\text {e }}$
Median	0.3	0.2	0.8	0.1	2.3	0.2	0.5	0.3
Range	0.1-1.3	0.03-8.5	0.03-4.5	0.01-3.1	0.2-5.7	0.05-0.5	0.02-4.8	0.1-1.1
PFOSA/M556								
Mean	0.4	3.0	2.5	$0.4{ }^{\text {e }}$	$7.6{ }^{\text {d }}$	2.5	4.7	2.6
Median	0.1	0.3	0.3	0.1	2.1	2.7	0.3	0.3
Range	0.04-1.2	0.03-30.7	0.03-18.3	0.02-2.7	0.8-52.3	0.9-3.7	0.02-64.1	0.03-11.8

EPL-0006
Page 54 of 85

NI
EPI-0006
Page 55 of 85
Table 10. Mean, median, geometric mean and 95% confidence intervals of geometric mean of serum fluorochemical levels by longest job

	Chemical Operator ${ }^{\text {a }}$ $(\mathrm{N}=57)$	$\begin{gathered} \text { Engineer/ } \\ \text { Lab }^{\mathrm{b}} \\ (\mathrm{~N}=21) \end{gathered}$	Maintenance ${ }^{c}$ $(\mathrm{N}=14)$	Mill Operator ${ }^{\text {d }}$ $(\mathrm{N}=14)$	Secretary ${ }^{\text {e }}$ $(\mathrm{N}=6)$	$\begin{gathered} \text { Supervisor/ } \\ \text { Mgmt }^{\ddagger} \\ (\mathrm{N}=7) \\ \hline \end{gathered}$	Waste Operator ${ }^{8}$ $(\mathrm{N}=3)$
PFOS							
Mean	2.088	0.520	2.250	0.735	0.388	0.536	2.388
Range	0.338-7.880	0.095-1.740	0.291-10.600	0.230-2.040	0.129-1.140	0.091-1.220	0.254-4.840
G. Mean	$1.697^{\text {b,d,e,f }}$	$0.330^{\text {a,c, } \mathrm{d}, \mathrm{g}}$	$1.490{ }^{\text {b,d,d,f,f }}$	$0.609^{\text {a,c,f } f}$	$0.295^{\text {a,c.g }}$	$0.4000^{\text {a,c.c. } \mathrm{B}}$	
95\% C.I.	1.440-1.998	0.219-0.496	0.933-2.379	0.441-0.842	0.163-0.533	0.209-0.764	$0.245-7.600$
PFHS							
Mean	0.543	0.116	0.297	0.107	0.070	0.128	0.256
Range	0.073-1.880	0.005-0.420	0.023-1.250	0.028-3.744	0.027-0.172	0.010-0.383	$0.0388-0.562$
G. Mean	$0.388^{\text {b,c,d,e,f, }}$	$0.067^{\text {a,c }}$	$0.176^{\text {a,b,d,e }}$	$0.074^{\mathrm{a}, \mathrm{c}}$	$0.057{ }^{\text {a.c }}$	$0.077^{\text {a }}$	0.153
95\% C.I.	0.314-0.480	0.041-0.110	0.101-0.307	0.048-0.112	0.033-0.097	0.030-0.193	0.033-0.703
POAA							
Mean	2.293	0.287	I. 667	1.383	0.143	0.407	2.219
Range	0.182-6.760	$0.035-1.000$	0.211-4.680	$0.450-2.340$	0.053-0.261	0.021-1.790	0.936-3.680
G. Mean	$1.972^{\text {b,c,e,f }}$	$0.198^{\text {a,c, d, } \mathrm{g}}$	$1.229^{\text {a,b,e.f }}$	$1.274^{\mathrm{b}, \mathrm{e}, \mathrm{f}}$	$0.124^{\text {a,c, c, }, \mathrm{g}}$	$0.177^{\text {a,c, }, \mathrm{d}, \mathrm{g}}$	$1.915^{\text {b.e.f }}$
95\% C.I.	$1.694-2.295$	0.134-0.295	0.797-1.900	1.009-1.609	0.076-0.203	0.062-0.510	0.881-4.166
PFOSAA							
Mean	0.032	0.014	0.029	0.019	0.002	0.011	0.008
Range	0.001-0.269	0.001-0.073	0.001-0.083	0.004-0.038	0.001-0.004	0.001-0.019	0.003-0.016
G. Mean	$0.010^{\text {b,e }}$	$0.005^{\text {a,c,d }}$	$0.014^{\text {b,e }}$	$0.014^{\text {b,e }}$	$0.001^{\text {a,c,d,f,g }}$	$0.008^{\text {c }}$	0.006
95\% C.I.	0.007-0.016	0.027-0.010	0.007-0.031	0.009-0.022	0.001-0.002	0.004-0.017	0.002-0.016
M570							
Mean	0.213	0.060	0.269	0.046	0.032	0.071	
Range	0.009-0.992	0.008-0.164	0.038-0.701	0.025-0.115	0.010-0.072	0.016-0.201	$0.053-0.159$
G. Mean	$0.120^{\text {b,d,e,f }}$	$0.046^{\text {a.c }}$	$0.200^{\text {b,d,e,f }}$	$0.043^{\text {a,c }}$	$0.025^{\text {a,c }}$	$0.054^{\text {a.c }}$	0.095
95\% C.I.	0.089-0.161	0.033-0.064	0.126-0.315	0.035-0.052	0.014-0.046	0.030-0.096	0.050-0.177

MI
EPI-0006
Page 56 of 85

	Chemical Operator ${ }^{\text {a }}$ ($\mathrm{N}=57$)	$\begin{gathered} \text { Engineer/ } \\ \text { Lab }^{\text {b }} \\ (\mathrm{N}=21) \\ \hline \end{gathered}$	Maintenance ${ }^{\text {c }}$ $(\mathrm{N}=14)$	Mill Operator ${ }^{\text {d }}$ ($\mathrm{N}=14$)	Secretary ${ }^{\text {e }}$ $(\mathrm{N}=6)$	$\begin{gathered} \text { Supervisor/ } \\ \text { Mgmt }^{f} \\ (\mathrm{~N}=7) \\ \hline \end{gathered}$	Waste Operator ${ }^{8}$ ($\mathrm{N}=3$)
PFOS/PFHS							
Median	4.9	4.8	9.2	8.3	5.8	3.9	8.6
Range	1.1-14.8	1.9-18.8	3.7-16.5	4.3-14.9	2.2-8.3	3.0-11.7	$6.6-12.3$
PFOS/POAA							
Mean	$1.0{ }^{\text {b,e,f }}$	$2.0{ }^{\text {a,c, , , f.g }}$	$1.3{ }^{\text {b,d.e,f }}$	$0.5^{\text {b,c.e, },}$		$2.6{ }^{\text {a,b,c,d,g }}$	$0.9{ }^{\text {b,e. }, ~}$
Median	0.9	1.7	1.3	0.5	2.0	52.6	1.0
Range	0.3-2.9	0.3-4.4	0.6-2.3	0.2-0.9	1.6-4.4	0.7-4.8	0.3-1.3
PFOS/Analytes							
Mean	13.4	5.9	5.3	6.6	6.0	5.5	22.2
Median	5.4	3.9	3.8	4.8	5.5	3.3	13.9
Range	1.3-99.4	0.8-16.8	1.4-11.7	$2.5-20.5$	$3.2-9.7$	1.3-17.8	0.8-51.9
M570/M556							
Mean	$3.8{ }^{\text {b,f }}$	$5.7{ }^{\text {a }} \mathrm{c}$	$3.5{ }^{\text {b,f }}$	5.6	3.7	$6.4{ }^{\text {a,c }}$	3.2
Median	3.0	4.5	3.1	4.2	3.9	3.4	3.0
Range	0.5-9.5	1.9-14.4	1.2-8.7	1.2-21.3	2.2-5.8	2.5-19.5	1.0-5.5
PFUSAAMM556							
Mean	$0.9{ }^{\text {d }}$	$1.1{ }^{\text {d }}$	$0.7{ }^{\text {d }}$	$2.3{ }^{\text {a,b,c,e,g }}$	$0.2{ }^{\text {d }}$	1.4	$0.2{ }^{\text {d }}$
Median	0.2	0.6	0.1	2.2	0.2	1.2	0.1
Range	0.03-8.5	0.04-4.5	0.01-3.1	0.2-5.7	0.05-0.5	0.02-3.7	0.1-0.5
PFOSA/M556							
Mean	$2.6{ }^{\text {f }}$	2.2	$0.5{ }^{\text {d,f }}$	$7.4{ }^{\text {c }}$	2.6	$9.22^{\text {a,c }}$	1.1
Median	0.3	0.3	0.1	2.1	2.7	0.1	0.3
Range	0.03-30.7	0.03-18.3	0.02-2.7	0.8-52.3	0.9-3.7	0.02-64.1	0.03-2.8

(a-g) comparisons for each longest job category using student's $t, p<.05$
EPI-0006
Page 58 of 85

| Table 12. Mean, range, geometric mean and 95% confidence interval of geometric mean of serum fluorochemicals among | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| random sample $(\mathrm{N}=126)$ | of chemical employees who currently only work in certain buildings (as listed) |

EPI-0006
Page 59 of 85

Table 12. (continued)						
PFOSA						
Mean	0.026	0.003				
Range	$0.005-0.161$	$0.005-0.106$	$0.003-0.569$	$0.012-0.204$	$0.003-0.487$	$0.002-0.011$
G. Mean	0.009	0.002	0.036	0.027	0.059	0.006
95\% C.I.	$0.004-0.022$	$0.001-0.005$	$0.018-0.072$	$0.015-0.047$	$0.002-1.595$	$0.002-0.019$
M556						
Mean	0.027	0.012	0.119	0.008	0.076	0.056
Range	$0.003-0.127$	$0.003-0.028$	$0.024-0.380$	$0.016-0.018$	$0.026-0.175$	$0.015-0.157$
G. Mean	0.017	0.009	0.092	0.007	0.056	0.033
95\% C.I.	$0.010-0.030$	$0.004-0.021$	$0.066-0.129$	$0.005-0.011$	$0.019-0.163$	$0.006-0.193$
Years in chemical Mean	20	24		10		

Table 13. Mean, range, geometric mean and 95% confidence interval of geometric mean of serum fluorochemicals for those employees in random sample ($\mathrm{N}=126$) who said they have only worked in one building/area

	Bldg. 1 $(\mathrm{N}=6)$	Bldg. 3 $(\mathrm{N}=7)$	$\begin{gathered} \text { Bldg. } 4 \mathrm{MX} \\ (\mathrm{~N}=8) \\ \hline \end{gathered}$
PFOS			
Mean	0.474	2.561	0.521
Range	0.129-1.700	$1.450-5.120$	$0.230-0.838$
G. Mean	0.302	2.293	0.554
95\% C.I.	0.114-0.797	1.453-3.619	$0.340-0.904$
PFHS			
Mean	0.117	0.835	0.063
Range	0.013-0.420	$0.151-1.860$	0.038-0.152
G. Mean	0.064	0.519	0.064
95\% C.I.	0.018-0.223	0.185-1.450	0.039-0.103
POAA			
Mean	0.164	3.021	1.082
Range	0.053-0.386	0.366-6.760	0.450-1.850
G. Mean	0.125	2.033	1.030
95\% C.I.	0.053-0.294	0.773-5.351	0.719-1.476
PFOSAA			
Mean	0.001	0.030	0.020
Range	0.001-0.003	0.005-0.118	0.008-0.037
G. Mean	0.001	0.016	0.015
95\% C.I.	0.001-0.002	0.005-0.047	0.008-0.027
M570			
Mean	0.082	0.318	0.040
Range	0.015-0.201	0.063-0.480	0.026-0.053
G. Mean	0.053	0.274	0.048
95\% C.I.	0.018-0.159	0.145-0.520	0.028-0.081
PFOSA			
Mean	0.023	0.158	0.043
Range	0.009-0.060	0.003-0.569	0.001-0.204
G. Mean	0.019	0.055	0.034
95\% C.I.	0.009-0.037	0.009-0.324	0.011-0.108
M556			
Mean	0.022	0.097	0.010
Range	0.003-0.585	0.033-0.213	0.004-0.019
G. Mean	0.014	0.079	0.013
95\% C.I.	0.004-0.045	0.042-0.150	0.005-0.034
Years in chemical Mean	23	15	1.6

Int
EPI-0006
Page 61 of 85
($\mathrm{a}-\mathrm{h}$) comparisons for each current job category using student's $t, \mathrm{p}<.05$

	Cell Operator ($\mathrm{N}=9$)	Chemical Operator ($\mathrm{N}=64$)	$\begin{gathered} \text { Engineer/ } \\ \text { Lab } \\ (\mathrm{N}=37) \\ \hline \end{gathered}$	$\begin{gathered} \text { Maintenance } \\ (\mathrm{N}=17) \\ \hline \end{gathered}$	Mill Operator $(\mathrm{N}=24)$	Secretary $(\mathrm{N}=5)$	Supervisor/ Mgmt ($\mathrm{N}=26$)	Waste Operator ($\mathrm{N}=5$)
Gender*								
Female	1 (11)	12 (19)	9 (24)	0 (0)	3 (13)	5 (100)	3 (12)	0 (0)
Male	8 (89)	52 (81)	28 (76)	17 (100)	21 (87)	0 (0)	23 (88)	5 (100)
Only Worked in Chemical*								
Yes	5 (55)	30 (47)	22 (60)	10 (59)	22 (92)	$1(20)$	10 (38)	0 (0)
No	4 (45)	34 (53)	15 (40)	7 (41)	2 (8)	4 (80)	16 (62)	5 (100)
Hand to Mouth Contact								
Yes	7 (78)	48 (77)	16 (44)	13 (76)	21 (88)	3 (60)	15 (58)	3 (60)
No	2 (22)	14 (23)	20 (56)	4 (24)	3 (13)	2 (40)	11 (42)	2 (40)
Wash Hands								
Always	8 (89)	53 (85)	23 (64)	15 (88)	20 (83)	3 (60)	18 (69)	3 (60)
Less frequently	1 (11)	9 (15)	13 (36)	2 (12)	4 (17)	2 (40)	8 (31)	2 (40)

* Significantly different ($\mathrm{p}<.05$) proportions between job categories, chi square test

V1
EPI-0006
Page 64 of 85

0.025	0.052	0.038
$0.003-0.080$	$0.0005-0.612$	$0.002-0.161$
0.014	0.007	0.012
$0.004-0.042$	$0.003-0.015$	$0.003-0.048$
0.015	0.044	0.047
$0.003-0.030$	$0.003-0.336$	$0.014-0.157$
$0.011^{\mathrm{b}, \mathrm{d}}$		$0.017^{\mathrm{b} . \mathrm{d}}$
$0.004-0.027$	$0.010-0.029$	0.027
		$0.011-0.068$

		$\begin{array}{r} \stackrel{8}{\infty} \\ \stackrel{\rightharpoonup}{8} \\ \stackrel{1}{8} \\ \stackrel{1}{8} \\ \hline 8 \end{array}$

Table 16. (continued)
(a-h) comparison for each current job category using student's t
Table 17. Age, BMI and years worked in chemical by longest job categories of all participants ($\mathrm{N}=187$) in chemical

	Cell Operator ${ }^{\text {a }}$ ($\mathrm{N}=3$)	Chemical Operator ${ }^{\text {b }}$ ($\mathrm{N}=77$)	$\begin{gathered} \text { Engineer/ } \\ \text { Lab }^{\text {c }} \\ (\mathrm{N}=31) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Maintenance }^{\mathrm{d}} \\ & (\mathrm{~N}=20) \end{aligned}$	Mill Operator ${ }^{\circ}$ ($\mathrm{N}=26$)	Secretary ${ }^{\mathrm{f}}$ $(\mathrm{N}=7)$	$\begin{gathered} \text { Supervisor/ } \\ \text { Mgmt }^{\mathrm{t}} \\ (\mathrm{~N}=15) \\ \hline \end{gathered}$	Waste Operator ${ }^{\text {h }}$ $(\mathrm{N}=3)$
Age								
Mean	43	$42^{\text {e,g,h }}$	$41^{\text {c,g.h }}$	$43^{\text {e,g }}$	$34^{\text {b,c,d,f,f,g.h }}$	$46^{\text {e }}$	$49^{\text {b,c, , , e }}$	$53^{\text {b,c,e }}$
SE	2.5	1.0	2.0	1.5	1.4	1.7	1.7	2.3
Median	45	44	41	43	32	44	50	52
Range	38-46	25-62	23-58	27-54	25-51	42-54	33-59	49-57
BMI ${ }^{\text {All }}$ negs								
Mean	24.8	28.0	28.0	27.7	28.1	24.1	28.3	26.9
SE	3.4	0.6	0.9	0.7	1.1	1.2	1.9	2.4
Median	27.0	27.5	27.7	26.7	26.9	23.4	27.1	25.8
Range	18-29	18-47	21-38	23-33	20-43	21-30	16-47	23-32
Years Worked In								
Chemical								
Mean	13	$13^{\text {e.g }}$	$13^{\text {e.g }}$	$11^{\text {ef, } \mathrm{fg}}$	$2^{\text {b,c, d,f,g }}$	$20^{\text {d,e }}$	$22^{\text {b,c,d }}$	11
SE	6.7	1.2	2.3	2.6	0.8	3.7	3.3	6.8
Median	11	12	8	6	1	20	26	8
Range	2-25	1-31	1-37	1-36	1-21	2-33	1-37	1-24

(a-h) comparison for each longest job category using student's $\mathrm{t}, \mathrm{p}<.05$
Y1
EPI-0006
Page 66 of 85
Table 18. Number (and percent) of demographic characteristics by longest job categories of all participant employees ($\mathrm{N}=187$) in chemical

	Cell Operator a $(\mathrm{N}=3)$	Chemical Operator ${ }^{\text {b }}$ $(\mathrm{N}=77)$	Engineer/ Lab ${ }^{\text {c }}$ $(\mathrm{N}=31)$	$\begin{gathered} \text { Maintenance }^{\mathrm{d}} \\ (\mathrm{~N}=20) \\ \hline \end{gathered}$	Mill Operator ${ }^{\text {e }}$ ($\mathrm{N}=26$)	$\begin{gathered} \text { Secretary }^{\mathrm{f}} \\ (\mathrm{~N}=7) \\ \hline \end{gathered}$	$\begin{gathered} \text { Supervisor/ } \\ \mathrm{Mgmt}^{8} \\ (\mathrm{~N}=15) \\ \hline \end{gathered}$	Waste Operator ${ }^{\text {b }}$ $(\mathrm{N}=3)$
Gender*	N (\%)	N (\%)	N (\%)	$\mathrm{N}(\%)$	$\mathrm{N}(\%)$	N (\%)	$\mathrm{N}(\%)$	$\mathrm{N}(\%)$
Male	3 (100)	68 (88)	23 (74)	20 (100.00)	21 (81)	0 (0.00)	12 (80)	3 (100)
Female	0 (0)	9 (12)	8 (26)	0 (0.00)	5 (19)	7 (100.00)	3 (20)	0 (0)
Only Worked in Chemical*								
Yes	1 (33)	33 (43)	21 (68)	10 (50)	24 (92)	3 (43)	7 (47)	0 (0.00)
No	2 (67)	44 (57)	10 (32)	10 (50)	2 (8)	4 (57)	8 (53)	3 (100.00)
Hand to Mouth Contact*								
Yes	3 (100)	56 (75)	14 (45)	14 (70)	22 (85)	4 (57)	6 (40)	3 (100)
No	0 (0)	19 (25)	17 (55)	6 (30)	4 (15)	3 (43)	9 (60)	0 (0)
Wash Hands								
Always	2 (67)	63 (84)	20 (65)	17 (85)	22 (85)	4 (57)	$9(60)$	2 (67)
Less Frequently	1 (33)	12 (16)	11 (35)	3 (15)	4 (15)	3 (43)	6 (40)	1 (33)

Table 19. Mean, range, geometric mean and 95% confidence interval of geometric mean of serum fluorochemicals by longest job categories among participants $(\mathrm{N}=187)$ in chemical

PFOSAA
Mean
Range

G. Mean
95\% C.I.

EPI-0006
Page 68 of 85

Table 21. Mean, range, geometric mean and 95% confidence interval of geometric mean for all participants ($\mathrm{N}=187$) who said they have only worke in one building/area in chemical
Bldg. 1
$(\mathrm{~N}=11)$

0.053
$0.01-0.152$
0.045
$0.026-0.076$

0.987
$0.015-1.850$
0.817
$0.467-1.429$ 0.023
$0.002 \quad 0.049$
0.017
$0.011-0.026$

O
SPI-0006
Page 71 of 85

 G. Mea
95% C.

\sum_{0}^{3}

$\begin{aligned} & 6 \\ & 0 \\ & 0 \\ & 1 \\ & 6 \\ & 6 \\ & 0 \end{aligned}$				
$\begin{aligned} & \text { N} \\ & \substack{0 \\ 0 \\ 1 \\ \infty \\ 0 \\ 0 \\ \hline} \end{aligned}$		$\begin{array}{r} \stackrel{8}{6} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \\ 0 \\ 0 \\ 0 \end{array}$	$$	
8 0 0 1 8 0	$\begin{array}{r} 8 \\ 8 \\ 9 \\ \hline 8 \\ \hline \\ 0 \\ 0 \\ \hline 8 \\ 8 \\ 8 \end{array}$	$\begin{array}{r} 6 \\ 20 \\ 80 \\ 80 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{r} \text { on } \\ \stackrel{8}{8} \\ 0 . \\ 0.1 \\ 0 \\ 0 \end{array}$	
$\begin{aligned} & \text { U } \\ & \text { oे } \\ & \text { î } \end{aligned}$				

[^0]
Table 23.
Mean, range, geometric mean and 95% confidence interval of geometric mean of serum fluorochemicals by gender for random sample chemical plant employees whose current job was chemical operator or engineer/lab

le $(\mathrm{N}=17)$
0.799

0.024-0.064
0.492
$0.134-1.860$
0.364
$0.285-0.465$

0.041
$0.001-0.269$

0.146
$0.099-0.217$

 $1.345-1.962$

0.013
$0.008-0.022$

 W!
EPI-0006
Page 74 of 85

\[

\]

$$
\begin{array}{r}
n \\
0 . n \\
0.0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}
$$

$$
\begin{gathered}
\text { Z90.0- } \angle 00^{\circ} 0 \\
Z Z 0^{\circ} 0 \\
\text { SIE0- } 100^{\circ} 0 \\
\varepsilon 90^{\circ} 0
\end{gathered}
$$

Table 23. (continued)

$$
\begin{gathered}
0.041 \\
0.007-0.118
\end{gathered}
$$

$$
\begin{gathered}
0.083 \\
0.001-0.380
\end{gathered}
$$

* $\mathrm{p}<0.05$

$$
\begin{gathered}
0.109 \\
0.001-0.487
\end{gathered}
$$

Table 24. Distribution of film plant participants: random sample, volunteers and all participants

	Film Plant		
Have worked only in film plant	42	Volunteers	All Participants
(Have worked on D-1 maker)	(6)	14	56
(Have not worked on D-1 maker)	(36)	(1)	(7)
Work in film plant with previous work in chemical	18	(13)	(49)
Total	60	16	20

Table 25. Demographic characteristics of random sample ($N=60$) of film plant employees including subsets: employees with only film plant experience; employees known to have worked on D-1 Maker; and employees with prior chemical history

Table 26. Mean, range, geometric mean and 95% confidence interval of geometric mean for random sample of film plant employees by work history: only film, D-1 Maker or film with prior chemical work history

	Only Film $(\mathrm{N}=35)$	$\mathrm{D}-1$ Maker $^{\mathrm{b}}$ $(\mathrm{N}=6)$	history in chemical $(\mathrm{N}=18)$
PFOS			
Mean	0.122	0.367	0.212
Range	$0.032-0.250$	$0.122-0.946$	$0.080-0.692$
G. Mean	0.110^{bc}	0.289^{a}	0.178^{a}
95\% C.I.	$0.094-0.129$	$0.159-0.527$	$0.137-0.233$
PFHS			
Mean	0.015	0.023	0.038
Range	$0.001-0.075$	$0.005-0.030$	$0.007-0.210$
G. Mean	0.010^{c}	0.020	0.023^{a}
95\% C.I.	$0.008-0.014$	$0.011-0.034$	$0.015-0.036$
POAA			
Mean	0.052	0.122	0.090
Range	$0.006-0.298$	$0.020-0.197$	$0.012-0.246$
G. Mean	$0.037^{\mathrm{b}, \mathrm{c}}$	$0.028-0.049$	0.093^{a}

Film with previous
(a-c) comparison for each current job category using student's $\mathrm{t}, \mathrm{p}<.05$

Table 27. Ratio of fluorochemical levels by random sample of film employees including subsets: employees only with film plant experience; employees known to have worked on D-1 Maker, and employees with prior chemical history

Film With Previous

Only Film	D-1 Maker	History In Chemical
$(\mathrm{N}=36)$	$(\mathrm{N}=6)$	$(\mathrm{N}=18)$

PFOS/PFHS			
Mean	14.9	18.8	9.3
Median	10.4	12.7	7.4
Range	$1.8-107.6$	$5.0-46.6$	$3.3-32.0$
PFOS/POAA			
Mean	3.3	5.7	3.2
Median	2.8	2.4	2.3
Range	$0.7-9.2$	$0.9-21.0$	$1.2-10.1$
PFOS/Analytes			
Mean	10.0	25.6	12.6
Median	7.8	11.5	10.3
Range	$0.2-37.6$	$2.1-91.8$	$3.0-40.7$
PFOSAA/M556			
Mean	1.9	2.8	2.1
Median	1.0	1.3	1.2
Range	$0.003-14.0$	$0.3-10.9$	$0.4-15.1$
M570/M556	5.0	6.9	7.1
Mean	2.3	3.4	4.5
Median	$0.3-45.0$	$0.8-28.2$	$0.6-27.6$
Range			

