Absorption and Biotransformation of N-Ethyl FOSE. and Tissue Distribution and Elimination of Carbon-14 after Administration of N-Ethyl FOSE-14C in Feed

3M Center

January 19, 1983

Conducted At:

During:

Conducted By:

Report By:

S. J. Gibson and J. D. Johnson

October 1980 to February 1981

Rixer Laboratories, Inc.

St. Paul, Minnesota 55144

1/27/83

Date S. J. Gibson. Senior Laboratory Technician

Date Johnson, MS л. D.

Research Specialist

83

R. E. Ober, PhD Date Manager, Drug Metabolism

Reviewed By:

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

2813.0001

Exhibit 2813 State of Minnesota v. 3M Co., Court File No. 27-CV-10-28862

3MA10053186

Table of Contents

	Page
Summary	1
Introduction	1
Materials and Methods	1
Carbon-14 Labeled N-Ethyl FOSE	1
Animals	2
Dosing	2
Preparation of Dose/Feed Mixture	2
Administration of Dose	2
Sample Collection	3
Radiometric Analyses	3
Sample Preparation for Radiometric Analyses	3
Analyses of Samples	4
Isolation and Identification of Metabolites	4
Extraction	4
Column Chromatography	4
Thin-Layer Chromatography of Column Fractions	5
Results and Discussion	5
Extent and Route of Excretion and Tissue Distribution	5
Isolation and Identification of Metabolites	8
References	10
List of Tables, Figures and Appendices	11

ŝn confidentiai

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

3MA10053187

1

e H

Summary

After a single oral dose of N-ethyl FOSE-¹⁴C (2-N-ethyl perfluor∞ctanesulfonamido ethanol) (mean dose, 10.13 mg/kg) in feed to fasted rats (groups of 3), at least 70% and probably more than 70% of the total carbon-14 is absorbed. Elimination of carbon-14 via urine and feces is very slow; from 0-32 days, only 63% of the dose is eliminated. Fecal elimination of carbon-14 is about 20-30 fold that of urine. The half-life of the disappearance from plasma of carbon-14 from day 1 to day 16 is 7.5 days. A metabolite of N-ethyl FOSE isolated from liver was identified by ¹⁹F-NMR analysis as the perfluoroctanesulfonate anion. In addition, another metabolite from liver has been tentatively identified as perfluorooctanesulfonamide.

Introduction

In addition to being a product sold by 3M, N-ethyl FOSE is a key intermediate in the production of other products. N-Ethyl FOSE is important in the study of FC-807 metabolism because the three esters of FC-807 are phosphate esters of N-ethyl FOSE and in addition FC-807 contains a trace (0.88) of N-ethyl FOSE. It would be expected that possible common metabolites occur from FC-807 and N-ethyl FOSE via different pathways or that after phosphate ester hydrolysis of FC-807 (systemic and/or gut) the biotransformation of N-ethyl FOSE and FC-807 follow similar pathways. Thus, the absorption, tissue distribution, and biotransformation of N-ethyl FOSE were investigated. The results are discussed in the context of other fluorochemical metabolism data from FC-807 and perfluorooctanesulfonate.

Materials and Methods

Carbon-14 Labeled N-Ethyl FOSE

C7F15*CF2S02-N CH2CH2OH

* Denotes Position of Carbon-14 Label

N-Ethyl FOSE is 2-N-ethyl perfluorooctanesulfonamido ethanol.

The carbon-14 label is at the carbon α to the sulfur atom (see above structure). On the basis of the specific activity determination, chemical characterization, and radiochemical purity reported separately (1), the N-ethyl FOSE-14C was judged suitable for metabolism studies. The specific activity of the lot of N-ethyl FOSE-14C used in these studies (Riker Isotope Inventory Number 468) is 0.483 + 0.020 μ Ci/mg. The radiochemical purity determination was repeated on the N-ethyl FOSE-14C dosing solution (see Appendix 1 - Table 1, and Appendix 1 - Figures 1-5) and the N-ethyl FOSE-14C was found to be at least 98% pure.

3M CONFIDENTIAL

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

3MA10053188

Animals

Male Charles River^A CD rats, eight weeks old, were conditioned to individual metal metabolism cages for 48 hours prior to dosing. The rats were fasted with free access to water for 24 hours prior to dosing. The body weights ranged from 220 to 329 g, mean 277 g. Rats were dosed in groups of 3; individual rats were selected so that the body weights of rats within each group of 3 were within 21 grams of each other. The rats were allowed free access to Purina⁻ Ground Chew and water after dosing.

Dosing

Preparation of Dose/Feed Mixture

An N-ethyl FOSE-14C solution was prepared by weighing N-ethyl FOSE-14C into a 1 liter Class A volumetric flask, adjusting to volume with absolute ethanol, and mixing by inverting. The N-ethyl FOSE-14C solution was transferred to a 4 liter beaker and Purina Ground Chow was added. The N-ethyl FOSE-14C/feed mixture was stirred for one hour then transferred to a glass tray and the ethanol was evaporated. The carbon-14 content of the dose/feed mixture was determined by combustion (see Appendix 2 and Appendix 2 - Table 1).