Table 28. Demographic characteristics of random sample of film plant employees by current job categories who have worked only in the film plant (i.e., not on the D-1 Maker or prior work in chemical)

	Engineer/Lab $(\mathrm{N}=10)$	Film Processor $(N=12)$	Maintenance $(\mathrm{N}=7)$	Administrative $(\mathrm{N}=7)$
Age				
Mean	46	44	40	48
SE	2.8	2.5	3.3	3.3
Median	48	47	40	50
Range	23-58	27-59	31-51	40-55
BMI				
Mean	26.8	28.6	28.7	29.2
SE	1.5	1.4	1.8	1.8
Median	27.3	27.8	29.5	27.9
Range	21.6-31.7	18.0-41.8	24-32.9	24.4-41.8
Years worked				
In film				
Mean	14.8	14.1	4.6	20.4
SE	2.9	2.6	3.4	3.4
Median	15	17	3	25
Range	0.1-29	0.5-29	$0.5-12$	5-28
Gender				
Female	2 (20)	2 (17)	0 (0)	2 (29)
Male	8 (80)	10 (83)	7 (100)	5 (71)
Hand to mouth				
Contact				
Yes	8 (80)	10 (83)	4 (57)	4 (57)
No	2 (20)	2 (17)	3 (43)	3 (43)
Wash hands				
Yes	8 (80)	10 (83)	6 (86)	4 (57)
No	2 (20)	2 (17)	1 (14)	3 (43)

Table 29. Mean, range, geometric mean and 95\% confidence interval of geometric mean of serum fluorochemicals for random sample of employees who have only worked in the film plant (i.e., not on the D-1 Maker or prior work ir chemical)

	$\begin{gathered} \text { Engineer/Laba } \\ (\mathrm{N}=10) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Film Processor }{ }^{\text {b }} \\ & (\mathrm{N}=12) \end{aligned}$	Maintenance ${ }^{c}$ $(\mathrm{N}=7)$	$\begin{aligned} & \text { Administrative }{ }^{\mathrm{d}} \\ & \quad(\mathrm{~N}=7) \\ & \hline \end{aligned}$
PFOS				
Mean	0.097	0.127	0.159	0.111
Range	0.055-0.140	0.032-0.250	$0.137-0.216$	0.054-0.166
G. Mean	$0.093^{\text {c }}$	0.106	$0.157^{\text {a }}$	0.104
95\% C.I.	0.074-0.116	0.074-0.154	0.139-0.177	0.077-0.140
PFHS				
Mean	0.016	0.015	0.016	0.012
Range	0.001-0.075	0.004-0.047	$0.001-0.134$	0.006-0.033
G. Mean	0.009	0.011	0.011	0.010
95\% C.I.	0.005-0.018	0.007-0.017	0.005-0.0 26	0.006-0.016
POAA				
Mean	0.030	0.055	0.098	0.039
Range	0.006-0.055	0.007-0.154	0.021-0.298	0.017-0.063
G. Mean	$0.022^{\text {c }}$	0.041	$0.071^{\text {a }}$	0.035
95\% C.I.	0.014-0.036	0.024-0.068	0.038-0.132	0.024-0.051
PFOSAA				
Mean	0.002	0.002	0.002	0.004
Range	0.001-0.005	0.001-0.009	0.001-0.06	0.001-0.006
G. Mean	0.002	0.002	0.002	0.004
95\% C.I.	0.001-0.003	0.001-0.003	0.001-0.0.03	0.002-0.006
M570				
Mean	0.006	0.048	0.018	0.005
Range	0.002-0.017	0.003-0.454	0.006-0.c46	0.001-0.009
G. Mean	$0.005^{\text {c }}$	0.010	$0.014^{\text {a d }}$	$0.004^{\text {c }}$
95\% C.I.	0.004-0.007	0.004-0.022	0.009-0.c24	0.002-0.007
M556				
Mean	0.002	0.029	0.005	0.002
Range	0.0001-0.003	0.003-0.307	$0.001-0 . \mathrm{C} 16$	0.001-0.003
G. Mean	$0.001^{\text {b }}$	$0.005^{\text {a }}$	0.004	0.002
95\% C.I.	0.001-0.003	0.002-0.011	0.002-0.007	0.002-0.003

(a-d) comparisons for each current job category using student's t

Table 30. Ratio of fluorochemical levels by current job among random sample of film employees who only have worked in film and not on the D-1 Maker

Engineer/Lab	Film Processor	Maintenance	Administrative
$(\mathrm{N}=10)$	$(\mathrm{N}=12)$	$(\mathrm{N}=7)$	$(\mathrm{N}=7)$

PFOS/PFHS

Mean	13.0	13.0	246	11.1
Median	7.5	12.8	122	10.4
Range	$1.8-61.6$	$4.9-29.0$	$4.3-107.6$	$5.1-16.5$

PFOS/POAA

Mean	4.0	3.2	27	3.0
Median	3.0	3.2	21	2.8
Range	$1.3-9.2$	$1.2-6.3$	$0.7-5.7$	$2.2-4.2$

PFOS/Analytes

Mean	10.4	10.0	71	12.4
Median	10.5	4.3	70	9.5
Range	$2.1-17.8$	$0.2-31.2$	$4.0-11.6$	$5.2-37.6$

PFOSAA/M556				
Mean	3.6	0.7	13	2.1
Median	1.1	0.5	05	2.3
Range	$0.5-14.0$	$0.003-1.5$	$0.1-5.1$	$0.5-4.4$

M570/M556				
Mean	8.6	3.1	56	2.6
Median	2.5	1.6	59	2.8
Range	$1.0-45.0$	$0.6-18.4$	$0.4-10.5$	$0.3-5.5$

Table 31. Demographic characteristics of all film plant participants $(\mathrm{N}=76)$ by only film plant, D-1 Maker or film plant with previous history in chemical

	$\begin{gathered} \text { All } \\ (\mathrm{N}=76) \\ \hline \end{gathered}$		Only Film$(\mathrm{N}=49)$		$\begin{aligned} & \text { D-1 Maker } \\ & (\mathrm{N}=7) \\ & \hline \end{aligned}$		Film w/ history of chemical$(\mathrm{N}=20)$	
Age								
Mean	45		44		44		47	
SE	1.0		3.6		1.2		2.1	
Median	47				4			
Range	23 -		23		30-55		28-58	
BMI								
Mean	28.3		28.5		26.6		28.5	
SE	0.5		0.6		1.5		1.0	
Median	27.9		27.9		$\begin{gathered} 26.5 \\ 21.7-31.7 \end{gathered}$		$\begin{gathered} 28.0 \\ 20.0-37.9 \end{gathered}$	
Range	18.0	41.8	18.0	41.8				
Years worked								
In film								
Mean	14.4		15.2		8.1		14.6	
SE	1.2		1.4		3.5		2.5	
Median	16.0		17.0		2.0		15.0	
Range	0.1-36.0		0.1-30		1-21		1-36	
Gender								
Female	16	(21)	8	(16)	2	(29)	6	(30)
Male	60	(79)	41	(84)	5	(71)	14	(70)
Current job								
Engineer/Lab	18	(24)	12	(25)	0	(0)	6	(30)
Film processor	34	(45)	20	(41)	6	(86)	8	(40)
Maintenance	11	(14)	8	(16)	1	(14)	2	(10)
Administrative	13	(17)	9	(18)	0	(0)	4	(20)
Longest job								
Engineer/Lab	14	(18)	8	(16)	0	(0)	6	(30)
Film processor	38	(50)	24	(49)	6	(86)	8	(40)
Maintenance	12	(16)	9	(18)	,	(14)	2	(10)
Administrative	12	(16)	8	(16)	0	(0)	4	(20)
Hand to mouth contact								
Yes	49	(64)	36	(73)	5	(71)	8	(40)
No	27	(36)	13	(27)	2	(29)	12	(60)
Wash hands								
Yes	65	(86)	40	(82)	7	(100)	18	(90)
No	11	(14)	9	(18)	0	(0)	2	(10)

Table 32. Mean, range, geometric mean and 95% confidence interval of geometric mean of serum fluorochemicals for all film plant participant employees by work history: only film plant, D-1 Maker or film plant with previous history in chemical

PFOS	Only Film Mean $(\mathrm{N}=49)$	D-I Maker $(\mathrm{N}=7)$	Film with previous history in chemical Range $(\mathrm{N}=20)$
	0.129	0.347	0.220
G. Mean	$0.032-0.264$	$0.122-0.946$	$0.080-0.692$
95\% C.I.	0.116^{bc}	0.279^{a}	0.185^{a}
PFHS	$0.101-0.133$	$0.168-0.461$	$0.144-0.238$

(a-c) comparison for each current job category using student's t, p $<.05$

Table 33. Mean, range, geometric mean and 95% confidence interval of geometric mean of serum fluorochemicals for all film plant participant employees who only worked in film plant (i.e., not on the D-1 Maker or worked previously in chemical)

	$\begin{gathered} \text { Engineer/Lab }{ }^{\mathrm{a}} \\ (\mathrm{~N}=12) \end{gathered}$	Film Processor ${ }^{\text {b }}$ $(\mathrm{N}=20)$	Maintenance ${ }^{\mathrm{c}}$ $(\mathrm{N}=8)$	$\begin{aligned} & \text { Administrative }{ }^{d} \\ & \quad(\mathrm{~N}=9) \end{aligned}$
PFOS				
Mean	0.108	0.133	0.168	0.108
Range	0.055-0.170	0.032-0.264	0.137-0.237	0.054-0.166
G. Mean	$0.102^{\text {c }}$	0.114	$0.165^{\text {add }}$	$0.103^{\text {c }}$
95\% C.I.	0.082-0.127	0.088-0.148	0.143-0.191	0.081-0.129
PFHS				
Mean	0.018	0.016	0.016	0.012
Range	0.001-0.075	0.004-0.052	0.001-0.034	0.006-0.033
G. Mean	0.011	0.012	0.011	0.010
95\% C.I.	0.006-0.012	0.009-0.017	0.006-0.023	0.007-0.015
POAA				
Mean	0.049	0.055	0.095	0.037
Range	0.006-0.188	0.007-0.154	0.021-0.298	0.017-0.063
G. Mean	$0.031{ }^{\text {c }}$	0.040	$0.072^{\text {a }}$	0.033
95\% C.I.	0.017-0.054	0.027-0.060	0.042-0.124	0.025-0.046
PFOSAA				
Mean	0.002	0.005	0.004	0.004
Range	0.001-0.005	0.001-0.020	0.001-0.017	0.001-0.006
G. Mean	0.002	0.003	0.002	0.003
95\% C.I.	0.001-0.003	0.002-0.005	0.001-0.005	0.002-0.005
M570				
Mean	0.006	0.031	0.017	0.005
Range	0.002-0.017	0.002-0.454	0.006-0.046	0.001-0.009
G. Mean	0.005	0.008	0.014	0.004
95\% C.I.	0.003-0.007	0.005-0.013	0.009-0.022	0.002-0.006
M556				
Mean	0.002	0.019	0.005	0.003
Range	0.0001-0.007	0.001-0.307	0.001-0.016	0.001-0.006
G. Mean	$0.001^{\text {b }}$	$0.004^{\text {a }}$	0.014	0.002
95\% C.I.	0.001-0.003	0.002-0.006	0.002-0.007	0.002-0.003

(a-c) comparisons for each current job category using student's t, p<.05

Appendix A

Decatur Plant Maps

Appendix A

Appendix B

Study Questionnaire

DECATUR EMPLOYEE QUESTIONNAIRE

Thank you for participating in this research study. Please respond to each question with either a short answer or an ' x ' in the appropriate box.

NAME
EMPLOYEE NUMBER

1. Have you ever worked in the Chemical Plant?

Yes
No
\square
If no, please go to question 2
If 'yes'
a. How many years have-you worked in the chemical plant? Years= \qquad
b. What year did you start working in the chemical plant?

Year $=$ \qquad
2. Please indicate if you have ever worked in the following areas. Mark an ' x ' in all boxes that apply to you.Building 1
Buildings 38 and/or 51Buildings 2 and/or 49Building 42 (Packaging FC inerts)Building 3 (OSCLOSF area)Building 61Building 3 (besides OSCL/OSF area)Film Plant (all buildings)Building 4 NorthWastewater treatment plant (Buildings 36 and 57)Building 4 millroom/extruderOther
(Please specify) \qquad
$\square \quad$ Building 17
3. Thinking about the job that you worked for the longest period of time while employed at 3 M Decatur, please answer the following questions.
a. Job title: \qquad
b. When did you work there: From \qquad (year) to \qquad (year)
c. Average number of hours per week on this job? Hours = \qquad
d. When you worked overtime, what was your usual job assignment? \qquad
4. Please answer the following questions regarding your current job.

Current plant: Chemical $\square \quad$ Film $\square \quad$ Other \square
Current job title: \qquad
What year did you start working in this current job: Year = \qquad

Average number of hours per week on this job: Hours = \qquad
When you work overtime, what is your usual job assignment? \qquad
5. Please indicate in which area(s) you work in your current job. Mark an ' x ' in all boxes that apply to you.
\square Building 1
Buildings 2 and/or 49
Building 3 (OSCL/OSF area)
Building 3 (besides OSCL/OSF area)
Building 4 North
Building 4 millroom/extruder
Building 17

Buildings 38 and/or 51
\square Building 42 (Packaging FC inerts)
\square Building 61Film Plant (all buildings)
Wastewater treatment plant
(Buildings 36 and 57)
Other
(Please specify) \qquad
6. While at work, do you chew gum?alwaysfrequentlysometimesrarelynever
7. While at work do you chew tobacco?a. alwaysfrequentlysometimesrarelynever
8. While at work, do you smoke cigarettes?
alwaysfrequentlysometimesrarelynever
9. How frequently do you wash your hands before eating while at work? Mark only one box.
alwaysfrequentlysometimesrarelynever
10. What is your height?

Feet $=$ \qquad Inches $=$ \qquad
11. What is your weight

Pounds = \qquad

Appendix C

Distribution of Fluorochemicals and Their Natural Log Transformation Among Chemical Employees $(\mathrm{N}=126)$ in the Random Sample

Chemical Plant Random Sample PFOS ppm

Test for Normality	
Shapiro-Wilk W Test	
W	Prob<W
0.734399	0.0000

> | Test for Normality | |
| :--- | ---: |
| Shapiro-Wilk W Test | |
| W | Prob<W |
| 0.967746 | 0.0521 |

Test for Normality Shapiro-Wilk W Test

W	Prob<W
0.975283	0.2302

Test for Normality Shapiro-Wilk W Test

W	Prob<W
0.875366	$<.0001$

Chemical Plant Random Sample In POAA ppm		
maximum	Quantiles	
	100.0\%	1.9110
	99.5\%	1.9110
	97.5\%	1.7302
	90.0\%	1.2318
quartile	75.0\%	0.7288
median	50.0\%	0.2624
quartile	25.0\%	-0.9519
	10.0\%	-2.0550
	2.5\%	-2.9685
	0.5\%	-3.8680
minimum	0.0\%	-3.8680
Moments		
Mean -0.1061		
Std Dev 1.2545		
Std Error Mean 0.1118		
Upper 95\% Mean 0.1151		
Lower 95\% Mean -0.3273		
$\mathrm{N} \quad 126.0000$		
Sum Weights $\quad 126.0000$		

Test for Nomality

Shapiro-Wilk W Test	
W	Prob<W
0.903769	$<.0001$

Chemical Plant Random Sample PFOSAA ppm

Test for Normality Shapiro-Wilk W Test

W	Prob<W
0.600789	0.0000

Test for Nomality
Shapiro-Wilk W Test

W	Prob<W
0.929527	$<.0001$

Chemical Plant Random Sample M570 ppm		
$\begin{aligned} & 1 \\ & \vdots \\ & 0 \\ & 0 \\ & \vdots \end{aligned}$		
maximum	Quanties	
	100.0\%	0.99200
	99.5\%	0.99200
	97.5\%	0.69103
	90.0\%	0.41570
quartile	75.0\%	0.19425
median	50.0\%	0.06685
quartile	25.0\%	0.03773
	10.0\%	0.02173
	2.5\%	0.00965
	0.5\%	0.00840
minimum	0.0\%	0.00840
Moments		
Mean		0.1505
Std Dev		0.1862
Std Error Mean		0.0166
Upper 95\% Mean		0.1833
Lower 95\% Mean		0.1176
N		126.0000
Sum Weights		126.0000

Test for Normality
Shapiro-Wilk W Test
W
0.712853

	Quantiles maximum 100.0%	-0.0080
	99.5%	-0.0080
	97.5%	-0.3701
	90.0%	-0.8780
quartile	75.0%	-1.6387
median	50.0%	-2.7053
quartile	25.0%	-3.2774
	10.0%	-3.8310
	2.5%	-4.6406
	0.5%	-4.7795
minimurn	0.0%	-4.7795
	Moments	
		-2.5145
Mean	1.1167	
Std Dev		0.0995
Std Error Mean	-2.3176	
Upper 95\% Mean	-2.7114	
Lower 95\% Mean	126.0000	
N		126.0000

Test for Normality
Shapiro-Wilk W Test

W	Prob<W
0.957094	0.0035

Chemical Plant Random Sample PFOSA ppm

Test for Normality Shapiro-Wilk W Test

W	Prob<W
0.580929	0.0000

Test for Normality
Shapiro-Wilk W Test

W	Prob<W
0.946788	0.0002

Chemical Plant Random Sample M556 ppm	

Test for Normality Shapiro-Wilk W Test

W	Prob<N
0.671484	0.0000

Test for Normality	
Shapiro-Wilk W Test	
W	
0.962731	

Appendix D

Distribution of Fluorochemicals and Their Natural Log Transformation Among Film Plant Employees ($\mathrm{N}=60$) in the Random Sample

Film Plant Random Sample		
PFOS ppm		
	Quantiles	
maximum	m 100.0\%	0.94600
	99.5\%	0.94600
	97.5\%	0.81265
	90.0\%	0.27350
quartile	75.0\%	0.20825
median	50.0\%	0.13750
quartile	25.0\%	0.08698
	10.0\%	0.06720
	2.5\%	0.02393
	0.5\%	0.01500
minimum	$\mathrm{m} \quad 0.0 \%$	0.01500
Moments		
Mean		0.17181
Std Dev		0.14780
Std Error Mean		0.01908
Upper 95\% Mean		0.20999
Lower 95\% Mean		0.13363
N		60.00000
Sum Weights		60.00000

Test for Normality
Shapiro-Wilk W Test
W
0.682603
Film Plant
Random Sample
Ln PFOS ppm

Test for Normality Shapiro-Wilk W Test $\begin{array}{rr}W & \text { Prob }<W \\ 0.975227 & 0.4827\end{array}$

| $\substack{\text { Film Plant } \\ \text { Random Sample } \\ \text { PFHS ppm }}$ |
| :---: | :---: |

Test for Normality Shapiro-Wilk W Test

W Prob<W $0.578079 \quad 0.0000$

Film Plant
Random Sample
POAA ppm

	Quantiles maximurn 99.5%	$0.0 .5 \%$
	90.0%	0.29800
quartile	75.0%	0.15200
median	50.0%	0.10800
quartile	25.0%	0.05520
	10.0%	0.02400
	2.5%	0.01560
	0.5%	0.00651
minimum	0.0%	0.00598
		0.00598
	Moments	
Mean		0.07084
Std Dev		0.06200
Std Error Mean	0.00807	
Upper 95\% Mean	0.08700	
Lower 95\% Mean	0.05469	
N		59.00000
Sum Weights		59.00000

> | Test for Normality | |
| :--- | ---: |
| Shapiro-Wilk W Test | |
| W | Prob<W |
| 0.843094 | $<.0001$ |

Film Plant Random Sample Ln POAA ppm

	Quantiles maximum 100.0%	-1.2107
	99.5%	-1.2107
	97.5%	-1.3065
	90.0%	-1.8708
quartile	75.0%	-2.2256
median	50.0%	-2.8968
quartile	25.0%	-3.7297
	10.0%	-4.1605
	2.5%	-5.0377
	0.5%	-5.1193
minimum	0.0%	-5.1193
	Moments	
Mean		-3.02097
Std Dev		0.91335
Std Error Mean	0.11891	
Upper 95\% Mean	-2.78295	
Lower 95\% Mean	-3.25899	
N		59.00000
Sum Weights		59.00000

Test for Normality	
Shapiro-Wilk W Test	
W	Prob $<W$
0.975823	0.5122

> | Test for Normality | |
| ---: | ---: |
| Shapiro-Wilk W Test | |
| W | Prob $<W$ |
| 0.511689 | 0.0000 |

Film Plant
Random Sample
Ln PFOSAA Ppm

Film Plant Random Sample M570 ppm

Test for Normality Shapiro-Wilk W Test $\begin{array}{rr}\text { W } & \text { Prob<W } \\ 0.293209 & 0.0000\end{array}$

	Quantiles maximum 99.5%	0.5%
	90.5%	0.30700
quartile	75.0%	0.15407
median	50.0%	0.00593
quartile	25.0%	0.00250
	10.0%	0.00250
	2.5%	0.00117
	0.5%	0.00021
minimum	0.0%	0.00010
		0.00010
	Moments	
Mean		0.00816
Std Dev		0.03932
Std Error Mean	0.00508	
Upper 95\% Mean	0.01832	
Lower 95\% Mean	-0.00200	
N	60.00000	
Sum Weights	60.00000	

\section*{Test for Normality
 Shapito-Wilk W Test
 | W | Prob<W |
| ---: | ---: |
| 0.162266 | 0.0000 |}

Appendix E

Scatterplots and regression equations for fluorochemicals by years worked in chemical (YRSCHEM) for random sample ($n=126$) and for curtent job cateogries (chemical operators, engineer/tab, maintenance, supervisor/mgmt and mill operators)

Random Sample
PFOS ppm By YRSCHEM

Linear Fit

PFOSdfppm $=0.89178+0.0478$ YRSCHEM	
\quad Summary of Fit	

	Analysis of Variance Source			
DF	Sum of Squares	Mean Square	F Ratio	
Model	1	35.11712	35.1171	15.0260
Eror	124	289.79964	2.3371	Prob>F
C Total	125	324.91676		0.0002

Random Sample
PFHS ppm By YRSCHEM

Linear Fit
PFHSdfppm $=0.11968+0.01757$ YRSCHEM
Summary of Fit

RSquare	0.223991
RSquare Adj	0.217733
Root Mean Square Error	0.364103
Mean of Response	0.344977
Observations (or Sum Wgts)	126

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	4.744959	4.74496	35.7919
Error	124	16.438777	0.13257	Prob>F
C Total	125	21.183736		$<.0001$

	Parameter Estimates						
Term	Estimate	Sid Error	Ratio	Prob>\|t		Lower 95\%	Upper 95\%
Intercept	0.1196844	0.049702	2.41	0.0175	0.02131	0.2180589	
YRSCHEM	0.0175716	0.002937	5.98	$<.0001$	0.0117582	0.023385	

Appendix E Page 4

Random Sample
POAA ppm By YRSCHEM

Linear Fit
POAAppm $=1.29399+0.0189$ YRSCHEM
Summary of Fit

RSquare	0.0246
RSquare Adj	0.016734
Root Mean Square Error	1.324636
Mean of Response	1.536271
Observations (or Sum Wgts)	126

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	5.48740	5.48740	3.1273
Error	124	217.57785	1.75466	Prob>F
C Total	125	223.06524		0.0794

	Parameter Estimates					
Term	Estimate	Std Error	\mathbf{t} Ratio	Prob> $\|t\|$	Lower 95\%	Upper 95\%
Intercept	1.2939922	0.180819	7.16	$<.0001$	0.9360979	1.6518866
YRSCHEM	0.0188964	0.010685	1.77	0.0794	-0.002253	0.040046

	Parameter Estimates						
Term	Estimate	Std Error	Ratio	Prob>\|t		Lower 95\%	Upper 95\%
Intercept	0.0321302	0.005321	6.04	$<.0001$	0.0215985	0.0426619	
YRSCHEM	-0.000689	0.000314	-2.19	0.0303	-0.001312	-0.000067	

Random Sample
M570 ppm By YRSCHEM

Linear Fit
$\mathrm{M} 570 \mathrm{ppm}=0.179 \mathrm{I}-0.00223$ YRSCHEM
Summary of Fit

RSquare	0.017688
RSquare Adj	0.009766
Root Mean Square Error	0.185242
Mean of Response	0.150471
Observations (or Sum Wgts)	126

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	0.0766188	0.076619	2.2328
Error	124	4.2550321	0.034315	Prob>F
C Total	125	4.3316509		0.1376

Parameter Estimates
0.1791
-0.002233

Parameter Estimates			
Std Error	Ratio	Prob $>\|t\|$	Lower 95%
0.025286	7.08	$<.0001$	0.1290506
0.001494	-1.49	0.1376	0.005191

	Parameter Estimates						
Term	Estimate	Std Error	t Ratio	Prob>\|t		Lower 95%	Upper 95%
Intercept	0.0673064	0.015956	4.22	$<.0001$	0.0357238	0.0988889	
YRSCHEM	-0.00043	0.000943	-0.46	0.6491	-0.002296	0.0014363	

Random Sample
M556 ppm By YRSCHEM

\equiv treaft	
$\begin{gathered} \quad \text { Linear Fit } \\ \text { M556dfppm }= \\ \\ \text { Summary of Fit } \end{gathered}$	
RSquare	0.007918
RSquare Adj	-0.00008
Root Mean Square Error	0.073716
Mean of Response	0.05194
Observations (or Sum Wgts)	12

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	0.00537776	0.005378	0.9896
Error	124	0.67382941	0.005434	Prob>F
C Total	125	0.67920717		0.3218

| Term | Estimate | Parameter Std Error | 1 Ratio | Prob>\|t| | Lower 95\% | Upper 95\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Intercept | 0.0595259 | 0.010063 | 5.92 | <.0001 | 0.0396089 | 0.0794428 |
| YRSCHEM | -0.000592 | 0.000595 | -0.99 | 0.3218 | -0.001769 | 0.0005854 |

Random Sample
Chemical Operators PFOS ppm By YRSCHEM

	Mnalysis of Variance			
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	4.439524	4.43952	2.8971
Error	45	68.958297	1.53241	Prob>F
C Total	46	73.397820		0.0956

		Parameter Estimates							
Term	Estimate	Std Error	t Ratio	Prob $>\|t\|$	Lower 95\%	Upper 95\%			
Intercept	1.4164581	0.280181	5.06	$<.0001$	0.8521458	1.9807704			
YRSCHEM	0.0331178	0.019457	1.70	0.0956	-0.006071	0.0723065			

Random Sample Chemical Operators POAA ppm By YRSCHEM

Source	DF	Anaiysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	8.948633	8.94863	4.9650
Error	45	81.104760	1.80233	Prob>F
C Total	46	90.053393		0.0309

	Parameter Estimates					
Term	Estimate	Std Error	Ratio	Prob $>\|t\|$	Lower 95\%	Upper 95\%
Intercept	1.7338672	0.303857	5.71	$<.0001$	1.12187	2.3458643
YRSCHEM	0.0470188	0.021101	2.23	0.0309	0.0045187	0.089519

Randorn Sample
Chemical Operators
PFOSAA ppm By YRSCHEM

Linear Fit

PFOSAAdfppm $=0.0494-0.00118$ YRSCHEM	
\quad Summary of Fit	
RSquare	$0.036: 8$
RSquare Adj	0.014864
Root Mean Square Error	0.057519
Mean of Response	0.036467
Observations (or Sum Wgts)	4.7

	Analysis of Variance Source			
DF	Sum of Squares	Mean Square	F Ratio	
Model	1	0.00560458	0.005605	1.6940
Error	45	0.14887811	0.003308	Prob>F
C Total	46	0.15448269		0.1997

Chemical Operators M570 ppm By YRSCHEM

三ines it	
$\begin{gathered} \text { Linear Fit } \\ \text { M570ppm }= \\ \\ 0.30244-0.00666 \text { YRSCHEM } \\ \text { Summary of Fit } \end{gathered}$	
RSquare	$0.0710^{\prime \prime} 1$
RSquare Adj	0.050428
Root Mean Square Error	0.228431
Mean of Response	0.229083
Observations (or Sum Wgts)	47

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	0.1796529	0.179653	3.4429
Error	45	2.3481307	0.052181	Prob>F
C Total	46	2.5277836		0.0701

Parameter Estimates Std Error								t Ratio	Prob $>\mid$ \|	Lower 95\%	Upper 95\%
0.051702	5.85	$<.0001$	0.1983041	0.4065696							
0.00359	-1.86	0.0701	-0.013894	0.0005694							

Random Sample
Chemical Operators PFOSA ppm By YRSCHEM

三 lina fl $^{\text {fi }}$	
Linear Fit	
PFOSAdfppm $=0.12291-0.00214$ YRSCHEM	
Summary of Fit	
RSquare	0.0231155
RSquare Adj	0.0014 .7
Root Mean Square Error	0.1315 .3
Mean of Response	0.099309
Observations (or Sum Wgts)	47

	Analysis of Variance Source			
DF	Sum of Squares	Mean Square	F Ratio	
Model	1	0.01845661	0.018457	1.0671
Error	45	0.77830020	0.017296	Prob>F
C Total	46	0.79675681		0.3071

Parameter Estimates
Estimate
0.1229105
-0.002135

Parameter	Estimates		
Std Error	t Ratio	Prob> $\|t\|$	Lower 95\%
0.029766	4.13	0.0002	0.0629591
0.002067	-1.03	0.3071	-0.006299

[^1]Term
Intercept
YRSCHEM

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	0.01813944	0.018139	3.3593
Error	45	0.24299278	0.005400	Prob>F
C Total	46	0.26113221		0.0734

Random Sample
Engineer/Lab
FOS ppm By YRSCHEM

\equiv inea ft	
Linear Fit	
$\begin{aligned} \text { PFOSdfppm }= & 0.40446+0.01564 \text { YRSCHEM } \\ & \text { Summary of Fit }\end{aligned}$	
RSquare	0.124933
RSquare Adj	0.083263
Root Mean Square Error	0.574244
Mean of Response	0.633961
Observations (or Sum Wgts)	23

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	0.9886669	0.988667	2.9982
Error	21	6.9248903	0.329757	Prob>F
C Total	22	7.9135572		0.0980

Random Sample Engineer/Lab
PFHS ppm By YRSCHEM

\square
Linear Fit
PFHSdfppm $=0.10657+0.00439$ YRSCHEM
Summary of Fit

RSquare	$0.0650: 2$
RSquare Adj	0.020489
Root Mean Square Error	$0.230^{\prime} 7$
Mean of Response	0.1709 .33
Observations (or Sum Wgts)	$: 33$

	Analysis of Variance Source			
DF	Sum of Squares	Mean Square	F Ratio	
Model	I	0.0777620	0.077762	1.4602
Eror	21	1.1183544	0.053255	Prob>F
C Total	22	1.1961164		0.2403

Term
Intercept
YRSCHEM

	Parameter Estimates									
Estimate	Std Error	t Ratio	Prob> $\|t\|$	Lower 95\%	Upper 95\%					
0.1065696	0.071781	1.48	0.1525	-0.042706	0.2558458					
0.0043863	0.00363	1.21	0.2403	-0.003162	0.011935					

	Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob>lt	Lower 95\%	Upper 95\%
Intercept	0.3490696	0.163524	2.13	0.0447	0.0090046	0.6891347
YRSCHEM	0.0018542	0.008269	0.22	0.8247	-0.015342	0.0190509

	Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob $>\|t\|$	Lower 95\%	Upper 95\%
Intercept	0.0178899	0.006111	2.93	0.0080	0.0051812	0.0305987
YRSCHEM	-0.000269	0.000309	-0.87	0.3946	-0.000911	0.0003741

Random Sample
Engineer/Lab
M570 ppm By YRSCHEM

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	0.00000754	0.000008	0.0010
Error	21	0.16211665	0.007720	Prob>F
C Total	22	0.16212419		0.9754

	Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob $>\mid$ t\|	Lower 95\%	Upper 95\%
Intercept	0.0746991	0.02733	2.73	0.0125	0.0178643	0.131534
YRSCHEM	-0.000043	0.001382	-0.03	0.9754	-0.002917	0.0028309

Random Sample
Engineer/Lab
M556 ppm By YRSCHEM

Linear Fit	
M556dfppm $=0.0188-0.0000$ I YRSCHEM Summary of Fit	
RSquare	
RSquare Adj	
Root Mean Square Error	
Mean of Response	
Observations (or Sum Wgts)	

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	0.00000073	0.000001	0.0010
Error	21	0.01579191	0.000752	Prob>F
C Total	22	0.01579264		0.9754

	Parameter Estimates					Prob>\|d
Term	Estimate	Std Error	t Ratio	_ower 95%	Upper 95%	
Intercept	0.0187973	0.00853	2.20	0.0388	0.0010588	0.0365359
YRSCHEM	-0.000013	0.000431	-0.03	0.9754	-0.00091	0.0008836

Random Sample Maintenance PFOS ppm By YRSCHEM

Linear Fit
PFOSdfppm $=1.36713+0.03289$ YRSCHEM
Summary of Fit

RSquare	0.073544
RSquare Adj	-0.0294
Root Mean Square Error	1.245224
Mean of Response	1.672091
Observations (or Sum Wgts)	11

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	1.107805	1.10780	0.7144
Error	9	13.955256	1.55058	Prob>F
C Total	10	15.063061		0.4199

		Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob>\|t		I.ower 95\%	Upper 95\%
Intercept	1.3671255	0.52071	2.63	0.0276	0.1891877	2.5450633	
YRSCHEM	0.0328884	0.03891	0.85	0.4199	-0.055132	0.1209093	

Fandom Sample Maintenance
PFHS ppm By YRSCHEM

Linear Fit
PFHSdfppm $=0.1267+0.01194$ YRSCHEM

RSquare	
RSquare Adj	0.261552
Root Mean Square Error	0.179502
Mean of Response	0.214098
Observations (or Sum Wgts)	0.237455
	11

	Analysis of Variance Source			
DF	Sum of Squares	Mean Square	F Ratio	
Model	1	0.14611866	0.146119	3.1877
Error	9	0.41254111	0.045838	Prob>F
C Total	10	0.55865977		0.1078

		Parameter Estimates					
	Estimate	Std Error	I Ratio	Prob>\|t		Lswer 95\%	Upper 95\%
Term	0.1266974	0.089528	1.42	0.1907	0.075832	0.3292263	
Intercept	0.0119444	0.00669	1.79	0.1078	0.003189	0.0270783	

Random Sample
Maintenance POAA ppm By YRSCHEM

Linear Fit
POAAppm $=1.24651+0.02555$ YRSCHEM
Summary of Fit

RSquare	0.039706
RSquare Adj	-0.06699
Root Mean Square Error	1.340539
Mean of Response	1.483455
Observations (or Sum Wgts)	11

	Analysis of Variance Source			
DF	Sum of Squares	Mean Square	F Ratio	
Model	1	0.668731	0.66873	0.3721
Error	9	16.173404	1.79704	Prob>F
C Total	10	16.842135		0.5569

	Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob $>\|t\|$	Lower 95\%	Upper 95\%
Intercept	1.2465111	0.560567	2.22	0.0532	0.021591	2.514613
YRSCHEM	0.0255527	0.041888	0.61	0.5569	0.069206	0.1203111

Random Sample Maintenance PFOSAA ppm By YRSCHEM

三 ${ }_{\text {lnea fl }}$	
Linear Fit	
PFOSAAdfppm $=0.0347-0.00006$ YRSCHEM	
RSquare	0.00047:
RSquare Adj	-0.1105
Root Mean Square Error	0.031301
Mean of Response	0.034106
Observations (or Sum Wgts)	1)

	Analysis of Variance			
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	0.00000416	0.000004	0.0042
Error	9	0.00881782	0.000980	Prob>F
C Total	10	0.00882198		0.9495

		Parameter Estimates								
Term	Estimate	Std Error	t Ratio	Prob>\|t		-ower 95\%	Upper 95\%			
Intercept	0.0346975	0.013089	2.65	0.0264	0.0050878	0.0643072				
YRSCHEM	-0.000064	0.000978	-0.07	0.9495	-0.002276	0.0021488				

Random Sample
Maintenance M570 ppm By YRSCHEM

$\overline{\text { "—nea }} 17$
Linear Fit
$\mathrm{M} 570 \mathrm{ppm}=0.26076+0.00079 \mathrm{YRSCHEM}$
Summary of Fit
RSquare 0.00174
RSquare Adj -0.1091:
Root Mean Square Error 0.20146ε
Mean of Response 0.26809]
Observations (or Sum Wgts)
1]

	Analysis of Variance Source			
DF	Sum of Squares	Mean Square	F Ratio	
Model	1	0.00064018	0.000640	0.0158
Error	9	0.36530321	0.040589	Prob>F
C Total	10	0.36594339		0.9028

	Parameter Estimates						
Term	Estimate	Std Error	t Ratio	Probs \mid \|		-ower 95%	Upper 95%
Intercept	0.2607598	0.084247	3.10	0.0128	0.0701785	0.4513411	
YRSCHEM	0.0007906	0.006295	0.13	0.9028	-0.01345	0.0150317	

Random Sample
Maintenance PFOSA ppm By YRSCHEM

Linear Fit

PFOSAdfppm $=0.09744-0.00351$	YRSCHEM
\quad Summary of Fit	
RSquare	0.043743
RSquare Adj	-0.06251
Root Mean Square Error	0.174833
Mean of Response	0.064939
Observations (or Sum Wgts)	11

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio	
Model	1	0.01258420	0.012584	0.4117	
Error	9	0.27509911	0.030567	Prob>F	
C Total	10	0.28768331		0.5371	
		Parameter Estimates			
	Estimate	Std Error 1 Ratio	Prob> \mid \|t	-.ower 95\%	Upper 95\%
	0.0974427	$0.073109 \quad 1.33$	0.2153	-0.067943	0.2628285
	-0.003505	$0.005463-0.64$	0.5371	-0.015864	0.0088531

Term
Intercept
YRSCHEM

Estimate	Std Error	t Ratio	Prob> $\|t\|$	Lower 95%
0.1102627	0.050364	2.19	0.0563	-0.00367
0.0004785	0.003763	0.13	0.9016	-0.008035

Upper 95\%
0.2241958
0.0089921
Random Sample
Supervisor/Mgmt
PFOS ppm By YRSCHEM

$\overline{\#}$ Linea f
Linear Fit
PFOSdfppm $=-0.2688+0.10578$ YRSCHEM Summary of Fit
RSquare 0.19718 b
RSquare Adj 0.1470
Root Mean Square Error 2.36682::
Mean of Response 1.87907:
Observations (or Sum Wgts)
$1:$

	Analysis of Variance Source					DF	
Sum of Squares	Mean Square	F Ratio					
Model	1	22.01465	22.0146	3.9299			
Error	16	89.62951	5.6018	Prob>F			
C Total	17	111.64416		0.0649			
	Estimate	Std Error	t Ratio	Prob>\|t		Lower 95\%	Upper 95\%
	-0.268787	1.218652	-0.22	0.8282	-2.8522	2.3146273	
	0.1057769	0.053358	1.98	0.0649	-0.007337	0.2188905	

Random Sample
Supervisor/Mgmt
POAApPm By YRSCHEM

\square
Linear Fit
POAAPPm $=0.30841+0.05233$ YRSCHEM Summary of Fit
RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)
$0.1718: 8$
RSquare Adj $0.1200 ; 8$ 1.27347 1.3709 .8
$!8$

	Analysis of Variance			
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	5.387336	5.38734	3.3199
Error	16	25.963931	1.62275	Prob>F
C Total	17	31.351267		0.0872

Term
Intercept
YRSCHEM

Estimate
0.3084084
0.0523265
Parameter Estimates

Sid Error	I Ratio	Prob $>\|\| \|$	Lower 95\%
0.655903	0.47	0.6446	-1.082036
0.028718	1.82	0.0872	-0.008553

[^2]

Linear Fit
PFOSAAdppm $=0.00595+0.00023$ YRSCHEM
Summary of Fit

RSquare	0.036963
RSquare Adj	$-0.02: 2$
Root Mean Square Error	$0.0129: 7$
Mean of Response	0.010586
Observations (or Sum Wgts)	8

Analysis of Variance		
Sum of Squares	Mean Square	F Ratio
0.00010271	0.000103	0.6146
0.00267372	0.000167	Prob>F
0.00277643		0.4445

Parameter Estimates
Term
Intercept
YRSCHEM
Random Sample
Supervisor/Mgmt
M570ppm By YRSCHEM

Linear Fit
$\mathrm{M} 570 \mathrm{ppm}=0.05229+0.00341$ YRSCHEM Summary of Fit

RSquare	0.059465
RSquare Adj	0.000683
Root Mean Square Error	0.150515
Mean of Response	0.121594
Observations (or Sum Wgts)	13

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	0.02291777	0.022918	1.0116
Error	16	0.36247508	0.022655	Prob>F
C Total	17	0.38539285		0.3295

	Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob $>\|t\|$	Lower 95\%	Upper 95%
Intercept	0.052294	0.077498	0.67	0.5095	-0.111995	0.2165826
YRSCHEM	0.0034129	0.003393	1.01	0.3295	-0.00378	0.0106062

Linear Fit PFOSAdfppm $=-0.0334+0.00483$ YRSCHEM Summary of Fit

RSquare	0.114214
RSquare Adj	0.058852
Root Mean Square Error	0.14966
Mean of Response	0.064622
Observations (or Sum Wgts)	18

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	0.04583882	0.045839	2.0631
Error	16	0.35550303	0.022219	Prob>F
C Total	17	0.40134185		0.1702

	Parameter Estimates						
Term	Estimate	Std Error	Ratio	Prob>\|t		Lower 95\%	Upper 95\%
Intercept	-0.033387	0.07675	-0.44	0.6694	-0.196088	0.129314	
YRSCHEM	0.0048267	0.00336	1.44	0.1702	-0.002297	0.0119505	

Random Sample Supervisor/Mgimt M556 ppm By YRSCHEM

\square
Linear Fit
M556dfppm $=-0.007+0.00261$ YRSCHEM
Summary of Fit

RSquare	$0.1053 \varepsilon 2$
RSquare Adj	$0.04946,9$
Root Mean Square Error	0.084362
Mean of Response	0.046
Observations (or Sum Wgts)	18

	Analysis of Variance			
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	0.01341369	0.013414	1.8847
Error	16	0.11387207	0.007117	Prob>F
C Total	17	0.12728576		0.1887

	Parameter Estimates						
Term	Estimate	Std Error	t Ratio	Prob>\|		Lower 95\%	Upper 95\%
Intercept	-0.007018	0.043437	-0.16	0.8737	-0.099101	0.0850644	
YRSCHEM	0.002611	0.001902	1.37	0.1887	-0.001421	0.0066428	

Appendix F

Scatterplots and regression equations for fluorochemicals (natural log transformation) by years worked in chemical (YRSCHEM) for all random sample ($\mathrm{r}=126$) and for two current job cateogries (chemical operators and engineer/lab)
In PFOS ppm By YRSCHEM

$\begin{gathered} \text { Linear Fit } \\ \text { In PFOSdfppm }=-0.4008+0.02654 \text { YRSCHEM } \\ \text { Summary of Fit } \end{gathered}$	
RSquare 0.082224	
RSquare Adj	0.074823
Root Mean Square Error	0.987123
Mean of Response	-0.0605:
Observations (or Sum Wgts)	125

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	10.82508	10.8251	11.1092
Error	124	120.82819	0.9744	Prob>F
C Total	125	131.65326		$0.001!$

		Parameter Estimates								
Term	Estimate	Std Error	t Ratio	Prob $>\|t\|$	Lower 95\%	Upper 95\%				
Intercept	-0.400807	0.134748	-2.97	0.0035	-0.667512	-0.134101				
YRSCHEM	0.0265406	0.007963	3.33	0.0011	0.0107798	0.0423014				

Term
Intercept
YRSCHEM

YRSCHEM
Estimate
-2.403248
0.053664

Parameter Estimates
Random Sample
In PFHS ppm By YRSCHEM

$$
\bar{\equiv} \operatorname{lnet} f t
$$

Linear Fit
\ln PFHSdfppm $=-2.4032+0.05366$ YRSCHEM

RSquare	Summary of Fit
RSquare Adj	0.236894
Root Mean Square Error	0.230739
Mean of Response	1.072243
Observations (or Sum Wgts)	-1.7152
	126

	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Source	1	44.25642	44.2564	38.4937
Model	124	142.56346	1.1497	Prob>F
Error	125	186.81988		$<.0001$

Parameter Estimatos			
Std Error	t Ratio	Prob> $\|t\|$	Lower 95\%
0.146366	-16.42	$<.0001$	-2.69295
0.008649	6.20	$<.0001$	0.0365442

Random Sample
in POAA ppm By YRSCHEM

Linear Fit
In POAAPpm $=-0.2007+0.00738$ YRSCHEM
Summary of Fit
RSquare
RSquare Adj $\quad-0.003: 8$
Root Mean Square Error $\quad 1.2568 .7$
Mean of Response $\quad-0.106(19$
Observations (or Sum Wgts) $\quad 1: 6$

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	0.83656	0.83656	0.5296
Error	124	195.88769	1.57974	Prob>F
C Total	125	196.72425		0.4682

	Parameter Estimates					Prob>lt
Term	Estimate	Std Error	Ratio	Lower 95\%	Upper 95\%	
Intercept	-0.200686	0.17157	-1.17	0.2444	-0.540273	0.1389006
YRSCHEM	0.0073781	0.010139	0.73	0.4682	-0.01269	0.0274458

Random Sample
In PFOSAA ppm By YRSCHEM

\square
Linear Fit
In PFOSAAdfppm $=-4.478-0.02366$ YRSCHEM Summary of Fit

RSquare	0.03232,
RSquare Adj	$0.02451^{\prime \prime}$
Root Mean Square Error	1.4419^{\prime}
Mean of Response	-4.781 I $^{\prime}$
Observations (or Sum Wgts)	$12 i^{\prime}$

	Mnalysis of Variance			
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	8.60226	8.60226	4.1416
Error	124	257.55240	2.07704	Prob>F
C Total	125	266.15466		0.0440

	Parameter Estimates						
Term	Estimale	Std Error	t Ratio	Prob>\|t		Lower 95\%	Upper 95\%
Intercept	-4.477958	0.19673	-22.76	$<.0001$	-4.867344	-4.088572	
YRSCHEM	-0.023659	0.011626	-2.04	0.0440	-0.04667	-0.000649	

Random Sample In M 570 ppm By YRSCHEM

Linear Fit
In $570 \mathrm{ppm}=-2.353-0.0126$ YRSCHEM
Summary of Fit

RSquare	
RSquare Adj	0.015641
Root Mean Square Error	0.00770 2
Mean of Response	1.112421
Observations (or Sum Wgts)	-2.51453

	Parameter Estimates				
Term	Estimate	Std Error	I Ratio	Lower 95\%	Upper 95\%
Intercept	-4.13633	0.259252	-15.95	-4.649466	-3.623194
YRSCHEM	-0.017012	0.01532	-1.11	-0.047336	0.0133113

Random Sample
In M556 ppm By YRSCHEM

\square
Linear Fit
In M556dfppm $=-3.6365-0.01244$ YRSCHEM
Summary of Fit

RSquare	0.010236
RSquare Adj	0.002254
Root Mean Square Error	1.362297
Mean of Response	-3.79603
Observations (or Sum Wgts)	125

	MF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Source	1	2.38002	2.38002	1.2824
Model	124	230.12586	1.85585	Prob>F
Error	125	232.50588		0.2596
C Total	15			

Term	Estimate	Std Error	t Ratio	Prob $>\|t\|$	Lower 95\%	Upper 95\%
Intercept	-3.636469	0.18596	-19.56	$<.0001$	-4.004539	-3.268399
YRSCHEM	-0.012445	0.010989	-1.13	0.2596	-0.034196	0.0093062

YRSCHEM

Parameter Estimates
Random Sample
Chemical Operators In PFOS ppm By YRSCHEM

Analysis of Variance		
Sum of Squares	Mean Square	F Ratio
0.622261	0.622261	1.7927
15.620109	0.347114	Prob>F
16.242370		0.1873

	Parameter Estimates					
Term	Estimate	Std Error	\mathbf{t} Ratio	Prob> $\|t\|$	Lower 95\%	Upper 95\%
Intercept	0.2562063	0.133348	1.92	0.0610	-0.01237	0.524783
YRSCHEM	0.0123988	0.00926	1.34	0.1873	-0.006253	0.0310501

Random Sample
Chemical Operators
in PFHS ppm By YRSCHEM

$\begin{gathered} \text { Linear Fit } \\ \text { In PFHSdfppm }=-1.7176+0.0491 \text { YRSCHEM } \\ \text { Summary of Fit } \end{gathered}$	
RSquare	0.345573
RSquare Adj	0.331035
Root Mean Square Error	0.64081 ?
Mean of Response	-1.1770.4
Observations (or Sum Wgts)	

	Analysis of Variance			
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	9.758008	9.75801	23.7629
Error	45	18.478805	0.41064	Prob>F
C Total	46	28.236813		$<.0001$

	Parameter Estimates						
Term	Estimate	Std Error	t Ratio	Prob>\|i		Lower 95\%	Upper 95\%
Intercept	-1.717649	0.145038	-11.84	<.0001	-2.00977	-1.425527	
YRSCHEM	0.0490992	0.010072	4.87	<.0001	0.0288128	0.0693855	

Random Sample
Chemical Operators
In POAA ppm By YRSCHEM

\equiv bies ft
Linear Fit
\ln POAAppm $=0.51048+0.01132$ YRSCHEM
Summary of Fit
0.027722

RSquare	0.027722
RSquare Adj	0.00611ϵ
Root Mean Square Error	0.63568 t
Mean of Response	0.635094
Observations (or Sum Wgts)	47

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	0.518477	0.518477	1.2831
Error	45	18.184368	0.404097	Prob>F
C Total	46	18.702845		0.2633

	Parameter Estimates					
Term	Estimate	Std Error	IRatio	Probs $\|t\|$	\|_ower 95\%	Upper 95\%
Intercept	0.5104788	0.143878	3.55	0.0009	0.2206941	0.8002634
YRSCHEM	0.0113177	0.009992	1.13	0.2633	-0.008806	0.0314418

Random Sample
Chemical Operators
in PFOSAA ppm By YRSCHEM

\square

Linear Fit	
\ln PFOSAAdfppm $=-4.2679-0.01959$ YRSCHEM	
Summary	
RSquare	0.0132 t 1
RSquare Adj	-0.00867
Root Mean Square Error	1.603004
Mean of Response	-4.4836
Observations (or Sum Wgts)	47

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	1.55397	1.55397	0.6047
Error	45	115.63304	2.56962	Prob>F
C Total	46	117.18701		0.4408

	Parameter Estimates						
Term	Estimate	Std Error	I Ratio	Prob>\|t		Lower 95\%	Upper 95\%
Intercept	-4.267867	0.362816	-11.76	$<.0001$	-4.998614	-3.537119	
YRSCHEM	-0.019594	0.025196	-0.78	0.4408	-0.07034	0.0311532	