Administration of Dose

Each fasted rat was weighed immediately before being transferred to an individual metal metabolism cage. A feed cup was attached with wire to the inside of each cage to hold the single oral dose. The dose was a weighed amount of Purina Ground Chow containing 0.531 mg N-ethyl FOSE- 14 C/g. All of the rats in the groups sacificed at 1, 2, and 4 days postdose consumed the dose administered in a two hour period. For rats sacrificed at 8, 16, and 32 days postdose, a longer period of time was allowed to consume the dose (12 hours) although most of the fasted rats ate the feed/dose immediately. Any dose/feed mixture not consumed was weighed and the weight subtracted from the total dose/feed mixture given to each rat. By inspection, it appeared that very little of the feed was spilled by the rats. The dose administered each rat was calculated from the weight of feed consumed. The mean dose was 10.13 mg/kg (see Appendix 3).

Charles River Breeding Laboratories, Wilmington, Massachusetts.
 Purina Lab Chow, Ralston Purina Company, St. Louis, Missouri.

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

3MA10053189

Sample Collection

Urine and feces were collected at 24 hour intervals for each rat sacrificed at 1, 2, 4, and 8 days postdose (groups of 3). Urine and feces were collected at intervals and respectively pooled for each rat sacrificed at 16 and 32 days postdose (groups of 3). At 1, 2, 4, 8, 16, and 32 days postdose, rats were anesthetized with diethyl ether; blood was drawn from the descending aorta and immediately transferred to a heparinized Vacutainer® tube. Plasma was prepared promptly by centrifugation. The rats were sacrificed by exsanguination and liver, spleen, kidneys, and lungs were collected as whole organs. Bone marrow was obtained from the femurs and tibias by splitting the bones and collecting the marrow on pieces of tared combustion pads². Samples of subcutaneous and abdominal fat, and muscle were collected. Digestive tract (esophagus, stomach, and intestines) and the remaining carcass were collected from rats sacrificed at 1 and 2 days postdose.

Radiometric Analyses

Sample Preparation for Radiometric Analyses

Feces and major organs were prepared for carbon-14 analysis by homogenizing and aliquoting a sample of the homogenate into combustion cones^a. Homogenizing was done in Waring blenders by adding nine parts of water to one part of biological material. The homogenates were weighed into combustion cones in duplicate by taring the cone and adding 1.0 g of the homogenate. Care was taken to mix the homogenate between samplings. Samples of bone marrow, fat and red blood cells were weighed into combustion cones. Care was taken to weigh these samples promptly to avoid loss of weight by drying. Homogenates and samples weighed directly were combusted with a Packard Model 306 Oxidizer Recovery of carbon-14 from biological samples was determined by combusting suitable blank homogenates (feces, liver, kidney, muscle, and spleen) spiked with N-ethyl FOSE-14 $_{\rm C}$ solution; these reference samples were combusted at the beginning, middle, and end of the experimental cample set (see Appendix 4). Urine collections were sampled before freezing and were counted directly; duplicate 1.0 ml aliquots of each sample were pipetted directly into scintillation vials and 15 ml Aquasol® was added. Plasma was sampled before freezing and counted directly; duplicate 1.0 ml aliquots or 0.5 ml aliquots plus 0.5 ml water were pipetted directly into scintillation vials and 15 ml Aquasol® added. All samples were cold and dark adapted before counting.

<u>a</u> Packard Instrument Company, Inc., 2200 Warrenville Road, Downers Grove, Illinois.

3M CONFIDENTIAL

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

3MA10053190

Analyses of Samples

All radiometric measurements were done using Packard Model 3380 and 3385 Tri-Carb Liquid Scintillation Spectrometers. For plasma and urine samples counted directly, the counting efficiency for each sample was determined by adding a known amount of internal standard to each sample and recounting. After each sample was corrected for background with the appropriate blanks and for counting efficiency, the carbon-14 content of each sample was calculated. For combusted samples, counting efficiency for each sample was determined by use of the AES (Automatic External Standard) ratio method. To calibrate the external standard, a known amount of internal standard was added to selected samples in the group (three with low AES ratios and three with high ratios) and these samples were recounted. For combusted samples, a correction was made for the recovery from the oxidizer. These recoveries were based on reference samples combusted with each sample set (see Appendix 4 - Tables 1-4).