Random Sample
Chemical Operators In M570 ppm By YRSCHEM

Linear Fit
$\ln 570 \mathrm{ppm}=-1.6206-0.03729$ YRSCHEM
Summary of Fit

RSquare	$0.092: 8$
RSquare Adj	0.072006
Root Mean Square Error	$1.1098: 1$
Mean of Response	-2.03122
Observations (or Sum Wgts)	67

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	5.628506	5.62851	4.5693
Error	45	55.431655	1.23181	Prob>F
C Total	46	61.060161		0.0380

	Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob> $>$ \|	Lower 95\%	Upper 95\%
Intercept	-1.620635	0.251203	-6.45	$<.0001$	-2.126582	-1.114688
YRSCHEM	-0.03729	0.017445	-2.14	0.0380	-0.072425	-0.002154

Random Sample Chemical Operators In PFOSA ppm By YRSCHEM

$\bar{三}_{\text {mea fi }}$	
Linear Fit	
In PFOSAdfppm $=-3.2174-0.03217$ YRSCHEM Summary of Fit	
RSquare	0.026974
RSquare Adj	0.0053:51
Root Mean Square Error	1.832598
Mean of Response	-3.571177
Observations (or Sum Wgts)	.17

	MF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Source	DF	4.18951	4.18951	1.2475
Model	1	151.12876	3.35842	Prob>F
Error	45	155.31826		0.2700
C Total	46			

		Parameter Estimates								
Term	Estimate	Std Eror	I Ratio	Prob> $\|t\|$	Lower 95\%	Upper 95\%				
Intercept	-3.217438	0.414782	-7.76	$<.0001$	-4.052848	-2.382028				
YRSCHEM	-0.032172	0.028805	-1.12	0.2700	-0.090187	0.0258433				

Random Sample
Chemical Operators In M556 ppm By YRSCHEM

	Analysis of Variance Source			
DF	Sum of Squares	Mean Square	F Ratio	
Model	1	3.993849	3.99385	3.1769
Error	45	56.572602	1.25717	ProbsF
C Total	46	60.566451		0.0814

	Parameter Estimates						
Term	Estimate	Std Error	I Ratio	Prob>\|t		Lower 95\%	Upper 95\%
Intercept	-2.776667	0.253775	-10.94	$<.0001$	-3.287794	-2.265539	
YRSCHEM	-0.031412	0.017623	-1.78	0.0814	-0.066907	0.0040837	

Random Sample
Engineer/Lab
In PFOS ppm By YRSCHEM

	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio		
Source	1	4.001539	4.00154	4.3104		
Model	21	19.495151	0.92834	Prob>F		
Error	22	23.496691		0.0503		
C Total						
		Parameter Estimates				
	Estimate	Std Error	t Ratio	Prob>>t\|	Lower 95\%	Upper 95\%
	-1.40069	0.299699	-4.67	0.0001	-2.023942	-0.777437
	0.0314649	0.015155	2.08	0.0503	-0.000052	0.0629819

Random Sample
Engineer/Lab
in PFHS ppm By YRSCHEM

\square
Linear Fit

\ln PFHSdfppm $=-3.1745+0.04275$ YRSCHEM	
\quad Summary of Fit	

Analysis of Variance		
Sum of Squares	Mean Square	F Ratio
7.386077	7.38608	5.0173
30.914308	1.47211	Prob>F
38.300386		0.0360

Parameter Estimates

Std Error	t Ratio	Prob> $>$ t\|	Lower 95\%	Upper 95\%
0.377399	-8.41	$<.0001$	-3.959334	-2.389657
0.019085	2.24	0.0360	0.0030601	0.0824366

Random Sample Engineer/Lab In POAA ppm By YRSCHEM

$\begin{gathered} \text { Linear Fit } \\ \text { In POAAPpm }=-1.8235+0.01742 \text { YRSCHEM } \\ \text { Summary of Fit } \end{gathered}$	
RSquare	0.047702
RSquare Adj	0.002355
Root Mean Square Ertor	1.079651
Mean of Response	-1.56794
Observations (or Sum Wgrs)	23

	Source Model Error C Total	$\begin{array}{r} \text { DF } \\ 1 \\ 21 \\ 22 \end{array}$	Analysis of Sum of 24 25	Variance quares 26171 78567 04738	$\begin{array}{r} \text { Mean Square } \\ 1.22617 \\ 1.16565 \end{array}$	$\begin{gathered} \text { F Ratio } \\ 1.0519 \\ \text { Prob>F } \\ 0.3167 \end{gathered}$	
Term		Estimate	Parameter Std Error	stimates t Ratio	Prob>\|it	Lower 95\%	Upper 95\%
Intercept		-1.823526	0.335826	-5.43	<. 0001	-2.521909	-1.125143
YRSCHEM		0.0174176	0.016982	1.03	0.3167	-0.017899	0.0527339

Random Sample
Engineer/Lab In PFOSAA ppm By YRSCHEM

三ineof	
Linear Fit in PFOSAAdfppm $=-5.15-0.00367$ YRSCHEM Summary of Fit	
RSquare	0.0012 S 4
RSquare Adj	-0.046:3
Root Mean Square Error	1.44825
Mean of Response	-5.2038
Observations (or Sum Wgts)	gts)

	Mralysis of Variance	Mean Square	F Ratio			
Source	DF	Sum of Squares	Mean			
Model	1	0.054411	0.05441	0.0259		
Error	21	44.045995	2.09743	Prob>F		
C Total	22	44.100406		0.8736		
		Parameter Estimates				
	Estimate	Std Error	t Ratio	Prob>\|l		Lower 95\%
	-5.149964	0.450479	-11.43	$<.0001$	-6.086779	
	-0.003669	0.02278	-0.16	0.8736	-0.051043	

Random Sample
Engineer/Lab
Ln M570ppm By YRSCHEM

\square
Linear Fit
In $570 \mathrm{ppm}=-3.0598+0.00297 \mathrm{YRSCHEM}$
Summary of Fit

RSquare	0.002026
RSquare Adj	-0.0455
Root Mean Square Error	0.915637
Mean of Response	-3.01612
Observations (or Sum Wgts)	23

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio	
Model	1	0.035747	0.035747	0.0426	
Error	21	17.606219	0.838391	Prob>F	
C Total	22	17.641966		0.8384	
	Parameter Estimates				
	Estimate	Std Error $\quad \mathrm{t}$ Ratio	Prob> 31	Lower 95\%	Upper 95\%
	-3.059762	$0.284809-10.74$	<.0001	-3.652051	-2.467473
	0.0029739	$0.014402 \quad 0.21$	0.8384	-0.026977	0.0329252

Random Sample
Engineet/Lab
In PFOSA ppm By YRSCHEM

三 ${ }_{\text {liner }} \mathrm{fl}$	
Linear Fit	
$\begin{aligned} & \text { In PFOSAdfppm }=-5.5202+0.00865 \text { YRSCHEM } \\ & \text { Summary of Fit }\end{aligned}$	
RSquare	0.004124
RSquare Adj	-0.0433
Root Mean Square Error	1.864648
Mean of Response	-5.39325
Observations (or Sum Wgts)	23

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	0.302390	0.30239	0.0870
Error	21	73.015154	3.47691	Prob>F
C Total	22	73.317544		0.7710

	Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob $>\|t\|$	Lower 95\%	Upper 95\%
Intercept	-5.520173	0.58	-9.52	$<.0001$	-6.726339	-4.314007
YRSCHEM	0.0086496	0.02933	0.29	0.7710	-0.052345	0.0696438

	Estimate	Std Error	t Ratio	Prob> $\|\mathrm{t}\|$	Lower 95%	Upper 95%
Term	-4.793115	0.365404	-13.12	$<.0001$	-5.553008	-4.033222
Intercept	0.0097276	0.018478	0.53	0.6041	-0.028699	0.0481544

Appendix G

Scatterplots and regression equations for fluorochemicals $b ;$ years worked in chemical(YRSCHEM) for all chemical participants ($n=187$) for current job categories (cell operators, chemical operators, engineer/lab, maintenance, mill operators and supervisor/mgmt)

All Participants PFOS ppm By YRSCHEM

Linear Fit
PFOSdfppm $=0.87788+0.04433$ YRSCHEM Summary of Fit

RSquare	0.109673
RSquare Adj	0.10486
Root Mean Square Error	1.424349
Mean of Response	1.424443
Observations (or Sum Wgts)	187

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	46.23325	46.2333	22.7888
Error	185	375.32259	2.0288	Prob>F
C Total	186	421.55584		$<.0001$

		Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob>\|t		Luwer 95\%	Upper 95\%
Intercept	0.8778797	0.154783	5.67	$<.0001$	0.5725098	1.1832495	
YRSCHEM	0.0443319	0.009287	4.77	$<.0001$	0.0260105	0.0626534	

All Participants

POAA ppm By YRSCHEM

$\equiv \operatorname{lneaft}^{\text {ft }}$	
$\begin{gathered} \text { Linear Fit } \\ \text { POAA.ppm }=1.20809+0.01788 \text { YRSCHEM } \\ \text { Summary of Fit } \end{gathered}$	
RSquare	0.024711
RSquare Adj	0.019439
Root Mean Square Error	1.266529
Mean of Response	1.42851
Observations (or Sum Wgts)	187

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	7.51900	7.51900	4.6874
Error	185	296.75766	1.60410	Prob>F
C Total	186	304.27666		0.0317

		Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob>\|t		Lower 95\%	Upper 95\%
Intercept	1.2080941	0.137633	8.78	$<.0001$	0.9365598	1.4796284	
YRSCHEM	0.017878	0.008258	2.17	0.0317	0.0015867	0.0341694	

	Parameter Estimates						
Term	Estimate	Std Error	Ratio	Prob>\|t		L.ower 95\%	Upper 95\%
Intercept	0.188204	0.030857	6.10	$<.0001$	0.1273257	0.2490822	
YRSCHEM	-0.002466	0.001851	-1.33	0.1845	-0.006118	0.0011868	

Ierm
Intercept
YRSCHEM
All Participants
PFOSA ppm By YRSCHEM

\square
Linear Fit
PFOSAdfppm $=0.05391-0.00022$ YRSCHEM
Summary of Fit

RSquare	0.000516
RSquare Adj	-0.00489
Root Mean Square Error	0.107249
Mean of Response	0.051246
Observations (or Sum Wgts)	187

	Mnalysis of Variance			
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	0.0010985	0.001098	0.0955
Eror	185	2.1279346	0.011502	Prob>F
C Total	186	2.1290331		0.7576

Linear Fit

PFOSdfppm $=0.41242+0.09869$ YRSCHEM	
\quad Summary of Fit	
RSquare	0.23418
RSquare Adj	0.12477
Root Mean Square Error	1.814425
Mean of Response	2.265556
Observations (or Sum Wgts)	9

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	7.046913	7.04691	2.1405
Error	7	23.044960	3.29214	Prob>F
C Total	8	30.091872		0.1869

	Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob> \mid \| \mid	Lower 95\%	Upper 95\%
Intercept	0.4124178	1.403612	0.29	0.7774	-2.906623	3.7314586
YRSCHEM	0.0986878	0.067453	1.46	0.1869	-0.060815	0.2581907

All Participants
Cell Operators
PFHS ppm By YRSCHEM

\square
Linear Fit

PFHSdfppm $=$$-0.0673+0.05293$ Summary of Fit	
RSquare	0.573083
RSquare Adj	0.512095
Root Mean Square Error	0.464481
Mean of Response	0.926611
Observations (or Sum Wgts)	9

	Analysis of Variance Source			
DF	Sum of Squares	Mean Square	F Ratio	
Model	1	2.0272533	2.02725	9.3966
Error	7	1.5101985	0.21574	Prob>F
C Total	8	3.5374519		0.0182

Parameter Estimates							
Term	Estimate	Stid Error	t Ratio	Prob>\|t		L.ower 95\%	Upper 95\%
Intercept	-0.067334	0.359316	-0.19	0.8567	-0.916987	0.7823194	
YRSCHEM	0.052932	0.017268	3.07	0.0182	0.0121003	0.0937637	

All Participants
Cell Operators
POAA ppm By YRSCHEM

Linear Fit

POAAPpm $=0.25794+0.08268$ YRSCHEM	
Summary of Fit	
RSquare	0.423489
RSquare Adj	0.34113
Root Mean Square Error	0.980819
Mean of Response	1.810556
Observations (or Sum Wgts)	9

All Participants Cell Operators PFOSA ppm By YRSCHEM

"

Linear Fit
PFOSAdfppm $=0.01002-0.0002$ YRSCHEM Summary of Fit

	Summary of Fit
RSquare	0.152809
RSquare Adj	0.031782
Root Mean Square Error	0.004794
Mean of Response	0.006259
Observations (or Sum Wgts)	9

Linear Fit

PFOSdfppm $=$$1.45105+0.03765$ Summary of Fit	
RSquare	0.070586
RSquare Adj	0.055596
Root Mean Square Error	1.25103
Mean of Response	1.839062
Observations (or Sum Wgts)	64

	Analysis of Variance Source			
DF	Surn of Squares	Mean Square	F Ratio	
Model	1	7.36950	7.36950	4.7087
Error	62	97.03475	1.56508	Prob>F
C Total	63	104.40425		0.0339

Term	Parameter Estimates						
	Estimate	Std Error	1 Ratio	Prob>\|t		Lower 95\%	Upper 95\%
Intercept	1.4510518	0.237545	6.11	<.0001	0,9762066	1.925897	
YRSCHEM	0.0376538	0.017352	2.17	0.0339	0.002967	0.0723406	

Linear Fit
PFHSdfppm $=0.17914+0.02247$ YRSCHEM
Summary of Fit

RSquare	0.284349
RSquare Adj	0.272806
Root Mean Square Error	0.326413
Mean of Response	0.410705
Observations (or Sum Wgts)	64

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	2.6246883	2.62469	24.6344
Error	62	6.6058219	0.10655	Prob>F
C Total	63	9.2305102		$<.0001$

	Parameter Estimates					
	Estimate	Std Error	t Ratio	Prob> $>$ \|t	L.ower 95\%	Upper 95\%
Term	0.1791447	0.061979	2.89	0.0053	0.0552502	0.3030391
Intercept	0.0224713	0.004527	4.96	$<.0001$	0.013421	0.0315217

Linear Fit
POAAPpm $=1.71456+0.04674$ YRSCHEM
Summary of Fit

RSquare	0.101987
RSquare Adj	0.08750 2
Root Mean Square Error	1.269982
Mean of Response	2.196234
Observations (or Sum Wgts)	64

	Analysis of Variance Source			
DF	Sum of Squares	Mean Square	F Ratio	
Model	1	11.35666	11.3567	7.0413
Error	62	99.99717	1.6129	Prob>F
C Total	63	111.35384		0.0101

	Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob> ${ }^{\text {\|t }}$	I.ower 95\%	Upper 95\%
Intercept	1.7145638	0.241143	7.11	<.0001	1.2325247	2.1966029
YRSCHEM	0.0467429	0.017615	2.65	0.0101	0.0115305	0.0819552

All Participants
Chemical Operators PFOSAA ppm By YRSCHEM

\square
Linear Fit
PFOSAAdfppm $=0.05584-0.00136$ YRSCHEM Summary of Fit

RSquare	0.042288
RSquare Adj	0.026841
Root Mean Square Error	0.059297
Mean of Response	0.041812
Observations (or Sum Wgts)	64

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	0.00962588	0.009626	2.7376
Error	62	0.21799991	0.003516	Prob>F
C Total	63	0.22762579		0.1031

		Parameter Estimates						
Term	Estimate	Std Error	t Ratio	Prob>\|i		Lower 95\%	Upper 95\%	
Intercept	0.0558352	0.011259	4.96	$<.0001$	0.0333282	0.0783421		
YRSCHEM	-0.001361	0.000822	-1.65	0.1031	0.003005	0.0002833		

All Participants
Chemical Operators M570 ppm By YRSCHEM

Linear Fit
M570ppm $=0.37266-0.00856$ YRSCHEM
Summary of Fit

RSquare	0.031978
RSquare Adj	0.016364
Root Mean Square Error	0.431404
Mean of Response	0.28442
Observations (or Sum Wgts)	64

	Analysis of Variance Source			
DF	Sum of Squares	Mean Square	F Ratio	
Model	1	0.381171	0.381171	2.0481
Error	62	11.538802	0.186110	Prob>F
C Total	63	11.919973		0.1574

	Parameter Estimates					
Term	Estimate	Std Error	\boldsymbol{t} Ratio	Prob $>\|\$\|$	L.ower 95\%	Upper 95\%
Intercept	0.3726642	0.081915	4.55	$<.0001$	0.208919	0.5364095
YRSCHEM	-0.008563	0.005984	-1.43	0.1574	-0.020525	0.0033979

All Participants
Chemical Operators PFOSA ppm By YRSCHEM

Linear Fit
PFOSAdfppm $=0.10868-0.00198$ YRSCHEM
Summary of Fit

RSquare	0.018323
RSquare Adj	0.002489
Root Mean Square Error	0.132746
Mean of Response	0.088272
Observations (or Sum Wgts)	64

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	0.0203920	0.020392	1.1572
Error	62	1.0925409	0.017622	Prob>F
C Total	63	1.1129329		0.2862

	Parameter Estimates						
Term	Estimate	Sid Error	I Ratio	Prob>\|t		Lower 95\%	Upper 95\%
Intercept	0.1086821	0.025206	4.31	$<.0001$	0.0582964	0.1590678	
YRSCHEM	-0.001981	0.001841	-1.08	0.2862	-0.005661	0.0016999	

All Participants
Chemical Operators M556 ppm By YRSCHEM

三 ${ }_{\text {Liner ft }}$	
$\begin{aligned} & \text { Linear Fit } \\ & \text { M556dfppm }= 0.09703-0.00222 \text { YRSCHEM } \\ & \text { Summary of Fit } \end{aligned}$	
RSquare	0.072552
RSquare Adj	0.057593
Root Mean Square Error	0.072643
Mean of Response	0.074167
Observations (or Sum Wgts)	64

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	0.02559413	0.025594	4.8501
Error	62	0.32717681	0.005277	Prob>F
C Total	63	0.35277094		0.0314

		Parameter Estimates							
Term	Estimate	Std Error	t Ratio	Probs $\|t\|$	Lower 95\%	Upper 95\%			
Intercept	0.0970334	0.013793	7.03	$<.0001$	0.0694607	0.1246062			
YRSCHEM	-0.002219	0.001008	-2.20	0.0314	-0.004233	-0.000205			

All Participants
Engineer/Lab
PFOS ppm By YRSCHEM

	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Source	DF	1.680348	1.68035	6.5995
Model	1	8.911651	0.25462	Prob>F
Eror	35	10.591999		0.0146

	Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob>\|t	L.ower 95\%	Upper 95\%
Intercept	0.3624261	0.127461	2.84	0.0074	0.1036677	0.6211844
YRSCHEM	0.016237	0.00632	2.57	0.0146	0.0034058	0.0290681

All Participants Engineer/Lab
PFHS ppm By YRSCHEM

三 Linea fl	
$\begin{aligned} & \text { Linear Fit } \\ & \text { PFHSdfppm }=0.08056+0.00441 \text { YRSCHEM } \end{aligned}$	
RSquare	0.091924
RSquare Adj	0.065979
Root Mean Square Error	0.18698]
Mean of Response	0.148053
Observations (or Sum Wgts)	37

Source	DF	Analysis of Variance	Mean Square	F Ratio	
Model	1	0.1238708	0.123871	3.5430	
Error	35	1.2236624	0.034962	Prob>F	
C Total	36	1.3475332		0.0681	
		Parameter Estimates			
	Estimate	Std Emor t Ratio	Prob> $\mathrm{it}^{\text {d }}$	1.0wer 95\%	Upper 95\%
	0.0805558	$0.047231 \quad 1.71$	0.0970	-0.015328	0.1764397
	0.0044085	$0.002342 \quad 1.88$	0.0681	-0.000346	0.0091631

All Participants

Engineer/Lab
POAAppm By YRSCHEM

Linear Fit
POAAppm $=0.30344+0.00257$ YRSCHEM

\quad Summary of Fit	
RSquare	0.00587.
RSquare Adj	-0.0225 :
Root Mean Square Error	$0.4509:$
Mean of Response	$0.34276{ }^{\prime}$
Observations (or Sum Wgts)	$3^{\prime \prime}$

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	0.0420387	0.042039	0.2068
Error	35	7.1165096	0.203329	Prob>F
C Total	36	7.1585483		0.6521

| | Parameter Estimates | | | | | Prob>\|t| |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Term | Estimate | Std Error | Ratio | Lower 95% | Upper 95\% | |
| Intercept | 0.3034436 | 0.113902 | 2.66 | 0.0116 | 0.0722111 | 0.534676 |
| YRSCHEM | 0.0025682 | 0.005648 | 0.45 | 0.6521 | -0.008898 | 0.0140344 |

Al Participants
Engineer/Lab PFOSAA ppm By YRSCHEM

\equiv linea fl
Linear Fit

Summary of Fit	
RSquare	0.026565
RSquare Adj	-0.00125
Root Mean Square Error	0.016393
Mean of Response	0.00964 ?
Observations (or Sum Wgts)	37

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	0.00025666	0.000257	0.9551
Error	35	0.00940502	0.000269	Prob>F
C Total	36	0.00966167		0.3351

		Parameter Estimates								
Term	Estimate	Std Error	Ratio	Prob> $\mathrm{tt\mid}$	Lower 95\%	Upper 95\%				
Intercept	0.0127146	0.004141	3.07	0.0041	0.0043085	0.0211207				
YRSCHEM	-0.000201	0.000205	-0.98	0.3351	-0.000618	0.0002162				

All Participants

Engineer/Lab
M570 ppm By YRSCHEM

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	0.00017081	0.000171	0.0303
Error	35	0.19748202	0.005642	Prob>F
C Total	36	0.19765282		0.8629

	Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob>价	Lower 95\%	Upper 95\%
Intercept	0.0660713	0.018974	3.48	0.0014	0.0275519	0.1045907
YRSCHEM	-0.000164	0.000941	-0.17	0.8629	0.002074	0.0017464

All Participants
Engineer/Lab
M556 ppm By YRSCHEM

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	0.00150111	0.001501	0.4737
Error	35	0.11091707	0.003169	Prob>F
C Total	36	0.11241818		0.4958

	Parameter Estimales						
Term	Estimate	Std Error	t Ratio	Prob>>\|t		-ower 95\%	Upper 95\%
Intercept	0.0315087	0.01422	2.22	0.0333	0.0026409	0.0603766	
YRSCHEM	-0.000485	0.000705	-0.69	0.4958	-0.001917	0.0009462	

All Participants

Maintenance
PFOS ppm By YRSCHEM

$\overline{\#}$ Lrear f	
$\text { PFOSdfppm }=\begin{aligned} & \text { Linear Fit } \\ & \text { 1.03905 }+0.07695 \text { YRSCHEM } \\ & \text { Summary of Fit } \end{aligned}$	
RSquare	0.332684
RSquare Adj	0.288196
Root Mean Square Error	1.20310
Mean of Response	1.772294
Observations (or Sum Wgts)	

		Analysis of Variance	Mean Square	F Ratio
Source	DF	Sum of Squares	Men	10.8242
Model	1	10.824249	7.4781	
Error	15	21.711881	1.4475	Prob>F
C Total	16	32.536130		0.0154

		Parameter	timates			
Term	Estimate	Std Error	t Ratio	Prob> ${ }^{\text {d }}$	_ower 95\%	Upper 95\%
Intercept	1.0390494	0.396284	2.62	0.0192	0.1943936	1.8837052
YRSCHEM	0.0769454	0.028138	2.73	0.0154	0.0169718	0.1369191

All Participants

Maintenance
PFHS ppm By YRSCHEM

Linear Fit

PFHSdfppm $=$$0.07257+0.02482$ Summary of Fit	
YRSCHEM	
RSquare	0.551529
RSquare Adj	0.521631
Root Mean Square Error	0.247055
Mean of Response	0.309053
Observations (or Sum Wgts)	17

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio	
Model	1	1.1259357	1.12594	18.4470	
Error	15	0.9155453	0.06104	Prob>F	
C Total	16	2.0414810		0.0006	
		Parameter Estimates			
	Estimate	Std Error $\quad 1$ Ratio	Prob>漖	t.ower 95\%	Upper 95\%
	0.0725662	0.0813760 .89	0.3866	-0.100882	0.2460149
	0.0248165	$0.005778 \quad 4.29$	0.0006	0.012501	0.037132

All Participants

Maintenance
POAA ppm By YRSCHEM

Linear Fit

POAAPpm $=0.92588+0.06146$ YRSCHEM	
\quad Summary of Fit	
RSquare	0.221317
RSquare Adj	0.169404
Root Mean Square Error	1.272661
Mean of Response	1.511529
Observations (or Sum Wgts)	17

	Mnalysis of Variance			
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	6.905100	6.90510	4.2633
Error	15	24.295008	1.61967	Prob>F
C Total	16	31.200108		0.0567

		Paramete	mates				
Term	Estimate	Std Error	t Ratio	Prob>\|t		L. ower 95\%	Upper 95\%
Intercept	0.9258836	0.419195	2.21	0.0432	1. 0323938	1.8193733	
YRSCHEM	0.0614567	0.029764	2.06	0.0567	-0.001984	0.1248977	

Linear Fit

| Linear Fit |
| :--- | ---: |
| PFOSAAdfppm $=\mathbf{0 . 0 4 5 7 5} \mathbf{- 0 . 0 0 0 9 5}$ YRSCHEM |
| Summary of Fit |

	MF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Source	D	0.00164936	0.001649	1.0297
Model	1	0.02402685	0.001602	Prob>F
Error	15	0.02567621		0.3263
C Total	16			

		Parameter Estimates				
	Estimale	Std Error	I Ratio	Prob> $\|t\|$	Lower 95\%	Upper 95%
Term	0.0457483	0.013183	3.47	0.0034	0.01765	0.0738465
Intercept	-0.00095	0.000936	-1.01	0.3263	-0.002945	0.0010453
YRSCHEM						

Linear Fit

Linear Fit	
M570ppm $=0.21068+0.00273$ YRSCHEM	
\quad Summary of Fit	
RSquare	0.03116
RSquare Adj	-0.03343
Root Mean Square Error	0.168111
Mean of Response	0.236706
Observations (or Sum Wgts)	17

	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio		
Source	1	0.01363420	0.013634	0.4824		
Model	15	0.42392181	0.028261	Prob>F		
Error	16	0.43755601		0.4979		
C Total						
			Parameter Estimates			
	Estimate	Std Error	1 Ratio	Prob>it	-ower 95\%	Upper 95\%
	0.2106824	0.055373	3.80	0.0017	0.0926575	0.3287074
	0.0027309	0.003932	0.69	0.4979	-0.005649	0.0111111

Linear Fit

$\begin{aligned} \text { MS56dfppm }= & 0.07814+0.001 \text { YRSCHEM } \\ & \text { Summary of Fit } \end{aligned}$	
RSquare	0.011725
RSquare Adj	-0.05416
Root Mean Square Error	0.101656
Mean of Response	0.0877
Observations (or Sum Wgts)	17

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	0.00183898	0.001839	0.1780
Error	15	0.15500978	0.010334	Prob>F
C Total	16	0.15684876		0.6791

		Parameter Estimates					
	Estimate	Std Error	1 Ratio	Prob>\|t		Lower 95\%	Upper 95\%
Term	0.0781426	0.033484	2.33	0.0339	1.0067735	0.1495118	
Intercept	0.0010029	0.002377	0.42	0.6791	-0.004065	0.0060704	

All Participants
Supervisors/Mgmt
PFHS ppm By YRSCHEM

\square
Linear Fit
PFHSdfppm $=0.04486+0.01663$ YRSCHEM
Summary of Fit

RSquare	0.185071
RSquare Adj	0.151116
Root Mean Square Error	0.378289
Mean of Response	0.389914
Observations (or Sum Wgts)	26

Analysis of Variance		
Sum of Squares	Mean Square	F Ratio
0.7799725	0.779972	5.4504
3.4344674	0.143103	Prob>F
4.2144399		0.0283

	Parameter Estimates						
Term	Estimate	Std Error	t Ratio	Prob>\|		Lower 95\%	Upper 95\%
Intercept	0.0448618	0.165373	0.27	0.7885	-0.296449	0.3861726	
YRSCHEM	0.016629	0.007123	2.33	0.0283	0.0019284	0.0313297	

Appendix G Page 39

All Participants
Supervisors/Mgmt
POAA ppm By YRSCHEM

Lreo fi
Linear Fit
POAAPpm $=0.17876+0.05352$ YRSCHEM
Summary of Fit

RSquare	0.193609
RSquare Adj	0.160009
Root Mean Square Error	1.184218
Mean of Response	1.2894
Observations (or Sum Wgts)	26

Analysis of Variance

Source	DF
Model	1
Error	24
C Total	25

Sum of Squares	Mean Square
8.080800	8.08080
33.656935	1.40237
41.737735	

F Ratio
5.7622
Prob>F
0.0245
Term
Intercept
YRSCHEM

	Parameter Estimates				
Estimate	Std Error	t Ratio	Prob> \mid t \mid	Lower 95\%	Upper 95\%
0.1787618	0.517694	0.35	0.7329	-10.889697	1.2472201
0.0535247	0.022298	2.40	0.0245	10.007505	0.0995444

Participants
Supervisors/Mgmt PFOSAA ppm By YRSCHEM

三 Lnes 7	
$\begin{aligned} & \text { Linear Fit } \\ & \text { PFOSAAdfppm }= 0.00564+0.00016 \text { YRSCHEM } \\ & \text { Summary of Fit } \end{aligned}$	
RSquare	0.023751
RSquare Adj	-0.01693
Root Mean Square Error	0.011408
Mean of Response	0.009045
Observations (or Sum Wgts)	26

	Analysis of Variance Source			
DF	Surn of Squares	Mean Square	F Ratio	
Model	1	0.00007599	0.000076	0.5839
Error	24	0.00312335	0.000130	Prob>F
C Total	25	0.00319934		0.4522

All Participants
Supervisors/Mgrnt
M570 ppm By YRSCHEM

\square
Linear Fit

Linear Fit M570ppm $=$ $0.03728+0.00349$ Summary of Fit	
RSquare	0.081466
RSquare Adj	0.043194
Root Mean Square Error	0.127205
Mean of Response	0.109788
Observations (or Sum Wgts)	26

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	0.03444346	0.034443	2.1286
Error	24	0.38834961	0.016181	Prob>F
C Total	25	0.42279307		0.1575

	Parameter Estimates						
Term	Estimate	Std Error	t Ratio	Prob>\|t		Lower 95\%	Upper 95\%
Intercept	0.0372783	0.055609	0.67	0.5090	-(1.077493	0.1520492	
YRSCHEM	0.0034945	0.002395	1.46	0.1575	-0,001449	0.0084378	

Linear Fit
PFOSAdfppm $=-0.0169+0.00333$ YRSCHEM

RSquare	Surnmary of Fit
RSquare Adj	0.075283
Root Mean Square Error	0.036753
Mean of Response	0.126709
Observations (or Sum Wgts)	0.052267
	26

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio			
Model	1	0.03137008	0.031370	1.9539			
Error	24	0.38532631	0.016055	Prob>F			
C Total	25	0.41669639		0.1750			
	Estimate	Std Error	I Ratio	Prob>\|t		1 ower 95\%	Upper 95\%
	-0.016933	0.055392	-0.31	0.7625	-0.131256	0.0973903	
	0.0033349	0.002386	1.40	0.1750	-0.001589	0.008259	

All Participants
Supervisors/Mgmt M556 ppm By YRSCHEM

Linear Fit
M556dfppm $=-0.0067+0.00235$ YRSCHEM
Summary of Fit

RSquare	0.101017
RSquare Adj	0.061931
Root Mean Square Error	0.072994
Mean of Response	0.04378
Observations (or Sum Wgts)	25

	Analysis of Variance			
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	0.01377030	0.013770	2.5845
Error	23	0.12254662	0.005328	Prob>F
C Total	24	0.13631692		0.1216

		Parameter Estimates				
Term	Estimate	Std Error	t Ratio	Probs $\|\mathrm{t}\|$	Lower 95\%	Upper 95\%
Intercept	-0.006656	0.034603	-0.19	0.8491	0.078239	0.0649258
YRSCHEM	0.0023503	0.001462	1.61	0.1216	0.000674	0.0053745

All Participants
Mill Operators
M556 ppm By YRSCHEM

Appendix H

Scatterplots and regression equations for fluorochemicals (natural log transformation) by years worked in chemical (YRSCHEM) for all chemical participants $(\mathrm{n}=187)$ and for two current job categonies (chemcial operators and engineer/lab)

All Participants
In M570ppm By YRSCHEM

$$
{\overline{\text { }}{ }^{\text {near ft }}}
$$

Linear Fit
In $570 \mathrm{ppm}=-2.4506-0.00984$ YRSCHEM
Summary of Fit

RSquare	0.009202
RSquare Adj	0.003846
Root Mean Square Error	1.151312
Mean of Response	-2.57193
Observations (or Sum Wgts)	187

	Analysis of Variance Source			
DF	Sum of Squares	Mean Square	F Ratio	
Model	1	2.27743	2.27743	1.7181
Error	185	245.22096	1.32552	Prob>F
C Total	186	247.49839		0.1916

	Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob $>\|\mathrm{t}\|$	Lower 95%	Upper 95%
Intercept	-2.450623	0.125112	-19.59	$<.0001$	-2.697456	-2.20379
YRSCHEM	-0.009839	0.007506	-1.31	0.1916	-0.024649	0.0049701

All Participants
In M556 ppm By YRSCHEM

$\begin{array}{c}\text { Linear Fit }\end{array}$				
ln M556dfppm $=-3.7337-0.00771$ YRSCHEM				
Summary of Fit		$]$	RSquare	0.00447
:---	---:			
RSquare Adj	-0.00094			
Root Mean Square Error	1.298323			
Mean of Response	-3.82913			
Observations (or Sum Wgts)	186			

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	1.39270	1.39270	0.8262
Error	184	310.15820	1.68564	Prob>F
C Total	185	311.55090		0.3646

	Parameter Estimates					
Term	Estimate	Std Error	Ratio	Prob $>\|t\|$	Lower 95\%	Upper 95\%
Intercept	-3.733702	0.141718	-26.35	$<.0001$	-4013306	-3.454098
YRSCHEM	-0.007709	0.008481	-0.91	0.3646	-0.024441	0.0090235

All Participants
Chemical Operators In PFOS ppm By YRSCHEM

\square
Linear Fit

In PFOSdfppm $=$S Summary of Fit	
RSquare	
RSquare Adj	0.067842
Root Mean Square Error	0.052807
Mean of Response	0.663197
Observations (or Sum Wgts)	0.392284
	64

	Analysis of Variance Source			
DF	Sum of Squares	Mean Square	F Ratio	
Model	1	1.984648	1.98465	4.5123
Error	62	27.269497	0.43983	Prob>F
C Total	63	29.254145		0.0376

	Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Probs \mid t \mid	Lower 95\%	Upper 95\%
Intercept	0.1909269	0.125927	1.52	0.1346	-0.060798	0.4426522
YRSCHEM	0.0195403	0.009199	2.12	0.0376	0.0011521	0.0379285

All Participants
Chemical Operators
In PFHS ppm By YRSCHEM

三 linea ft	
$\begin{aligned} & \text { Linear Fit } \\ & \text { FHSdfppm }=-1.7282+0.04829 \text { YRSCHEM } \\ & \text { Summary of Fit } \end{aligned}$	
RSquare	0.28459
RSquare Adj	0.273051
Root Mean Square Error	0.701066
Mean of Response	-1.23054
Observations (or Sum Wgts)	64

Source	DF
Modei	1
Error	62
C Total	63

Analysis of Variance
Term
Intercept
YRSCHEM

Sum of Squares 12.122007 30.472595 42.594602

Parameter Estimates

Sid Error	t Ratio	Prob $>\|t\|$	Lower 95\%
0.133118	-12.98	$<.0001$	-1.994279

Upper 95\%
-1.462081 -1.462081
0.0677304

All Participants
Chemical Operators
In POAA ppm By YRSCHEM

\square
Linear Fit
In POAAPpm $=0.45333+0.01564$ YRSCHEM Summary of Fit

RSquare	0.051828
RSquare Adj	0.036535
Root Mean Square Error	0.612605
Mean of Response	0.614523
Observations (or Sum Wgts)	64

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	1.271823	1.27182	3.3890
Error	62	23.267630	0.37528	Prob>F
C Total	63	24.539453		0.0704

	Parameter Estimates					
Term	Estimate	Std Error	\mathbf{t} Ratio	Prob> $\|\mathrm{t}\|$	Lower 95%	Upper 95%
Intercept	0.4533333	0.116321	3.90	0.0002	0.220811	0.6858555
YRSCHEM	0.0156424	0.008497	1.84	0.0704	$-(1.001343$	0.0326278

All Participants
Chemical Operators In PFOSAA PPm By YRSCHEM

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	2.67335	2.67335	1.0199
Error	62	162.51531	2.62121	Prob>F
C Total	63	165.18867		0.3165

Term
Intercept
YRSCHEM

Linear Fit
In $570 \mathrm{ppm}=-1.5009-0.04316$ YRSCHEM Summary of Fit

RSquare	0.10729
RSquare Adj	0.092891
Root Mean Square Error	1.139966
Mean of Response	-1.94564
Observations (or Sum Wgts)	64

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	9.683322	9.68332	7.4514
Error	62	80.570389	1.29952	Prob>F
C Total	63	90.253710		0.0082

		Parameter Estimates				
Term	Estimate	Std Error	t Patio	Prob $>\|t\|$	Lower 95%	Upper 95%
Intercept	-1.500868	0.216456	-6.93	$<.0001$	-1.933557	-1.068179
YRSCHEM	-0.043162	0.015812	-2.73	0.0082	$-C .074769$	-0.011555

All Panticipants Chemical Operators
in PFOSA ppm By YRSCHEM

\square
In PFOSAdfppm $=-3.4933-0.03575$ YRSCHEM
Summary of Fit

RSquare	0.030317
RSquare Adj	0.014677
Root Mean Square Error	1.851004
Mean of Response	-3.8617
Observations (or Sum Wgts)	64

	Analysis of Variance			
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	6.64144	6.64144	1.9384
Error	62	212.42545	3.42622	Prob>F
C Total	63	219.06689		0.1688

	Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob $>\mid$ t\|	Lower 95\%	Upper 95\%
Intercept	-3.49335	$0.35!467$	-9.94	$<.0001$	-4.195923	-2.790777
YRSCHEM	-0.035745	0.025674	-1.39	0.1688	$-(1.087068$	0.0155766

All Participants
Chemical Operators In M556 ppm By YRSCHEM

	Parameter Estimates					
Term	Estirnate	Std Error	t Ratio	Prob> \mid t\|	Lower 95\%	Upper 95%
Intercept	-2.789057	0.203286	-13.72	$<.0001$	-3.19542	-2.382693
YRSCHEM	-0.030415	0.01485	-2.05	0.0448	-0.0601	-0.000731

All Participants
Engineer/Lab In PFHS ppm By YRSCHEM

三 ${ }_{\text {lnea }}{ }^{\text {fl }}$	
$\begin{gathered} \text { Linear Fit } \\ \text { in PFHSdfppm }=-3.3667+0.05024 \text { YRSCHEM } \\ \text { Summary of Fit } \end{gathered}$	
RSquare	0.291558
RSquare Adj	0.271317
Root Mean Square Error	1.056855
Mean of Response	-2.5975
Observations (or Sum Wgts)	37

Analysis of Variance		
Sum of Squares	Mean Square	F Ratio
16.088669	16.0887	14.4042
39.092987	1.1169	Prob>F
55.181656		0.0006

Parameter Estimates

Std Error	t Ratio	Prob> $>\|t\|$	Lower 95%
0.266961	-12.61	$<.0001$	-3.908703
0.013238	3.80	0.0006	0.0233675

-3.366746
0.0502418
0.013238

Upper 95%
-2.824789
0.0771161

All Participants

Engineer/Lab
In POAA ppm By YRSCHEM

三 ${ }_{\text {nex ft }}$	
$\begin{aligned} \text { Ln POAAPpm }= & \begin{array}{l} \text { Linear Fit } \\ \text { Summary of Fit } \end{array} \\ & \text { Sins } \end{aligned}$	
RSquare Sum	0.107494
RSquare Adj	0.081994
Root Mean Square Error	1.001589
Mean of Response	-1.62112
Observations (or Sum Wgts)	37

	MF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Source	DF	4.228818	4.22882	4.2154
Model	1	35.111285	1.00318	Prob>F
Error	35	39.340103		0.0476

		Parameter	nates				
Term	Estimate	Std Error	t Ratio	Prob>\|t		Lower 95\%	Upper 95\%
Intercept	-2.015494	0.253001	-7.97	<.0001	-2.52911	-1.501878	
YRSCHEM	0.0257581	0.012546	2.05	0.0476	0.0002892	0.0512271	

All Participants
Engineer/Lab
in PFOSAA ppm By YRSCHEM

三 ${ }_{\text {Lnex }}$ if	
Linear Fit	
In PFOSAAdfppm $=-5.5422-0.00745$ YRSCHEM Summary of Fit	
RSquare	0.005419
RSquare Adj	-0.023
Root Mean Square Error	1.362132
Mean of Response	-5.65628
Observations (or Sum Wgis)	37

	Analysis of Variance Source			
DF	Sum of Squares	Mean Square	F Ratio	
Model	1	0.353853	0.35385	0.1907
Error	35	64.939165	1.85540	Prob>F
C Total	36	65.293017		0.6650

		Paramete	mates				
Term	Estimate	Std Error	t Ratio	Prob>\|t		Lower 95\%	Upper 95\%
Intercept	-5.542201	0.344074	-16.11	<.0001	-6240704	-4.843697	
YRSCHEM	-0.007451	0.017062	-0.44	0.6650	-0042088	0.027186	

All Participants Engineer/Lab In M570ppm By YRSCHEM

Linear Fit $\ln 570 \mathrm{ppm}=-3.3086+0.00738$ YRSCHEM Summary of Fit	
RSquare	0.010486
RSquare Adj	-0.01779
Root Mean Square Error	0.967617
Mean of Response	-3.19558
Observations (or Sum Wgts)	37

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	0.347256	0.347256	0.3709
Error	35	32.769885	0.936282	Prob>F
C Total	36	33.117141		0.5465

All Participants
Engineer/Lab In PFOSA ppm By YRSCHEM

三 Lner fr	
$\begin{gathered} \text { Linear Fit } \\ \text { In PFOSAdfppm }=-5.8688+0.0086 \text { YRSCHEM } \\ \text { Summarv of Fit } \end{gathered}$	
RSquare	0.005342
RSquare Adj	-0.02308
Root Mean Square Error	1.583297
Mean of Response	-5.7372
Observations (or Sum Wgts)	37

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	0.471187	0.47119	0.1880
Error	35	87.739016	2.50683	Prob>F
C Total	36	88.210203		0.6673

		Estimate	Std Error	t Ratio	Prob $>\|\mathrm{t}\|$	Lower 95%
Tem	-5.868846	0.39994	-14.67	$<.0001$	-6.680763	-5.056929
Intercept	0.0085981	0.019832	0.43	0.6673	-0.031663	0.048859

All Participants
Engineer/Lab In M556 ppm By YRSCHEM

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	0.373036	0.37304	0.2598
Error	35	50.245432	1.43558	Prob>F
C Total	36	50.618468		0.6134

Parameter Estimates						
Term	Estimate	Std Error	t Ratio	Prob> $\mathrm{lt}_{\text {t }}$	Lower 95\%	Upper 95\%
Intercept	-4.736793	0.302654	-15.65	<. 0001	-5.35121	-4.122375
YRSCHEM	0.0076503	0.015008	0.51	0.6134	-0022817	0.0381178

All Participants
In PFOS ppm By YRSCHEM

Linear Fit
In PFOSdfppm $=-0.493+0.02935$ YRSCHEM

	Summary of Fit
RSquare	$0.0981: 8$
RSquare Adj	$0.0933(14$
Root Mean Square Error	1.002959
Mean of Response	$-0.131: 3$
Observations (or Sum Wgts)	18.7

Source
Model
Error
C Total

Term Intercept YRSCHEM

Analysis of Variance

Sum of Squares	Mean Square	F Ratio
20.25968	20.2597	20.1403
186.09638	1.0059	Prob>F
206.35607		$<.0001$

Parameter Estimates				
Sid Error	t Ratio	Prob> $>+\mid$	Lower 95\%	Upper 95\%
0.108991	-4.52	$<.0001$	-0.708069	-0.278015
0.006539	4.49	$<.0001$	0.0164454	0.0422476

Appendix I

Random sample current job chemical operators ($\mathrm{n}=47$):
Regression of fluorochemical on gender, years worked in chemical and age; followed by regression equation of fluorochemical on gender and years worked in chemical:

Random Sample
Chemical Operators
in PFOS ppm
Summary of Fit

RSquare	0.121623
RSquare Adj	0.081697
Root Mean Square Error	0.569428
Mean of Response	0.392725
Observations (or Sum Wgls)	47

	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Source	2	1.975448	0.987724	3.0462
Model	44	14.266921	0.324248	Prob>F
Error	46	16.242370		0.0577
C Total				
		Lack of Fit		
Source	DF	Sum of Squares	Mean Square	F Ratio
Lack of Fit	26	11.215936	0.431382	2.5450
Pure Error	18	3.050985	0.169499	Prob>F
Total Error	44	14.266921		0.0221
Max RSq				
0.8122				

Parameter Estimates							
Term	Estimate	Std Error	t Ratio	Prab>\|t		Lower 95\%	Upper 95\%
Intercept	0.152705	0.138482	1.10	0.2762	-0.126387	0.431797	
GENDER[F-M]	-0.207949	0.101793	-2.04	0.0471	-0.413098	-0.0028	
YRSCHEM	0.0109494	0.008978	1.22	0.2291	-0.007145	0.0290438	
Effect Test							
Source	Nparm	DF S	of Squares	F Ratio	Prob>F		
GENDER	1	1	1.3531877	4.1733	0.0471		
YRSCHEM	1	1	0.4822506	1.4873	0.2291		

	Random Sample Chemical Operators
	In PFHS ppm
Summary of Fit	

	Analysis of Variance Sum of Squares			
Source	DF	Mean Square	F Ratio	
Model	3	13.546050	4.51535	13.2165
Error	43	14.690763	0.34165	Prob>F
C Total	46	28.236813		$<.0001$
		Lack of Fit		
Source	DF	Sum of Squares	Mean Square	F Ratio
Lack of Fit	41	14.362568	0.350307	2.1347
Pure Error	2	0.328195	0.164098	Prob>F
Total Error	43	14.690763		0.3707
Max RSq				
0.9884				

Random Sample Chemical Operators

	In PFHS ppm Summary of Fit	
RSquare	0.479696	
RSquare Adj	0.456046	
Root Mean Square Error	0.577843	
Mean of Response	-1.17704	
Observations (or Sum Wgts)	47	

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	2	13.545078	6.77254	20.2829
Error	44	14.691735	0.33390	Prob>F
C Total	46	28.236813		<.0001
Source	DF	Lack of Fit Sum of Squares	Mean Square	F Ratio
Lack of Fit	26	11.677832	0.449147	2.6825
Pure Error	18	3.013903	0.167439	Prob>F
Total Error	44	14.691735		0.0170
Max RSq				

Parameter Estimates						
Term	Estimate	Std Error	t Ratio	Probs \mid \|	Lower 95\%	Upper 95\%
Intercept	-1.890797	0.140529	-13.45	<.0001	-2.174014	-1.60758
GENDER[F-M]	-0.34788	0.103297	-3.37	0.0016	-0.556062	-0.139699
YRSCHEM	0.0466744	0.009111	5.12	<. 0001	0.0283126	0.0650363
Effect Test						
Source	Nparm	DF Sum	of Squares	F Ratio	Prob>F	
GENDER	,		3.7870700	11.3418	0.0016	
YRSCHEM	1	1	8.7629557	26.2440	<.0001	

		Random Sample Chemical Operators			
		In POAA ppm Summary of Fit			
	RSquare		0.197215		
	RSquare Adj		0.160729		
	Root Mean S	quare Error	0.584152		
	Mean of Res	onse	0.635094		
	Observations	(or Sum Wgis)	47		
Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio	
Model	2	3.688560	1.84428	5.4047	
Eror	44	15.014285	0.34123	Prob>F	
C Total	46	18.702845		0.0080	
Source	DF	Lack of Fit Sum of Squares	Mean Square	F Ratio	
Lack of Fit	26	12.692319	0.488166	3.7843	
Pure Error	18	2.321965	0.128998	Prob>F	
Total Error	44	15.014285		0.0025	
$\begin{aligned} & \text { Max FSq } \\ & 0.8758 \end{aligned}$					
		Parameter Estimates			
Term	Estimate	Std Error $\quad 1$ Ratio	Prob>\|id	Lower 95\%	Upper 95\%
Intercept	0.3520616	$0.142063 \quad 2.48$	0.0171	0.0657529	0.6383704
GENDER[F-M]	-0.318283	$0.104425 \quad-3.05$	0.0039	-0.528737	-0.107829
YRSCHEM	0.0090993	$0.00921 \quad 0.99$	0.3286	-0.009463	0.0276616
		Effect Test			
Source	Nparm	DF Sum of Squares	s F Ratio	Prob>F	
GENDER	1	13.1700833	39.2901	0.0039	
YRSCHEM	1	0.3330469	$9 \quad 0.9760$	0.3286	

Random Sample Chemical Operators		
In PFOSAA ppm		
Summary of Fit		

	Analysis of Variance Source			
DF	Sum of Squares	Mean Square	F Ratio	
Model	3	11.12095	3.70698	1.5028
Error	43	106.06607	2.46665	Prob>F
C Total	46	117.18701		0.2274
Lack of Fit				
Source	DF	Sum of Squares	Mean Square	F Ratio
Lack of Fit	41	97.82374	2.38594	0.5789
Pure Error	2	8.24233	4.12116	Prob>F
Total Error	43	106.06607		0.8095
Max RSq				
0.9297				

Parameter Estimates				
Estimate	Std Error	1 Ratio	Prob>>\|t	
-5.751677	1.125565	-5.11	<.0001	
-0.441575	0.280763	-1.57	0.1231	
-0.042433	0.029785	-1.42	0.1615	
0.0352765	0.029525	1.19	0.2387	

| | Effect Test | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Source | Nparm | DF | Sum of Squares | F Ratio | Prob>F |
| GENDER | 1 | 1 | 6.1015043 | 2.4736 | 0.1231 |
| YRSCHEM | 1 | 1 | 5.0062176 | 2.0296 | 0.1615 |
| AGE | 1 | 1 | 3.5213341 | 1.4276 | 0.2387 |

	Random Sample Chemical Operators
	In M570 ppm Summary of Fit
RSquare	0.136699
RSquare Adj	0.097458
Root Mean Square Error	1.094546
Mean of Response	-2.03122
Observations (or Sum Wgts)	47

	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Source	2	8.346835	4.17342	3.4836
Model	44	52.713326	1.19803	Prob>F
Error	46	61.060161		0.0394
C Total				
		Lack of Fit		
Source	DF	Sum of Squares	Mean Square	F Ratio
Lack of Fit	26	35.199258	1.35382	1.3914
Pure Error	18	17.514068	0.97300	Prob>F
Total Error	44	52.713326		0.2365
Max RSq				
0.7132				

Parameter Estimates							
Term	Estimate	Std Error	t Ratio	Prob>\|t		Lower 95\%	Upper 95\%
Intercept	-1.767331	0.266189	-6.64	<.0001	-2.303797	-1.230864	
GENDER[F-M]	-0.294733	0.195665	-1.51	0.1391	-0.689068	0.0996013	
YRSCHEM	-0.039344	0.017258	-2.28	0.0275	-0.074125	-0.004563	
Effect Test							
Source	Nparm	DF Sum	of Squares	F Ratio	Prob>F		
GENDER	,	1	2.7183290	2.2690	0.1391		
YRSCHEM	1	1	6.2266074	5.1974	0.0275		

Random Sample Chemical Operators						
In PFOSA ppm Summary of Fit						
	RSquare		0.034886			
	RSquare Adj		-0.00898			
	Root Mean S	quare Error	1.845756			
	Mean of Resp	onse	-3.57167			
	Observations	(or Sum Wgts)	47			
Analysis of Variance						
Model	2	5.41845	2.70923	0.7952		
Error	44	149.89981	3.40681	Prob>F		
C Total	46	155.31826		0.4579		
Source	DF	Lack of Fit Sum of Squares	Mean Square	F Ratio		
Lack of Fit	26	82.89148	3.18813	0.8564		
Pure Error	18	67.00833	3.72268	ProbsF		
Total Error	44	149.89981		0.6485		
Max RSq 0.5686						
Parameter Estimates						
Term	Estimate	Std Error $\quad t$ Ratio	Prob>\|t		Lower 95\%	Upper 95\%
Intercept	-3.316074	0.44888 -7.39	<. 0001	-4.220728	-2.411419	
GENDER[F-M]	-0.198173	$0.329953-0.60$	0.5512	-0.863148	0.4668018	
YRSCHEM	-0.033553	$0.029102-1.15$	0.2552	-0.092205	0.0250987	
Effect Test						
Source	Nparm	DF Sum of Squares	s F Ratio	Prob>F		
GENDER	1	$1 \quad 1.2289470$	0.3607	0.5512		
YRSCHEM	1	$1 \quad 4.5285163$	31.3293	0.2552		

Random Sample Chemical Operators						
in M556 ppm Summary of Fit						
	RSquare		0.12611			
	RSquare Adj		0.086387			
	Root Mean S	quare Error	1.096777			
	Mean of Res	onse	-3.12253			
	Observations	(or Sum Wgts)	47			
Soure Analysis of Variance Mean Square F Ratio						
Model	2	7.638006	3.81900	3.1748		
Error	44	52.928445	1.20292	Prob>F		
C Total	46	60.566451		0.0515		
Lack of Fit						
Lack of Fit	26	36.751620	1.41352	1.5728		
Pure Error	18	16.176825	0.89871	Prob>F		
Total Error	44	52.928445		0.1616		
$\begin{aligned} & \text { Max RSq } \\ & 0.7329 \end{aligned}$						
Parameter Estimates						
Term	Estimate	Std Error $\quad t$ Ratio	Prob>\|t		Lower 95\%	Upper 95\%
Intercept	-2.946517	$0.266731-11.05$	$<.0001$	-3.484077	-2.408957	
GENDER[F-M)	-0.341253	0.196063 -1.74	0.0888	-0.736392	0.0538852	
YRSCHEM	-0.03379	$0.017293-1.95$	0.0571	-0.068642	0.0010617	
Effect Test						
Source	Nparm	DF Sum of Squares	s F Ratio	Prob>F		
GENDER	1	$1 \quad 3.6441565$	$65 \quad 3.0294$	0.0888		
YRSCHEM	1	4.5927300	00 3.8180	0.0571		

Appendix J

Random sample current job engineer/lab group ($\mathrm{n}=23$):
Regression of fluorochemical on gender, years worked in chemical ind age; followed by regression equation of fluorochemical on gender and years worked in chemical:

Random Sample Engineer/Lab					
in PFOS ppm Summary of Fit					
	RSquare		0.391004		
	RSquare Adj		0.294847		
	Root Mean S	quare Error	0.867828		
	Mean of Res	ponse	. 0.93898		
	Observations	(or Sum Wgts)	23		
Source DF Analysis of Variance $\begin{gathered}\text { Sum of Squares }\end{gathered}$					
Model	3	9.187310	3.06244	4.0663	
Error	19	14.309381	0.75313	Prob>F	
C Total	22	23.496691		0.0217	
Lack of Fit					
Lack of Fit	18	13.862763	Mean 0.770154	F Ratio	
Pure Error	1	0.446618	0.446618	ProbsF	
Total Error	19	14.309381		0.5438	
$\begin{aligned} & \text { Max RSq } \\ & 0.9810 \end{aligned}$					
Parameter Estimates					
Term	Estimate	Std Error $\quad t$ Ratio	Prob> ${ }^{\text {dit }}$	Lower 95\%	Upper 95\%
Intercept	-0.616826	1.435087 -0.43	0.6722	-3.620476	2.3868238
GENDER[F-M]	-0.561666	$0.214754-2.62$	0.0170	-1.011148	-0.112185
YRSCHEM	0.0467532	$0.038427 \quad 1.22$	0.2386	-0.033675	0.1271809
AGE	-0.031175	$0.047633-0.65$	0.5206	-0.130872	0.0685214
Effect Test					
Source	Nparm	DF Sum of Squares	S F Ratio	Prob>F	
GENDER	1	15.1516007	76.8403	0.0170	
YRSCHEM	1	11.1148580	1.4803	0.2386	
AGE	1	10.3226016	60.4284	0.5206	

Random Sample
Engineer/Lab
In PFOS ppm
Summary of Fit

RSquare	0.37727 :
RSquare Adj	$0.31500:$
Root Mean Square Error	0.85533 (
Mean of Response	-0.93898
Observations (or Sum Wgts)	$2:$

	Analysis of Variance Sum of Squares			
Source	DF	Mean Square	F Ratio	
Model	2	8.864708	4.43235	6.0584
Error	20	14.631983	0.73160	Prob>F
C Total	22	23.496691		0.0088
		Lack of Fit		
Source	DF	Sum of Squares	Mean Square	F Ratio
Lack of Fit	12	10.913717	0.909476	1.9568
Pure Error	8	3.718265	0.464783	Prob>F
Total Error	20	14.631983		0.1735
Max RSq				
0.8418				

Parameter Estimates							
Term	Estimate	Std Error	t Ratio	Prob>\|t		Lower 95\%	Upper 95\%
Intercept	-1. 538619	0.271378	-5.67	<.0001	-2.104699	-0.972539	
GENDER[F-M]	-0.537774	0.208582	-2.58	0.0180	-0.972865	-0.102683	
YRSCHEM	0.0233371	0.013818	1.69	0.1068	-0.005487	0.0521614	
Effect Test							
Source	Nparm	DF S	of Squares	F Ratio	Prob>F		
GENDER	1	1	4.8631688	6.6473	0.0180		
YRSCHEM	1	1	2.0866755	2.8522	0.1068		

	Random Sample Engineer/Lab In PFHS ppm
Summary of Fit	
RSquare	0.427513
RSquare Adj	0.33712
Root Mean Square Error	1.074255
Mean of Response	-2.54721
Observations (or Sum Wgts)	23

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	3	16.373916	5.45797	4.7295
Error	19	21.926470	1.15402	Prob>F
C Total	22	38.300386		0.0125
Lack of Fit				
Source	DF	Sum of Squares	Mean Square	F Ratio
Lack of Fit	18	21.348414	1.18602	2.0517
Pure Error	1	0.578056	0.57806	Prob>F
Total Error	19	21.926470		0.5060
Max RSq				
0.9849				

Parameter Estimates						
Term	Estimate	Sto Error	t Ratio	Prob> $\|t\|$	Lower 95\%	Upper 95\%
Intercept	-2.462716	1.776447	-1.39	0.1817	-6.180835	1.2554025
GENDER[F-M]	-0.741805	0.265837	-2.79	0.0117	-1.298203	-0.185407
YRSCHEM	0.0546509	0.047567	1.15	0.2648	-0.044908	0.1542097
AGE	-0.030306	0.058963	-0.51	0.6132	-0.153717	0.0931054
Effect Test						
Source	Nparm	DF Su	of Squares	F Ratio	Prob>F	
GENDER	1	1	8.9859716	7.7866	0.0117	
YRSCHEM	1		1.5233215	1.3200	0.2648	
AGE	1	1	0.3048564	0.2642	0.6132	

Appendix J Page 5

$\left.\begin{array}{lr} & \begin{array}{c}\text { Random Sample } \\ \text { Engineer/Lab }\end{array} \\ & \text { In POAAppm } \\ \text { Summary of Fit }\end{array}\right]$

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	3	8.441730	2.81391	3.0970
Error	19	17.263008	0.90858	Prob>F
C Total	22	25.704738		0.0514
		Lack of Fit		
Source	DF	Sum of Squares	Mean Square	F Ratio
Lack of Fit	18	15.855759	0.8808ε	0.6260
Pure Error	1	1.407248	1.40725	Prob>F
Total Error	19	17.263008		0.7776
Max RSq				
0.9453				

Parameter Estimates						
Term	Estimate	Std Error	t Ratio	Prob> ${ }^{\text {d }}$ \|	Lower 95\%	Upper 95\%
Intercept	-1.020183	1.576253	-0.65	0.5252	-4.319296	2.2789291
GENDER[F-M]	-0.663796	0.235879	-2.81	0.0111	-1.157492	-0.170099
YRSCHEM	0.0323327	0.042207	0.77	0.4531	-0.056007	0.1206719
AGE	-0.03271	0.052319	-0.63	0.5393	-0.142213	0.0767938
Effect Test						
Source	Nparm	DF Su	of Squares	F Ratic,	Prob>F	
GENDER	1	1	7.1953870	7.919.	0.0111	
YRSCHEM	1	1	0.5331884	0.5868	0.4531	
AGE	1	1	0.3551409	0.3905	0.5393	

Random Sample
 Engineer/Lab
 In POAA ppm
 Summary of Fit

RSquare	$0.31 .459:$
RSquare Adj	$0.24605 \vdots$
Root Mean Square Error	$0.93856:$
Mean of Response	-1.56794
Observations (or Sum Wgts)	$2:$

	Analysis of Variance Sum of Squares			
Source	Mean Square	F Ratio		
Model	2	8.086590	4.04329	4.5899
Error	20	17.618149	0.88091	Prob>F
C Total	22	25.704738		0.0229
Source	LF	Surk of Fit		
Lack of Fit	12	15.005915	Mean Square	F Ratio
Pure Error	8	2.612233	1.25049	3.8297
Total Error	20	17.618149	0.32653	Prob>F
Max FSq				0.0326
0.8984				

Parameter Estimates						
Term	Estimate	Std Error	1 Ratio	Prob>it	Lower 95\%	Upper 95\%
Intercept	-1.987348	0.297785	-6.67	$<.0001$	-2.608513	-1.366184
GENDER[F-M]	-0.638727	0.228879	-2.79	0.0113	-1.116156	-0.161298
YRSCHEM	0.007764	0.015163	0.51	0.6142	-0.023865	0.0393931
Effect Test						
Source	Nparm	DF Sum	of Squares	F Ratio	Prob>F	
GENDER	1	,	6.8604184	7.7879	0.0113	
YRSCHEM	1	1	0.2309580	0.2622	0.6142	

Random Sample
Engineer/Lab
In PFOSAA ppm
Summary of Fit

RSquare	$0.18173:$
RSquare Adj	0.09990 :
Root Mean Square Error	1.34324 :
Mean of Response	$-5.203: 3$
Observations (or Sum Wgts)	$2 .:$

Analysis of Variance		
Sum of Squares	Mean Square	F Ratio
8.014449	4.00722	2.2209
36.085957	1.80430	Prob $>F$
44.100406		0.1346
Lack of Fit		
Sum of Squares	Mean Square	F Ratio
15.048236	1.25402	0.4769
21.037721	2.62972	Prob $>F$
36.085957		0.8805

Parameter Estimates					
Estimate	Std Error	t Ratio	Prob>\|t	Lower 95\%	Upper 95\%
-5.326428	0.426179	- 12.50	<.0001	-6.215415	-4.437441
-0.688015	0.327563	-2.10	0.0486	-1.371293	-0.004736
-0.014068	0.021701	-0.65	0.5242	-0.059334	0.0311988
Effect Test					
Nparm	DF Sum	of Squares	F Ratio	Prob>F	
1	1	7.9600380	4.4117	0.0486	
1	1	0.7582318	0.4202	0.5242	

Random Sample
Engineer/Lab
in M570 ppm
Summary of Fit
RSquare 0.04274

RSquare Adj	-0.10841
Root Mean Square Error	0.942783

Mean of Response -3.01612

Observations (or Sum Wgts) 23

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	3	0.754025	0.251342	0.2828
Eror	19	16.887940	0.888839	Prob>F
C Total	22	17.641966		0.8372
		Lack of Fit		
Source	DF	Sum of Squares	Mean Square	F Ratio
Lack of Fit	18	16.791797	0.932878	9.7030
Pure Error	1	0.096143	0.096143	Prob>F
Total Error	19	16.887940		0.2481
Max RSq				
0.9946				

Parameter Estimates							
Term	Estimate	Sid Error	1 Ratio	Prob>\|t		Lower 95\%	Upper 95\%
Intercept	-2.114124	1.559036	-1.36	0.1910	-5.3772	1.1489527	
GENDER[$\mathrm{F}-\mathrm{M}$]	-0.170074	0.233302	-0.73	0.4749	-0.658377	0.3182297	
YRSCHEM	0.0257524	0.041746	0.62	0.5446	-0.061622	0.1131268	
AGE	-0.033236	0.051747	-0.64	0.5284	-0.141543	0.0750714	
Effect Test							
Source	Nparm	DF S	of Squares	F Ratio	Prob>F		
GENDER	1	1	0.47234628	0.5314	0.4749		
YRSCHEM	1	1	0.33824664	0.3805	0.5446		
AGE	1	1	0.36666114	0.4125	0.5284		

Random Sample Engineer/Lab						
In M570ppm Summary of Fit						
	RSquare		$0.02195 ;$			
	RSquare Adj		-0.0758:			
	Root Mean S	quare Error	0.928833			
	Mean of Res	onse	-3.01612			
	Observations	(or Sum Wgts)	$2 ?$			
Source DFAnalysis of Variance Sum of Squares Mean Square F Ratio						
Model	2	0.387364	0.193682	0.2245		
Error	20	17.254602	0.862730	Prob>F		
C Total	22	17.641966		0.8009		
Lack of Fit						
Lack of Fit	12	8.184523	0.68204	0.6016		
Pure Error	8	9.070079	1.13376	Prob>F		
Total Error	20	17.254602		0.7939		
$\begin{aligned} & \text { Max RSq } \\ & 0.4859 \end{aligned}$						
Parameter Estimates						
Term	Estimate	Std Error $\quad 1$ Ratio	Prob>\|t		Lower 95\%	Upper 95\%
Intercept	-3.09685	$0.294697-10.51$	<.0001	-3.711572	-2.482128	
GENDER[F-M]	-0.144602	$0.226505-0.64$	0.5305	-0.61708	0.3278751	
YRSCHEM	0.0007884	$0.015006 \quad 0.05$	0.9586	-0.030513	0.0320895	
Effect Test						
Source	Nparm	DF Sum of Squares	S F Ratio	Prob>F		
GENDER	1	0.35161749	- 0.4076	0.5305		
YRSCHEM	1	10.00238175	-0.0028	0.9586		

Appendix J
Page 12

	Random Sample Engineer/Lab
	In PFOSA ppm
Summary of Fit	

	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Source	3	0.846121	0.28204	0.0739
Model	19	72.471423	3.81429	Prob>F
Error	22	73.317544		0.9732
C Total				
		Lack of Fit		
	DF	Sum of Squares	Mean Square	F Ratio
Source	18	72.104070	4.00578	10.9044
Lack of Fit	1	0.367353	0.36735	Prob>F
Pure Error	19	72.471423		0.2345
Total Error				
Max RSq				
0.9950				

Appendix J Page 15

Random Sample
Engineer/Lab
In M556 ppm
Summary of Fit

RSquare	$0.026+37$
RSquare Adj	-0.07092
Root Mean Square Error	1.195545
Mean of Response	-4.65037
Observations (or Sum Wgts)	23

	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Source	2	0.776265	0.38813	0.2715
Model	20	28.586559	1.42933	Prob>F
Error	22	29.362824		0.7650
C Total				
		Lack of Fit		
	DF	Sum of Squares	Mean Square	F Ratio
Source	12	13.466606	1.12222	0.5938
Lack of Fit	8	15.119953	1.88999	Prob>F
Pure Error	20	28.586559		0.7996
Total Error				
Max RSq				
0.4851				

Parameter Estimates							
Term	Estimate	Std Error	(Ratio	Prob>\|t		Lower 95\%	Upper 95\%
Intercept	-4.832364	0.379318	8 -12.74	<.0001	-5.623603	-4.041126	
GENDER[F-M]	-0.153031	0.291545	$5-0.52$	0.6054	-0.76118	0.4551172	
YRSCHEM	0.0074147	0.019315	$5 \quad 0.38$	0.7051	-0.032874	0.0477039	
Effect Test							
Source	Nparm	DF S	Sum of Squares	F Ratio	Prob>F		
GENDER	,	1	0.39380354	0.2755	0.6054		
YRSCHEM	1	1	0.21064617	0.1474	0.7051		

Appendix K

All participant current job chemical operators $(n=34)$:
Regression of fluorochemical on gender, years worked in chemical and age: followed by regression equation of fluorochemical on gender and years worked in chemical
All Participants Chemical Operators

	In PFOS ppm Summary of Fit
RSquare	
RSquare Adj	0.150439
Root Mean Square Error	0.107961
Mean of Response	0.643599
Observations (or Sum Wgts)	0.392284
	64

	Analysis of Variance Sum of Squares			
Source	Mean Square	F Ratio		
Model	3	4.400964	1.46699	3.5416
Error	60	24.853181	0.41422	Prob>F
C Total	63	29.254145		0.0198
		Lack of Fit		
Source	DF	Sum of Squares	Mean Square	F Ratio
Lack of Fit	57	23.861535	0.418623	1.2664
Pure Error	3	0.991647	0.330549	Prob>F
Total Error	60	24.853181		0.4953
Max RSq				
0.9661				

Parameter Estimates						
Term	Estimate	Std Error	t Ratio	Prob> $>$ t\|	_ower 95\%	Upper 95\%
Intercept	0.062633	0.401961	0.16	0.8767	-0.741408	0.8666743
GENDER[F-M]	-0.250464	0.10427	-2.40	0.0194	-0.459035	-0.041893
YRSCHEM	0.0171146	0.011052	1.55	0.1267	-0.004992	0.0392214
AGE	-0.000079	0.010698	-0.01	0.9941	-0.021478	0.0213193
Effect Test						
Source	Nparm	DF S	of Squares	F Ratio	Prob>F	
GENDER		1	2.3900299	5.7700	0.0194	
YRSCHEM	1	1	0.9933570	2.3981	0.1267	
AGE	1	1	0.0000227	0.0001	0.9941	

All Participants
Chemical Operators
In PFOSdfppm
Summary of Fit

RSquare	0.150438
RSquare Adj	0.122584
Root Mean Square Error	0.638302
Mean of Response	0.392284
Observations (or Sum Wgts)	64

	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Source	2	4.400941	2.20047	5.4009
Model	61	24.853204	0.40743	Prob>F
Error	63	29.254145		0.0069
C Total				
		Lack of Fit		
Source	DF	Sum of Squares	Mean Square	F Ratio
Lack of Fit	31	15.838180	0.510909	1.7002
Pure Error	30	9.015024	0.300501	Prob>F
Total Error	61	24.853204		0.0748
Max RSq				
0.6918				

Parameter Estimates						
Term	Estimate	Std Error	t Ratio	Prob> $>$ \|t	Lower 95\%	Upper 95\%
Intercept	0.0598248	0.132618	0.45	0.6535	-0.205362	0.325012
GENDER[F-M]	-0.250543	0.10288	-2.44	0.0178	-0.456265	-0.04482
YRSCHEM	0.017067	0.008912	1.92	0.0602	-0.000753	0.0348868
Effect Test						
Source	Nparm	DF S	of Squares	F Ratio	Prob>F	
GENDER	1	I	2.4162931	5.9306	0.0178	
YRSCHEM	1	1	1.4943613	3.6678	0.0602	

All Participants Chemical Operators			
In PFHS ppm			
\quad Summary of Fit			
RSquare	0.412694		
RSquare Adj	0.393438		
Root Mean Square Error	0.64039		
Mean of Response	-1.23054		
Observations (or Sum Wgts)	64		

Analysis of Variance		
Sum of Squares	Mean Square	F Ratio
17.578542	8.78927	21.4321
25.016059	0.41010	Prob>F
42.594602		$<.0001$

	Lack of Fit			
Source	DF	Sum of Squares	Mean Square	F Ratio
Lack of Fit	31	16.785999	0.541484	1.9738
Pure Error	30	8.230060	0.274335	Prob>F
Total Error	61	25.016059		0.0329
Max RSq				
0.8068				

Parameter Estimates							
Term	Estimate	Std Error	t Ratio	Prob>\|t		Lower 95\%	Upper 95\%
Intercept	-1.925193	0.133052	-14.47	<.0001	2.191247	-1.659138	
GENDER[F-M]	-0.3765	0.103217	-3.65	0.0005	-0.582895	-0.170105	
YRSCHEM	0.0445754	0.008941	4.99	<. 0001	0.0266973	0.0624535	
Effect Test							
Source	Npam	DF Sum	of Squares	F Ratio	Prob>F		
GENDER	,	1	5.456536	13.3054	0.0005		
YRSCHEM	1	1	10.193737	24.8568	<.0001		

All Participants Chemical Operators						
In POAA ppm Summary of Fit						
	RSquare		0.209854			
	RSquare Adj		0.183947			
	Root Mean S	quare Error	0.563795			
	Mean of Resp	onse	0.614523			
	Observations	(or Sum Wgts)	64			
Source	Analysis of Variance					
Model	2	5.149695	2.57485	8.1004		
Error	61	19.389758	0.31786	Prob>F		
C Total	63	24.539453		0.0008		
Lack of Fit						
Lack of Fit	31	14.849379	0.479012	3.1650		
Pure Error	30	4.540380	0.151346	Prob>F		
Total Error	61	19.389758		0.0011		
$\begin{aligned} & \text { Max RSq } \\ & 0.8150 \end{aligned}$						
Parameter Estimates						
Term	Estimate	Sid Error 1 Ratio	Prob>\|i		.ower 95\%	Upper 95\%
Intercept	0.2872479	0.117138 2.45	0.0171	0.0530152	0.5214806	
GENDER[F-M]	-0.317397	0.090872 -3.49	0.0009	-0.499106	-0.135688	
YRSCHEM	0.0125091	$0.007871 \quad 1.59$	0.1172	-0.003231	0.0282488	
Effect Test						
Source	Nparm	DF Sum of Squares	s F Ratio	Prob>F		
GENDER	1	13.8778718	812.1997	0.0009		
YRSCHEM	1	0.8027714	$4 \quad 2.5255$	0.1172		

All Participants Chemical Operators
In M570 ppm Summary of Fit

RSquare	0.164237
RSquare Adj	$0.122+49$
Root Mean Square Error	1.12124
Mean of Response	-1.94564
Observations (or Sum Wgls)	64

Source
Model
Error
C Total
DF
3
60
63
Analysis of Variance

Sum of Squares	Mean Square	F Ratio
14.823015	4.94100	3.9302
75.430695	1.25718	Prob>F
90.253710		0.0126

Lack of Fit

Source	DF	Surn of Squares	Mean Square	F Ratio
Lack of Fit	57	75.084356	1.31727	11.4102
Pure Error	3	0.346339	0.11545	Prob>F
Total Error	60	75.430695		0.0335
Max RSq				
0.9962				

Parameter Estimates						
Term	Estimate	Std Error	t Ratio	Prob> ${ }^{\text {ct }}$	-ower 95\%	Upper 95\%
Intercept	-1.222446	0.700272	-1.75	0.0860	-2.623199	0.1783065
GENDER[F-M]	-0.330479	0.181653	-1.82	0.0739	-0.693839	0.0328812
YRSCHEM	-0.038776	0.019254	-2.01	0.0485	-0.077289	-0.000263
AGE	-0.012926	0.018637	-0.69	0.4906	-0.050205	0.0243533
Effect Test						
Source	Nparm	DF Su	of Squares	F Ratio	Prob>F	
GENDER	1	1	4.1610173	3.3098	0.0739	
YRSCHEM	1	1	5.0990709	4.0560	0.0485	
AGE	1	1	0.6047597	0.4810	0.4906	

Appendix K Page 11

All Participants Chemical Operators						
In M570 ppm Summary of Fit						
	RSquare		0.157537			
	RSquare Adj		0.129915			
	Root Mean S	quare Error	1.11646			
	Mean of Resp	onse	-1.94564			
	Observations	(or Sum Wgis)	64			
Analysis of Variance						
Model	2	14.218255	7.10913	5.7033		
Error	61	76.035455	1.24648	Prob>F		
C Total	63	90.253710		0.0054		
Source	DF	Lack of Fit Sum of Squares	Mean Square	F Ratio		
Lack of Fit	31	38.667300	1.24733	1.0014		
Pure Error	30	37.368155	1.24561	Prob>F		
Total Error	61	76.035455		0.4993		
$\operatorname{Max} \mathrm{RSq}$ 0.5860						
Parameter Estimates						
Term	Estimate	Std Error 1 Ratio	Prob>\|t		Lower 95\%	Upper 95\%
Intercept	-1.680474	0.231964 -7.24	<.0001	-2.144315	-1.216632	
GENDER[F-M]	-0.343235	0.179949 -1.91	0.0612	-0.703066	0.0165953	
YRSCHEM	-0.04655	$0.015587-2.99$	0.0041	-0.077719	-0.015382	
Effect Test						
Source	Nparm	DF Sum of Squares	$5 \quad$ F Ratio	Prob>F		
GENDER	1	4.534934	43.6382	0.0612		
YRSCHEM	1	111.117067	$7 \quad 8.9187$	0.0041		

$\left.\begin{array}{lr} & \begin{array}{c}\text { All Participants } \\ \text { Chemical Operators }\end{array} \\ & \text { In PFOSA ppm }\end{array}\right]$

	Analysis of Variance Source			
DF	Sum of Squares	Mean Square	F Ratio	
Model	3	7.98536	2.66179	0.7566
Error	60	211.08153	3.51803	Prob>F
C Total	63	219.06689		0.5229

		Lack of Fit		
Source	DF	Sum of Squares	Mean Square	F Ratio
Lack of Fit	57	207.20231	3.63513	2.8112
Pure Error	3	3.87923	1.29308	Prob>F
Total Error	60	211.08153		0.2148
Max RSq				
0.9823				

Parameter Estimates						
Term	Estimate	Std Error	1 Ratio	Prob $>$ \| ${ }^{\text {f }}$	Lower 95\%	Upper 95\%
Intercept	-3.083552	1.171434	-2.63	0.0108	-5.426769	-0.740335
GENDER[F-M]	-0.119692	0.303874	-0.39	0.6951	-0.727531	0.4881469
YRSCHEM	-0.028921	0.032208	-0.90	0.3728	-0.093347	0.0355046
AGE	-0.01353	0.031176	-0.43	0.6659	-0.075892	0.0488322
Effect Test						
Source	Nparm	DF Su	of Squares	F Ratio	Prob>F	
GENDER	1	1	0.5458 .097	0.1551	0.6951	
YRSCHEM	1	1	2.8366160	0.8063	0.3728	
AGE	1	1	0.6625603	0.1883	0.6659	

All Participants Chemical Operators

	In PFOSA ppm Summary of Fit
RSquare	
RSquare Adj	0.036452
Root Mean Square Error	-0.01173
Mean of Response	1.87564
Observations (or Sum Wgts)	-3.8617
Obs	

Analysis of Variance		
Sum of Squares	Mean Square	F Ratio
7.98536	2.66179	0.7566
211.08153	3.51803	Prob>F
219.06689		0.5229
Lack of Fit		
Sum of Squares	Mean Square	F Ratio
207.20231	3.63513	2.8112
3.87923	1.29308	Prob>F
211.08153		0.2148

Parameter Estimates

| Estimate | Std Error | t Ratio | Prob>\|t| | Lower 95\% | Upper 95\% |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -3.083552 | 1.171434 | -2.63 | 0.0108 | -5.426769 | -0.740335 |
| -0.119692 | 0.303874 | -0.39 | 0.6951 | -0.727531 | 0.4881469 |
| -0.028921 | 0.032208 | -0.90 | 0.3728 | -0.093347 | 0.0355046 |
| -0.01353 | 0.031176 | -0.43 | 0.6659 | -0.075892 | 0.0488322 |
| Effect Test | | | | | |
| Nparm | DF Su | of Squares | F Ratio | Prob>F | |
| 1 | 1 | 0.5458097 | 0.1551 | 0.6951 | |
| 1 | 1 | 2.8366160 | 0.8063 | 0.3728 | |
| 1 | 1 | 0.6625603 | 0.1883 | 0.6659 | |

$\begin{array}{c}\text { All Participants } \\ \text { Chemical Operators }\end{array}$			
in PFOSA pom			

	BF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Source	2	7.32280	3.66140	1.0548
Model	61	211.74409	3.47121	Prob>F
Error	63	219.06689		0.3545
C Total				
		Lack of Fit		
Source	DF	Sum of Squares	Mean Square	F Ratio
Lack of Fit	31	107.46461	3.46660	0.9973
Pure Error	30	104.27948	3.47598	Prob>F
Total Error	61	211.74409		0.5037
Max RSq				
0.5240				

Parameter Estimates							
Term	Estimate	Std Error	t Ratio	Prob>\|t		Lower 95\%	Upper 95\%
Intercept	-3.562968	0.387096	-9.20	<.0001	-4.337015	-2.788922	
GENDER[F-M]	-0.133044	0.300294	-0.44	0.6593	-0.73352	0.4674322	
YRSCHEM	-0.037059	0.026012	-1.42	0.1593	-0.089073	0.0149549	
Effect Test							
Source	Nparm	DF Sum	of Squares	F Ratio	Prob>F		
GENDER		1	0.6813608	0.1963	0.6593		
YRSCHEM	1	1	7.0457385	2.0298	0.1593		

Appendix L

All participant current job engineer/lab group $(\mathrm{n}=: .7)$:
Regression equation of fluorochemical on gender. years worked in chemical and age: followed by regression equation of fluorochemical on gender and years worked in chemical

All Participants Engineer/Lab In PFOS ppm Summary of Fit	
RSquare	0.386611
RSquare Adj	0.330848
Root Mean Square Error	0.825205
Mean of Response	-0.94033
Observations (or Sum Wgts)	37

	Analysis of Variance Sum of Squares			
Source	DF	Mean Square	F Ratio	
Model	3	14.163658	4.72122	6.9332
Error	33	22.471780	0.68096	Prob>F
C Total	36	36.635438		0.0010
		Lack of Fit		
Source	DF	Sum of Squares	Mean Square	F Ratio
Lack of Fit	32	22.025162	0.688286	1.5411
Pure Error	1	0.446618	0.446618	Prob>F
Total Error	33	22.471780		0.5735
Max RSq				
0.9878				

Parameter Estimates						
Term	Estimate	Std Error	t Ratio	Prob> 14	Lower 95\%	Upper 95\%
Intercept	-2.071342	0.85018	-2.44	0.0204	-3.801035	-0.341649
GENDER[F-M]	-0.434286	0.165902	-2.62	0.0133	-0.771815	-0.096757
YRSCHEM	0.0189436	0.021692	0.87	0.3888	-0.025188	0.0630753
AGE	0.0146474	0.026443	0.55	0.5834	-0.039152	0.0684465
Effect Test						
Source	Npam	DF Sum	of Squares	F Ratio	Prob>F	
GENDER	1	1	4.6662679	6.8525	0.0133	
YRSCHEM	1		0.5193576	0.7627	0.3888	
AGE	1	1	0.2089349	0.3068	0.5834	

		All Participants Engineer/Lab			
		In PFOS ppm Summary of Fit			
	RSquare		0.380908		
	RSquare Adj		0.344491		
	Root Mean S	quare Error	0.81675		
	Mean of Res	onse	-0.94033		
	Observations	(or Sum Wgts)	37		
		Analysis of Variance			
Source Model	$\begin{array}{r} \mathrm{DF} \\ 2 \end{array}$	Sum of Squares	Mean Square	$\begin{aligned} & \text { F Ratio } \\ & 10.4596 \end{aligned}$	
Error	34	22.680715	0.66708	Prob>F	
C Total	36	36.635438		0.0003	
	DF	Lack of Fit		F Ratio	
Lack of Fit	19	Surn 12.658602	0.666242	0.9972	
Pure Error	15	10.022112	0.668141	Prob>F	
Total Error	34	22.680715		0.5100	
$\begin{aligned} & \text { Max RSq } \\ & 0.7264 \end{aligned}$					
		Parameter Estimates			
Term	Estimate	Std Error $\quad t$ Ratio	Prob> 11	Lower 95\%	Upper 95\%
Intercept	-1.615211	0.20928 -7.72	<. 0001	-2.040516	-1.189906
GENDER[F-M]	-0.439047	$0.163982-2.68$	0.0113	-0.772296	-0.105797
YRSCHEM	0.0293537	$0.010721 \quad 2.74$	0.0098	0.0075663	0.051141
		Effect Test			
Source	Nparm	DF Sum of Squares	S FRatio	Prob>F	
GENDER	1	4.7819718	87.1685	0.0113	
YRSCHEM	1	5.0008180	$0 \quad 7.4966$	0.0098	

All Participants
Engineer/Lab
In PFHS ppm
Summary of Fit
RSquare
0.438754

RSquare Adj 0.405:4

Root Mean Square Error $\quad 0.954419$
Mean of Response
-2.59:5
Observations (or Sum Wgts)
$\vdots 7$

	Analysis of Variance Sum of Squares			
Source	DF	Mean Square	F Ratio	
Model	2	24.211174	12.1056	13.2897
Error	34	30.970483	0.9109	Prob>F
C Total	36	55.181656		$<.0001$
		Lack of Fit		
Source	DF	Sum of Squares	Mean Square	F Ratio
Lack of Fit	19	22.898600	1.20517	2.2396
Pure Error	15	8.071882	0.53813	Prob>F
Total Eror	34	30.970483		0.0591
Max RSq				
0.8537				

Parameter Estimates						
Term	Estimate	Std Error	t Ratio	Prob>it\|	Lower 95\%	Upper 95\%
Intercept	-3.48932	0.244553	-14.27	<.0001	-3.986308	-2.992332
GENDER[F-M]	-0.572206	0.19162	-2.99	0.0052	-0.961623	-0.182789
YRSCHEM	0.0390561	0.012528	3.12	0.0037	0.0135966	0.0645156
Effect Test						
Source	Nparm	DF Sum	of Squares	F Ratio	Prob>F	
GENDER	1	1	8.1225045	8.9170	0.0052	
YRSCHEM	1	1	8.8530880	9.7191	0.0037	

All Participants
Engineer/Lab
In POAA ppm
Summary of Fit

RSquare	$0.3051(99$
RSquare Adj	0.2420 .5
Root Mean Square Error	$0.9101(4$
Mean of Response	-1.6212
Observations (or Sum Wgts)	.7

Source
Model
Error
C Total
Source
Lack of Fit
Pure Error
Total Error
Max RSq
0.9642
Term
Intercept
GENDER[F-M]
YRSCHEM
AGE
Source
GENDER
YRSCHEM
AGE

Analysis of Variance

DF	Sum of Squares
3	12.006567
33	27.333536
36	39.340103

Lack of Fit

DF	Sum of Squares
32	25.926287
1	1.407248
33	27.333536

Mean Square	F Ratio
4.00219	4.8319
0.82829	Prob>F
	0.0068

Mean Square	F Ratic
0.81020	0.5757
1.40725	Prob>F
	0.8031

Parameter Estimates						
Estimate	Std Error	t Ratio	Prob>\|t		Lower 95\%	Upper 95\%
-2.930493	0.937648	-3.13	0.0037	-4.838141	-1.022846	
-0.527939	0.182971	- 2.89	0.0068	-0.900194	-0.155684	
-0.002986	0.023923	-0.12	0.9014	-0.051658	0.0456859	
0.0256936	0.029164	- 0.88	0.3847	-0.03364	0.0850277	
Effect Test						
Nparm	DF S	Sum of Squares	F Ratio	Prob>F		
1	1	6.8958131	8.3254	0.0068		
1	1	0.0129048	0.0156	0.9014		
1	1	0.6428967	0.7762	0.3847		

All Participants
Engineer/Lab
in POAA ppm
Summary of Fit

RSquare	$0.2888: 7$
RSquare Adj	$0.2470: 5$
Root Mean Square Error	0.907103
Mean of Response	-1.621 .2
Observations (or Sum Wgts)	$: .7$

	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Source	2	11.363671	5.68184	6.9052
Model	34	27.976432	0.82284	Prob>F
Error	36	39.340103		0.0030
C Total				
	Lack of Fit			
Source	SF	Sum of Squares	Mean Square	F Ratio
Lack of Fit	19	17.231908	0.906943	1.2661
Pure Error	15	10.744524	0.716302	Prob>F
Total Error	34	27.976432		0.3249
Max RSq				
0.7269				

Parameter Estimates						
Term	Estimate	Std Error	t Ratio	Prob> $>$ \|t	Lower 95\%	Upper 95\%
Intercept	-2.130374	0.232431	-9.17	<.0001	-2.602729	-1.65802
GENDER[F-M]	-0.53629	0.182123	-2.94	0.0058	-0.906406	-0.166175
YRSCHEM	0.0152746	0.011907	1.28	0.2082	-0.008923	0.0394721
Effect Test						
Source	Nparm	DF Sum	of Squares	F Ratio	Prob>F	
GENDER	1	1	7.1348529	8.6710	0.0058	
YRSCHEM	1	1	1.3541118	1.6457	0.2082	

Appendix L
All Participants
Engineer/Lab
In PFOSAA ppm
Summary of Fit

RSquare
Summary of Fit
RSquare Adj
Root Mean Square Error
0.1208 .7
$0.0691: 1$
Mean of Response
293.8

Observations (or Sum Wgts)
-5.656: 8
$\vdots 7$

	Analysis of Variance			
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	2	7.889797	3.94490	2.3366
Error	34	57.403220	1.68833	Prob>F
C Total	36	65.293017		0.1120

		Lack of Fit		
Source	DF	Sum of Squares	Mean Squary	F Ratio
Lack of Fit	19	31.922124	1.68011	0.9890
Pure Error	15	25.481096	1.6987 .4	Prob>F
Total Error	34	57.403220		0.5166
Max FSq				
0.6097				

Parameter Estimates							
Term	Estimate	Std Error	1 Ratio	Prob>\|t		Lower 95\%	Upper 95\%
Intercept	-5.660266	0.332941	-17.00	<.0001	-6.336879	-4.983654	
GENDER[F-M]	-0.551158	0.260877	-2.11	0.0420	-1.08132!	-0.020995	
YRSCHEM	-0.018225	0.017056	-1.07	0.2928	-0.052886	0.016436	
Effect Test							
Source	Nparm	DF Su	of Squares	F Ratio	Prob>F		
GENDER	,	1	7.5359446	4.4635	0.0420		
YRSCHEM	1	1	1.9278040	1.1418	0.2928		

All Participants
Engineer/Lab
In M570ppm
Summary of Fit

RSquare	$0.0231^{\circ} 9$
RSquare Adj	$-0.0656,2$
Root Mean Square Error	$0.99000^{\circ 5}$
Mean of Response	-3.195 .48
Observations (or Sum Wgis)	.17

	Analysis of Variance Sum of Squares			
Source	DF	Mean Square	F Ratio	
Model	3	0.767638	0.255879	0.2610
Error	33	32.349503	0.980288	Prob>F
C Total	36	33.117141		0.8529
		Lack of Fit		
Source	DF	Sum of Squares	Mean Square	F Ratio
Lack of Fit	32	32.253360	1.00792	10.4835
Pure Error	1	0.096143	0.09614	Prob>F
Total Error	33	32.349503		0.2406
Max RSq				
0.9971				

Parameter Estimates						
Term	Estimate	Std Error	1 Ratio	Prob> $>$ \|t	Lower 95\%	Upper 95\%
Intercept	-3.483257	1.02006	-3.41	0.0017	-5.558572	-1.407941
GENDER[F-M]	-0.125208	0.199053	-0.63	0.5337	-0.530181	0.2797653
YRSCHEM	0.001537	0.026026	0.06	0.9533	-0.051413	0.0544869
AGE	0.0047368	0.031727	0.15	0.8822	-0.059812	0.0692859
Effect Test						
Source	Nparm	DF S	of Squares	F Ratc	Prob>F	
GENDER	1	1	0.38786407	0.3957	0.5337	
YRSCHEM	1	1	0.00341911	0.0035	0.9533	
AGE	1	1	0.02185078	0.0223	0.8822	

		All Participants Engineer/Lab				
		In M570ppm Summary of Fit				
	RSquare		0.022:32			
	RSquare Adj		-0.03498			
	Root Mean S	quare Error	0.975755			
	Mean of Res	onse	-3.195:8			
	Observations	(or Sum Wgts)	. 7			
Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio		
Model	2	0.745787	0.372894	0.3917		
Error	34	32.371354	0.952099	Prob>F		
C Total	36	33.117141		0.6789		
	DF	Lack of Fit				
Lack of Fit	19	Stis 9.9941	0.52421	0.3509		
Pure Error	15	22.411413	1.49409	Prob>F		
Total Error	34	32.371354		0.9833		
$\begin{aligned} & \operatorname{Max} \text { RSq } \\ & 0.3233 \end{aligned}$						
		Parameter Estimates				
Term	Estimate	Std Error t Patio	Prob>\|t		Lower 95\%	Upper 95\%
Intercept	-3.335748	$0.250023-13.34$	<.0001	-3.843852	-2.827644	
GENDER[F-M]	-0.126747	$0.195906-0.65$	0.5220	-0.524874	0.2713797	
YRSCHEM	0.0049036	$0.012808 \quad 0.38$	0.7042	-0.021125	0.0309325	
		Effect Test				
Source	Nparm	DF Sum of Squares	s F Ratio	Prob>F		
GENDER	1	0.39853117	70.4186	0.5220		
YRSCHEM	1	0.13955278	$8 \quad 0.1466$	0.7042		

All Participants

In M570ppm
Surnmary of Fit

Source Pure Error Total Error Max RSq 0.3233

Analysis of Variance 0.6789

Source YRSCHEM

All Participants Engineer/Lab	
	In PFOSA ppm

	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Source	2	1.866802	0.93340	0.3676
Model	34	86.343402	2.53951	Prob>F
Eror	36	88.210203		0.6951
C Total				
		Lack of Fit		
Source	DF	Sum of Squares	Mean Square	F Ratio
Lack of Fit	19	63.139191	$3.3231:$	2.1482
Pure Error	15	23.204211	$1.5469:$	Prob>F
Total Eror	34	86.343402		0.0689
Max RSq				
0.7369				

Term
Intercept
GENDER[F-M]
YRSCHEM

| | Effect Test | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Source | Nparm | DF | Sum of Squares | F Ratio | Prob>F |
| GENDER | 1 | 1 | 1.3956145 | 0.5496 | 0.4636 |
| YRSCHEM | 1 | 1 | 1.0165846 | 0.4003 | 0.5312 |

		All Participants Engineer/Lab			
		In M556 ppm Summary of Fit			
	RSquare		0.015311		
	RSquare Adj		-0.042 61		
	Root Mean S	quare Error	1.210778		
	Mean of Resp	onse	-4.61996		
	Observations	(or Sum Wgts)	17		
	DF	Analysis of Variance			
Model	DF	Sum of Squares 0	Mean Square	F Ratio	
		0.775018	0.38751	0.2643	
Error	34	49.843450	1.46598	Prob>F	
C Total	36	50.618468		0.7693	
Source	DF	Lack of Fit Sum of Squares			
Lack of Fit	19	18.113852	$\begin{array}{r} \text { Square } \\ 0.95336 \end{array}$	$\begin{aligned} & \text { F Ratio } \\ & 0.4507 \end{aligned}$	
Pure Error	15	31.729598	2.11531	Prob>F	
Total Error	34	49.843450		0.9486	
$\begin{aligned} & \operatorname{Max} \mathrm{RSq} \\ & 0.3732 \end{aligned}$					
		Parameter Estimates			
Term	Estimate	Std Error $\quad 1$ Ratio	Prob> 1 \|	Lower 95\%	Upper 95\%
Intercept	-4.764061	0.310244 -15.36	<.0001	-5.394548	-4.133574
GENDER[F-M]	-0.127295	0.243093 -0.52	0.6039	-0.621316	0.3667259
YRSCHEM	0.0051619	0.015893 0.32	0.7473	-0.027136	0.0374602
		Effect Test			
Source	Nparm	DF Sum of Squares	s FRato	Prob>F	
GENDER	I	0.40198223	30.2742	0.6039	
YRSCHEM	1	0.15464711	10.1055	0.7473	

Appendix M

Scatterplots (and regressions) of fluorochemical levels of all ct emical participant male chemical operators ($\mathrm{n}=52$) and engineer/lab ($\mathrm{n}=28$)
with years worked in chemical

All Participants
Male Chemical Operators In PFOS ppm By YRSCHEM

Linear Fit
In PFOSdfppm $=0.28294+0.01961$ YRSCHEM
Summary of Fit

RSquare	0.077877°
RSquare Adj	0.059435
Root Mean Square Error	$0.6509 €$
Mean of Response	0.49465ε
Observations (or Sum Wgts)	52

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	1.789373	1.78937	4.2227
Error	50	21.187429	0.42375	Prob>F
C Total	51	22.976802		0.0451

		Parameter	nates			
Term	Estimate	Std Error	t Ratio	Prob> ${ }^{\text {a }}$ \|	.ower 95\%	Upper 95\%
Intercept	0.2829416	0.136981	2.07	0.0441	0.0078068	0.5580763
YRSCHEM	0.0196069	0.009541	2.05	0.0451	0.0004424	0.0387713

All Participants
Male Chemical Operators In PFHS ppm By YASCHEM

Linear Fit
In PFHSdfppm $=-1.5385+0.04363$ YRSCHEM Summary of Fit

RSquare	$0.29335 ;$
RSquare Adj	0.27922 ;
Root Mean Square Error	$0.65332!$
Mean of Response	-1.0673 ;
Observations (or Sum Wgts)	$5:$

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	8.859630	8.85963	20.7569
Error	50	21.341385	0.42683	Prob>F
C Total	51	30.201015		$<.0001$

	Parameter Estimates						
Term	Estimate	Std Error	1 Ratio	Prob>\|t		Lower 95\%	Upper 95\%
Intercept	-1.538462	0.137478	-11.19	$<.0001$	-1.814595	-1.262329	
YRSCHEM	0.043628	0.009576	4.56	<.0001	0.0243941	0.0628619	

All Participants
Male Chemical Operators in POAA ppm By YRSCHEM

- Lnea Fi - Pautane fid deree=?

Linear Fit
In POAAPpm $=0.55713+0.01691$ YRSCHEM
Summary of Fit

RSquare	0.09096
RSquare Adj	0.072779
Root Mean Square Eror	0.515758
Mean of Response	0.739719
Observations (or Sum Wgts)	52

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	1.330847	1.33085	5.0031
Error	50	13.300322	0.26601	Prob>F
C Total	51	14.631169		0.0298

	Parameter Estimates					
Term	Estimate	Std Error	I Ratio	Prob> $>$ t\|	Lower 95%	Upper 95%
Intercept	0.5571329	0.108531	5.13	$<.0001$	11.3391425	0.7751233
YRSCHEM	0.0169091	0.00756	2.24	0.0298	11.0017251	0.0320932

$\begin{gathered} \text { Polynomial Fit degree=2 } \\ \ln \text { POAAppm }=0.30559+0.10002 \text { YRSCHEM }-0.00313 \text { YRSCHEM^2 } \\ \text { Summary of Fil } \end{gathered}$						
		RSquare RSquare Adj Root Mean Square Ertor Mean of Response Observations (or Sum Wgts)		0.2676:		
				0.23772^{\prime}		
				0.467638		
				0.739711		
				$5:$		
	Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio	
	Model	2	3.915590		F Rasio	
			3.915590	1.95779	8.9526	
	Error	49	10.715579	0.21869	Prob>F	
	C Total	51	14.631169		0.0005	
			Parameter Estimates			
Term		Estimate	Std Error 1 Ratio	Prob> \mid \|	Lower 95\%	Upper 95\%
Intercept		0.3055886	$0.122625 \quad 2.49$	0.0161	0.0591644	0.5520129
YRSCHEM		0.1000157	0.025126 3.98	0.0002	0.0495226	0.1505088
YRSCHEM^2		-0.003133	$0.000911 \quad-3.44$	0.0012	-0.004965	-0.001302

All Participants
Male Chemical Operators In PFOSAA ppm By YRSCHEM

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	2.80958	2.80958	1.0908
Error	50	128.79120	2.57582	Prob>F
C Total	51	131.60078		0.3013

Linear Fit
In $570 \mathrm{ppm}=-1.3268-0.04752 \mathrm{YRSCHEM}$
Summary of Fit

RSquare	0.129273
RSquare Adj	0.111859
Root Mean Square Error	1.189837
Mean of Response	-1.83989
Observations (or Sum Wgts)	52

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	10.509261	10.5093	7.4233
Error	50	70.785564	1.4157	Prob>F
C Total	51	81.294825		0.0088

	Parameter Estimates						
Term	Estimate	Std Error	t Ratio	Prob>\|t		I.ower 95%	Upper 95%
Intercept	-1.326808	0.250377	-5.30	$<.0001$	-1.829705	-0.823911	
YRSCHEM	-0.047516	0.01744	-2.72	0.0088	-0.082545	-0.012487	

All Participants

Male Chemical Operators In PFOSA ppm By YRSCHEM

三-rea fi	
$\begin{aligned} & \text { In PFOSAdfppm }=-3.3047-0.04865 \text { YRSCHEM } \\ & \text { Summary of Fit } \end{aligned}$	
RSquare	0.0581
RSquare Adj	$0.03926{ }^{2}$
Root Mean Square Error	1.89008:
Mean of Response	-3.8300
Observations (or Sum Wgts)	$5:$

	Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob>\|	-ower 95%	Upper 95%
Intercept	-3.304729	0.39773	-8.31	$<.0001$	-4.103591	-2.505866
YRSCHEM	-0.048653	0.027704	-1.76	0.0852	-0.104298	0.0069914

All Participants

Male Chemical Operators In M556 ppm By YRSCHEM

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	4.619303	4.61930	4.0841
Error	50	56.552145	1.13104	Prob>F
C Total	51	61.171448		0.0487

		Parameter Estimates									
Term	Estimate	Std Error	t Ratio	Prob>\|t		- ower 95\%	Upper 95\%				
Intercept	-2.639497	0.223793	-11.79	$<.0001$	-3.088999	-2.189996					
YRSCHEM	-0.031503	0.015588	-2.02	0.0487	-0.062812	-0.000193					

Term
Intercept
YRSCHEM

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	5.365639	5.36564	6.8333
Error	26	20.415689	0.78522	Prob>F
C Total	27	25.781328		0.0147

Polynomial Fit degree=2	
$\begin{array}{r} \ln \text { PFOSdfppm }=-1.6361+0.13222 \mathrm{YR} \\ \text { Summary } \end{array}$	82 YRSCHEM^2
RSquare	0.30747.4
RSquare Adj	0.25207:
Root Mean Square Error	0.845086
Mean of Response	-0.6614.;
Observations (or Sum Wgts)	28

	Analysis of Variance Source			
DF	Sum of Squares	Mean Square	F Ratio	
Model	2	7.927078	3.96354	5.5499
Error	25	17.854250	0.71417	Prob>F
C Total	27	25.781328		0.0101

All Participants
Male Engineer/Lab
In PFHS ppm By YRSCHEM

Linear Fit
In PFHSdfppm $=-2.9522+0.04106$ YRSCHEM Summary of Fit

RSquare	0.243114
RSquare Adj	$0.21400:$
Root Mean Square Error	0.97805%
Mean of Response	-2.23224
Observations (or Sum Wgts)	2%

	Analysis of Variance Source			
DF	Sum of Squares	Mean Square	F Ratio	
Model	1	7.988791	7.98879	8.3513
Error	26	24.871516	0.95660	Prob>F
C Total	27	32.860307		0.0077

	Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob> $\|t\|$	_ower 95\%	Upper 95\%
Intercept	-2.95222	0.310219	-9.52	$<.0001$	-3.589879	-2.314561
YRSCHEM	0.0410581	0.014208	2.89	0.0077	0.0118541	0.0702621

$\begin{gathered} \text { Polynomial Fit degree }=2 \\ \text { In PFHSdfppm }=-3.5713+0.19973 \text { YRSCHEM }-0.00454 \text { YRSC HEM^2 } \\ \text { Summary of Fit } \end{gathered}$							
		RSquare RSquare Adj Root Mean Square Error Mean of Response Observations (or Sum Wgts)		0.44508 ?			
				0.4006			
				0.8540			
				-2.232			
	Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio		
	Model	2	14.625528	7.31276	10.0258		
	Error	25	18.234779	0.72939	Prob>F		
	C Total	27	32.860307		0.0006		
			Parameter Estimates				
Term		Estimate	Std Error $\quad 1$ Ratio	Prob>\|t		Lower 95\%	Upper 95\%
Intercept		-3.571347	0.339861 -10.51	<.0001	-4.2713	-2.871395	
YRSCHEM		0.1997324	$0.054046 \quad 3.70$	0.0011	0.0884234	0.3110415	
YRSCHEM ${ }^{\wedge} 2$		-0.004538	$0.001504-3.02$	0.0058	-0.007636	-0.00144	

All Participants
Male Engineer/Lab
In POAAPpm By YRSCHEM

Linear Fit
ln POAAPpm $=-1.6429+0.01806$ YRSCHEM Summary of Fit

RSquare	0.063628
RSquare Adj	0.027613
Root Mean Square Error	0.935202
Mean of Response	-1.32623
Observations (or Sum Wgts)	28

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	1.545191	1.54519	1.7667
Error	26	22.739675	0.87460	Prob>F
C Total	27	24.284865		0.1953

	Parameter Estimates					
Term	Estimate	Sid Error	t Ratio	Prob>lt	I.ower 95\%	Upper 95%
Intercept	-1.642879	0.296626	-5.54	$<.0001$	-2.252597	-1.03316
YRSCHEM	0.0180572	0.013585	1.33	0.1953	-0.009867	0.0459816

All Participants
Male Engineer/Lab
In PFOSAA ppm By YRSCHEM

	Analysis of Variance Sum of Squares			
Source	DF	Mean Square	F Ratio	
Model	1	1.275122	1.27512	0.6513
Error	26	50.905372	1.95790	Prob>F
C Total	27	52.180494		0.4270

		Parameter Estimates								
Term	Estimate	Sid Error	t Ratio	Prob $>\boldsymbol{t} \mid$	Lower 95\%	Upper 95\%				
Intercept	-5.141055	0.443812	-11.58	$<.0001$	-6.053316	-4.228794				
YRSCHEM	-0.016403	0.020326	-0.81	0.4270	-0.058184	0.0253771				

Linear Fit
In $570 \mathrm{ppm}=-3.1804+0.00328$ YRSCHEM
Summary of Fit

RSquare	0.00186
RSquare Adj	-0.03653
Root Mean Square Error	1.024495
Mean of Response	-3.12301
Observations (or Sum Wgts)	28

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	0.050840	0.05084	0.0484
Error	26	27.289336	1.04959	Prob>F
C Total	27	27.340175		0.8275

	Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Probs $\|t\|$	Lower 95\%	Upper 95\%
Intercept	-3.180449	0.324948	-9.79	$<.0001$	-3.848383	-2.512515
YRSCHEM	0.0032754	0.014882	0.22	0.8275	-0.027315	0.033866

All Participants
Male Engineer/Lab In PFOSA ppm By YRSCHEM

\square
\equiv lnex it
\ln PFOSAdfppm $=-6.0798+0.01464$ YRSCHEM

RSquare	Summary of Fit
RSquare Adj	0.014659
Root Mean Square Error	-0.02324
Mean of Response	1.620061
Observations (or Sum Wgts)	-5.82314
	28

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	1.015219	1.01522	0.3868
Error	26	68.239528	2.62460	Prob>F
C Total	27	69.254747		0.5394

		Parameter Estimates				
Term	Estimate	Std Error	t Ratio	Prob> $\mathbf{i t \|}$	Lower 95%	Upper 95%
Intercept	-6.079806	0.513848	-11.83	$<.0001$	-7.136028	-5.023584
YRSCHEM	0.0146365	0.023534	0.62	0.5394	-0.033737	0.0630103

All Participants
Male Engineer/Lab m M556 ppm By YRSCHEM

Linear Fit

ln M556dfppm $=$$-4.5528+0.00037$ Summary of Fit	
RSquare	0.000015
RSquare Adj	-0.03845
Root Mean Square Error	1.297208
Mean of Response	-4.54625
Observations (or Sum Wgts)	28

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	0.000661	0.00066	0.0004
Error	26	43.751480	1.68275	Prob>F
C Total	27	43.752141		0.9843

Term
Intercept
YRSCHEM
Estimate
-4.552795
0.0003734

Appendix N

Scatterplots (and regressions) of fluorochemical levels of all chemical participant
female chemical operators $(\mathrm{n}=12)$ and engineer/lab $(\mathrm{n}=9)$ with years worked in chemical

All Participants Female Chemcial Operators

In PFOS ppm By YRSCHEM

三 ${ }_{\text {linea }}$	
$\begin{aligned} & \text { Linear Fit } \\ & \text { In PFOSdfppm }= 0.01226-0.00779 \text { YRSCHEM } \\ & \text { Summary of Fit } \end{aligned}$	
RSquare	0.008557
RSquare Adj	-0.09059
Root Mean Square Error	0.578093
Mean of Response	-0.05134
Observations (or Sum Wgts)	12

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	0.0288427	0.028843	0.0863
Error	10	3.3419208	0.334192	Prob>F
C Total	11	3.3707635		0.7749

	Parameter Estimates					
Term	Estimate	Sid Error	t Ratio	Prob> $\|\mathrm{t\mid}\|$	Lower 95\%	Upper 95\%
Intercept	0.0122559	0.273326	0.04	0.9651	-0.596757	0.6212687
YRSCHEM	-0.007787	0.026506	-0.29	0.7749	-0.066847	0.0512728

All Participants
Female Chemcial Operators
In PFHS ppm By YRSCHEM

\square
Linear Fit
In PFHSdfppm $=-2.3774+0.05385$ YRSCHEM

RSquare	
RSqumary of Fit	
Root Mean Square Error	0.275351
Mean of Response	0.202886
Observations (or Sum Wgts)	0.602463
	-1.93766
	12

	Analysis of Variance Source			
DF	Sum of Squares	Mean Square	F Ratio	
Model	1	1.3791706	1.37917	3.7998
Error	10	3.6296113	0.36296	Prob>F
C Total	11	5.0087819		0.0798

	Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob>l\|	Lower 95\%	Upper 95\%
Intercept	-2.377407	0.284848	-8.35	$<.0001$	-3012092	-1.742721
YRSCHEM	0.0538465	0.027623	1.95	0.0798	-0007703	0.1153959

All Participants

Female Chemcial Operators
In PFOSAA ppm By YRSCHEM

\square
Linear Fit
In PFOSAAdfppm $=-4.5678-0.0569$ YRSCHEM
Summary of Fit

RSquare	0.06068
RSquare Adj	-0.03325
Root Mean Square Ertor	1.543965
Mean of Response	-5.0325
Observations (or Sum Wgts)	12

	Mnalysis of Variance			
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	1.539949	1.53995	0.6460
Error	10	23.838281	2.38383	Prob>F
C Total	11	25.378230		0.4402

	Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Probs; t\|	Lower 95\%	Upper 95\%
Intercept	-4.56783	0.729997	-6.26	$<.0001$	-6.194374	-2.941286
YRSCHEM	-0.056899	0.070792	-0.80	0.4402	-0.214635	0.1008375

All Participants
Female Chemcial Operators
In M570 ppm By YRSCHEM

Linear Fit
$\ln 570 \mathrm{ppm}=-2.1009-0.0371$ YRSCHEM Summary of Fit

RSquare	0.111759
RSquare Adj	0.022934
Root Mean Square Error	0.721322
Mean of Response	-2.40387
Observations (or Sum Wgts)	12

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	0.6546479	0.654648	1.2582
Error	10	5.2030495	0.520305	Prob>F
C Total	11	5.8576974		0.2882

	Parameter Estimates						
Term	Estimate	Std Error	t Ratio	Prob>\|t		Lower 95\%	Upper 95%
Intercept	-2.100903	0.341046	-6.16	0.0001	-2.860804	-1.341001	
YRSCHEM	-0.037098	0.033073	-1.12	0.2882	-0.110791	0.0365942	

All Participants Female Chemcial Operators

\square
Linear Fit
In PFOSAdfppm $=-4.6226+0.0764$ YRSCHEM
Summary of Fit

RSquare	0.095234
RSquare Adj	0.004758
Root Mean Square Error	1.624037
Mean of Response	-3.99866
Observations (or Sum Wgts)	12

	Analysis of Variance			
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	2.776184	2.77618	1.0526
Error	10	26.374947	2.63749	Prob>F
C Total	11	29.151132		0.3291

	Parameter Estimates					
Term	Estimate	Std Error	I Ratio	Prob $>\|t\|$	Lower 95\%	Upper 95%
Intercept	-4.622563	0.767855	-6.02	0.0001	+0.333461	-2.911665
YRSCHEM	0.0763964	0.074464	1.03	0.3291	0.08952	0.2423128

All Participants
Female Chemcial Operators

Linear Fit
In M556dfppm $=-3.1494-0.05942$ YRSCHEM Summary of Fit

RSquare	0.159673
RSquare Adj	0.07564 I
Root Mean Square Error	0.940158
Mean of Response	-3.63466
Observations (or Sum Wgts)	12

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	1.679525	1.67953	1.9001
Error	10	8.838975	0.88390	Prob>F
C Total	11	10.518500		0.1981

	Parameter Estimates						
Term	Estimate	Std Error	\dagger Ratio	Prob>\|t		Lower 95\%	Upper 95\%
Intercept	-3.149387	0.444513	-7.09	$<.0001$	-4.13983	-2.158945	
YRSCHEM	-0.059421	0.043107	-1.38	0.1981	$-(1.155471$	0.0366281	

All Participants
Female Engineer/Lab

Linear Fit
In PFOSdfppm $=-1.8939+0.01024$ YRSCHEM
Summary of Fit

RSquare	0.058759
RSquare Adj	-0.0757
Root Mean Square Error	0.505477
Mean of Response	-1.80801
Observations (or Sum Wgts)	9

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	0.1116544	0.111654	0.4370
Error	7	1.7885504	0.255507	Prob>F
C Total	8	1.9002048		0.5297

	Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob> $\|\mathrm{t}\|$	Lower 95\%	Upper 95\%
Intercept	-1.893913	0.212779	-8.90	$<.0001$	-2.397059	-1.390766
YRSCHEM	0.0102397	0.01549	0.66	0.5297	-0.026388	0.0468678

All Participants
Female Engineer/Lab

Linear Fit

In PFHSdfppm $=-3.9868+0.03015$	YRSCHEM
\quad Summary of Fit	
RSquare	0.138988
RSquare Adj	0.015987
Root Mean Square Error	0.925469
Mean of Response	-3.73389
Observations (or Sum Wgts)	9

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	0.9678134	0.967813	1.1300
Error	7	5.9954503	0.856493	Prob>F
C Total	8	6.9632637		0.3231

	Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Probs $\|\boldsymbol{t}\|$	Lower 95\%	Upper 95\%
Intercept	-3.986788	0.389573	-10.23	$<.0001$	-4.90799	-3.065586
YRSCHEM	0.030147	0.02836	1.06	0.3231	-0.036915	0.0972088

All Participants
Fernale Engineer/Lab

$$
\overline{\text { \# }} \text { Ler it }
$$

Linear Fit
In POAAPpm $=-2.5628+0.00289$ YRSCHEM
Summary of Fit

RSquare	0.001765
RSquare Adj	-0.14084
Root Mean Square Error	0.848257
Mean of Response	-2.53853
Observations (or Sum Wgts)	9

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	0.0089035	0.008904	0.0124
Error	7	5.0367756	0.719539	Prob>F
C Total	8	5.0456791		0.9145

	Parameter Estimates						
Term	Estimate	Sid Error	t Ratio	Prob>\|t		Lower 95\%	Upper 95\%
Intercept	-2.562785	0.35707 I	-7.18	0.0002	-3.40713	-1.718439	
YRSCHEM	0.0028915	0.025994	0.11	0.9145	-0.058575	0.0643584	

All Participants Female Engineer/Lab
in PFOSAA ppm By YRSCHEM

\square
Linear Fit
\ln PFOSAAdfppm $=-6.1434-0.02633$ YRSCHEM

| | |
| :--- | ---: | ---: |
| RSquare | |
| RSquare Adjary of Fit | 0.103266 |
| Root Mean Square Error | -0.02484 |
| Mean of Response | 0.957088 |
| Observations (or Sum Wgts) | -6.36431 |

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	0.7384073	0.738407	0.8061
Error	7	6.4121225	0.916018	Prob>F
C Total	8	7.1505298		0.3991

	Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob $>\mid$ t\|	Lower 95%	Upper 95\%
Intercept	-6.143411	0.402883	-15.25	$<.0001$	-7.096087	-5.190736
YRSCHEM	-0.026333	0.029329	-0.90	0.3991	-0.095686	0.0430203

All Participants Female Engineer/Lab

Linear Fit
$\ln 570 \mathrm{ppm}=-3.5233+0.01215$ YRSCHEM
Summary of Fit

RSquare	0.030399
RSquare Adj	-0.10812
Root Mean Square Error	0.846298
Mean of Response	-3.42136
Observations (or Sum Wgts)	9

Source	DF	Analysis of Variance	Mean Squa	Ratio		
Model	1	0.1571845	0.157185	0.2195		
Error	7	5.0135469	0.716221	Prob>F		
C Total	8	5.1707315		0.6537		
		Parameter Estimates				
	Estimate	Std Error $\quad \mathrm{t}$ Ratio	Prob>\|t		Lower 95\%	Upper 95\%
	-3.523279	0.356247 -9.89	<.0001	-4.365676	-2.680883	
	0.0121493	$0.025934 \quad 0.47$	0.6537	-0.049176	0.0734743	

All Participants
Female Engineer/Lab
in PFOSA ppm By YRSCHEM

$\overline{\overline{l r e a} \mathrm{ft}}$	
$\begin{aligned} & \text { Linear Fit } \\ & \text { In PFOSAdfppm }=-5.5285+0.007 \text { YRSCHEM } \\ & \text { Summary of Fit } \end{aligned}$	
RSquare	0.002879
RSquare Adj	-0.13957
Root Mean Square Error	1.605932
Mean of Response	-5.46983
Observations (or Sum Wgts)	9

Source
Model
Error
C Total

Analysis of Variance		
Sum of Squares	Mean Square	F Ratio
0.052123	0.05212	0.0202
18.053117	2.57902	Prob>F
18.105239		0.8910

	Parameter Estimates					
Term	Estimate	Std Error	I Ratio	Prob $>\mathrm{t} \mid$	Lower 95%	Upper 95%
Intercept	-5.528517	0.676012	-8.18	$<.0001$	-7.127044	-3.929989
YRSCHEM	0.0069962	0.049212	0.14	0.8910	-0.109374	0.123366

All Participants
Fernale Engineer/Lab
In M556 ppm By YRSCHEM

三 ${ }_{\text {lnex if }}$	
$\begin{gathered} \text { Linear Fit } \\ \ln \text { M556dfppm }=-5.0701+0.02647 \text { YRSCHEM } \\ \text { Summary of Fit } \end{gathered}$	
RSquare	0.119476
RSquare Adj	-0.00631
Root Mean Square Error	0.886382
Mean of Response	-4.84805
Observations (or Sum Wgts)	9

	Analysis of Variance Source			
DF	Sum of Squares	Mean Square	F Ratio	
Model	1	0.7462412	0.746241	0.9498
Error	7	5.4997153	0.785674	Prob>F
C Total	8	6.2459565		0.3622

| | Parameter Estimates | | | | | Prob>\|t| |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Term | Estimate | Std Error | 1 Ratio | Prow 95% | Upper 95% | |
| Intercept | $\mathbf{- 5 . 0 7 0 1 2 4}$ | 0.37312 | -13.59 | $<.0001$ | -5.952419 | -4.187828 |
| YRSCHEM | 0.026472 | 0.027162 | 0.97 | 0.3622 | $-(1.037757$ | 0.0907015 |

Appendix 0

Scatterplots (and regressions) of fluorochemical levels of random sample who worked were only in the film plant $(n=36)$ with years w orked in film
Random Sample
Only Film Employees (Maintenance Workers Numbered)

Linear Fit
lnPFOSdfppm $=-2.3024+0.00313$ YrsFilm Summary of Fit

RSquare	0.002948
RSquare Adj	-0.02638
Root Mean Square Error	0.585965
Mean of Response	-2.25946
Observations (or Sum Wgts)	36

Analysis of Variance		
Sum of Squares	Mean Square	F Ratio
0.034516	0.034516	0.1005
11.674079	0.343355	Prob>F
11.708595		0.7531

	Parameter Estimates						
Term	Estimate	Std Error	t Ratio	Prob>\|t		Lower 95\%	Upper 95\%
Intercept	-2.30237	0.166902	-13.79	$<.0001$	-2.641553	-1.963187	
YrsFilm	0.0031336	0.009883	0.32	0.7531	-0.016952	0.0232187	

	$\begin{gathered} \text { Polynomial Fit degree=2 } \\ \text { InPFOSdfppm }=-2.5117+0.06209 \text { YrsFilm }-0.0021 \text { YrsFilm^... } \\ \text { Summary of Fit } \end{gathered}$						
	RSquare				0.083482		
	RSquare Adj				0.0279		
	Root Mean Square Error				0.5702		
	Mean of Response				-2.259		
	Observations (or Sum W gts)				36		
Analysis of Variance							
	Model	2		77453	0.488726		
	Error	33		31142	0.325186	Pro	
	C Total	35		08595		0.23	
			Parameter	Estimates			
Term		Estimate	Std Error	t Ratio	Probs >1 \| \mid	Lower 95\%	Upper 95\%
Intercept		-2.511702	0.203701	-12.33	<.0001	-2926132	-2.097272
YrsFilm		0.062089	0.035933	1.73	0.0934	-0.011017	0.1351945
YrsFilm^2		-0.002097	0.001231	-1.70	0.0980	-0.004602	0.0004084

- Lrea ft - Panamal If derpee?	
$\begin{array}{r} \text { Linear } F \\ \text { lnPFHSdfppm }=-4.7215 \\ \text { Summary } \end{array}$	
RSquare	0.011809
RSquare Adj	-0.01814
Root Mean Square Error	0.882741
Mean of Response	-4.58683
Observations (or Sum Wgts)	35

	Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob $>\|t\|$	Lower 95\%	Upper 95\%
Intercept	-4.721471	0.26122	-18.07	$<.0001$	-5.252924	-4.190018
YrsFilm	0.0095783	0.015253	0.63	0.5343	-0.321454	0.0406102

Analysis of Variance 0.307286 26.021905 0.0406102

$\begin{gathered} \text { Polynomial Fit degree }=2 \\ \operatorname{lnPFFHSdfppm}=-5.3019+0.16523 \text { YrsFilm }-0.00548 \text { YrsFilm' } 2 \\ \text { Summary of Fit } \end{gathered}$							
	RSquare			0.252796			
	RSquare Adj			0.206096			
	Root Mean Square Error				0.779496		
	Mean of Response				-4.58683		
	Observations (or Sum Wgts)				35		
Analysis of Variance							
	Model	2		78235	3.28912	5.4	
	Error	32		43670	0.6076	Prob	
	C Total	34		21905		0.00	
			Paramete	stimates			
Term		Estimate	Sta Error	t Ratio	Prob> $>$ t\|	Lower 95\%	Upper 95\%
Intercept		-5.301864	0.292996	-18.10	<.0001	-5.898674	-4.705053
YrsFilm		0.1652333	0.050289	3.29	0.0025	0.10627984	0.2676682
YrsFilm^2		-0.005481	0.001706	-3.21	0.0030	-0.008957	-0.002006

Only Fitm Employees (Maintenance Workers Numbered)
In POAA ppm By YrsFilm

Linear Fit
InPOAAppm $=-3.5336+0.01719$ YrsFilm Summary of Fit

RSquare	0.040923
RSquare Adj	0.01186
Root Mean Square Error	0.838584
Mean of Response	-3.29191
Observations (or Sum Wgts)	35

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	0.990187	0.990187	1.4081
Error	33	23.206369	0.703223	Prob>F
C Total	34	24.196556		0.2438

	Parameter Estimales						
Term	Estimate	Std Error	t Ratio	Prob>\|		Lower 95\%	Upper 95\%
Intercept	-3.533607	0.248153	-14.24	$<.0001$	-4.038476	-3.028739	
YrsFilm	0.017194	0.01449	1.19	0.2438	-0.012286	0.0466736	

dom Sample
Only Film Employees
(Maintenance Workers Numbered)
In PFOSAA ppm By YrsFilm

\square
Linear Fit
lnPFOSAAdfppm $=-6.1143+0.00041$ YrsFilm Summary of Fit

RSquare	0.000031
RSquare Adj	-0.03027
Root Mean Square Error	0.739574
Mean of Response	-6.10856
Observations (or Sum Wgts)	35

Source	DF	Analysis of Variance Sum of Squares	Mean Square	F Ratio
Model	1	0.000553	0.000553	0.0010
Error	33	18.050011	0.546970	Prob>F
C Total	34	18.050564		0.9748

	Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob $>\|t\|$	Lower 95\%	Upper 95\%
Intercept	-6.114269	0.218854	-27.94	$<.0001$	-6.559529	-5.66901
YrsFilm	0.0004063	0.012779	0.03	0.9748	-0.925593	0.0264053

Random Sample
Only Film Employees
(Maintenance Workers Numbered)
In M570 By YrsFilm

$$
{\overline{\text { }}{ }_{\text {Inea } \mathrm{ft}}}
$$

Linear Fit
\ln M570 $=-4.8046-0.00844$ YrsFilm
Summary of Fit

RSquare	0.006167
RSquare Adj	-0.02306
Root Mean Square Error	1.089533
Mean of Response	-4.92021
Observations (or Sum Wgts)	$\mathbf{3 6}$

Source DF $\begin{gathered}\text { Analysis of Vanance } \\ \text { Sum of Squares }\end{gathered}$ Mean Square F Ratio						
Model	1		458	0.25046	0.2110	
Error	34		826	1.18708	Prob>F	
C Total	35		285		0.6489	
Parameter Estimates						
Term		Estimate		t Ratio	Prob>\|i	
Intercept		-4.804612		4 -15.48	<. 0001	
YrsFilm		-0.008441		7 -0.46	0.6489	

Random Sample
 Only Film Empioyees
 (Maintenance Workers Numbered)

in M556 ppm By YrsFilm

Linear Fit
$\operatorname{lnM556dfppm}=-6.0381+0.00926$ YrsFilm
Summary of Fit
RSquare

RSquare Adj	-0.02325
Root Mean Square Error	1.213109

Mean of Response -5.91136
Observations (or Sum Wgts) 36

Source	Analysis of Variance				F Ratio
Model	1		128	0.30113	0.2046
Ertor	34		524	1.47163	Prob>F
C Total	35		652		0.6539
Parameter Estimates					
Term		Estimate		Or Ratio	Prob> $>$ t\|
Intercept		-6.038109		2-17.47	<0001
YrsFilm		0.0092556		10.45	0.6539

[^0]: (continued)

 Table 21.

[^1]: Upper 95\% 0.182862 0.002028

[^2]: Upper 95\%
 1.698853
 0.1132065