Isolation and Identification of Metabolites

Extraction

Aliquots of the 9:1 homogenates of liver for rats sacrificed at 2 days after dosing were pooled. The aliquots (by weight) contained a total of 1,052 µg equivalents of N-ethyl FOSE- 14 C. The homogenate was extracted three times with diethyl ether with back extractions of the ether with water. The final volume of ether was 1,500 ml and the final volume of water was 1,200 ml. The ether was evaporated and the residue was redissolved in methanol (Fraction 1). The water layer was acidified with 250 ml of 10% HCl and stirred for an hour. The ether was evaporated and the residue was redissolved in methanol (Fraction 2). The water was filtered and the filter cake was extracted two times with chloroform-methanol 1:1 (v/v). The chloroform-methanol was evaporated and the residue was redissolved in methanol (Fraction 3).

Column Chromatography

Three 2.0 cm in diameter columns were packed to 40 cm with silica $gel^{\underline{A}}$ in a chloroform slurry. The three fractions from the extraction of liver were chromatographed by placing the extract on the column and washing it into the bed with a small amount of chloroform. Each column was eluted with 500 ml of CHCl₃ (Eluate A), 500 ml of chloroform-methanol 1:1 (v/v) (Eluate B), and 500 ml of methanol (Eluate C). The nine fractions were evaporated to dryness and redissolved in methanol and then analyzed for carbon-14 content.

a Unisil, activated silicic acid 100/120 mesh, Clarkson Chemical Company, Inc., Williamsport, Pennsylvania.

3M CONFIDENTIAL

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

3MA10053191

Thin-Layer Chromatography of Column Fractions

Each of the six column fractions that contained carbon-14 (not methanol elution) were assayed by thin-layer chromatography. Small aliquots of the material were streaked on pre-adsorbent silica gel plates^a and the plates were developed to 15 cm in the selected solvent system. The plates were then scraped in 0.5 cm segments into scintillation vials containing methanol and 7.5 ml of a modified scintillant^b was added. The contents of the scintillation vials were calculated and radio-activity per segment expressed as percent of total carbon-14 on the plate.

Results and Discussion

Extent and Route of Excretion and Tissue Distribution

The results indicate that at least 70% of an oral dose of N-ethyl FOSE-14C administered in feed to previously fasted rats is absorbed. The data from analyses of feces for individual rats are shown in Table 1, the data for urine analyses are shown in Table 2, and the data for total excretion (feces plus urine) are shown in Table 3. These data are expressed as cumulative percent of dose excreted. (The data are listed as µg equivalents N-ethyl FOSE-14C excreted per time period in Appendix 5 - Tables 1 and 2). As shown in Table 2, excretion of total carbon-14 via urine is not extensive; by 32 days postdose, <3.0% of the dose is climinated via urine. The fecal elimination of carbon-14 is 20-30 fold more extensive than elimination via urine; however, the extent of carbon-14 elimination via feces is still only about 60% of the dose by 32 days postdose. The gastrointestinal transit time in fasted rats fed a nonabsorbed compound which does not affect the rate of excretion of feces is <30 hours (2). The fecal excretion rate of rats in this study is normal and does not seem to be affected by the N-ethyl FOSE-14C (see Appendix 7 and Appendix 7 -Table 1). The mean cumulative percent of dose excreted via feces by 48 hours postdose for the groups of 3 rats sacrificed at 2 days, 4 days, and 8 days postdose was 28.1, 14.4, and 15.2, respectively. Since carbon-14 levels found in feces at 48 hours or later after a single oral dose is most likely to represent material that has been absorbed and then excreted rather than unabsorbed compound, the cumulative percent of dose excreted via feces from time of dosing to 48 hours postdose (~14-28%) is the upper limit of the estimate for percent of dose not absorbed. Thus, at least 70 percent of the dose of N-ethyl POSE-14C was absorbed.

The digestive tracts (esophagus, stomach, and intestines) were analyzed for carbon-14 content for individual rats in each of the groups of rats sacrificed at 24 and 48 hours postdose. The results (percent of dose) are shown in Table 4. (The data are expressed as ug N-ethy. USE equivalents/g of tissue in Appendix 6.) Peces data from Table 1 for these 6 rats are repeated in Table 4. The mean total carbon-14 content of feces plus digestive tract with contents is 38.3% of the dose at 24 hours postdose. However, the tissues and contents of the digestive tracts at 48 hours postdose contain a mean of 11.4% of the dose, and since the transit time of rats is faster than 48

Analtech, 75 Blue Hen Drive, Newark, Delaware. Modified TSS: 25.2 g PPO, 1.01 g Dimethyl POPOP, and 3.8 l toluene.

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309 3MA10053192

Page 6 hours with normal rates of excretion (see Appendix 7 and Appendix 7 -Table 1), it is probable that the 11.4% of the dose observed at 48 hours is not unabsorbed N-ethyl FOSE-14C; the 11.4% of the dose likely comprises carbon-14 labeled material associated with the tissues of the digestive tract and carbon-14 labeled material in the feces as a result of absorption of N-ethyl FOSE-14C with subsequent elimination via bile. It follows that some of the carbon-14 in feces before 48 hours is likely absorbed N-ethyl FOSE-14C and then excreted N-ethyl FOSE derived material. Thus, the absorption of N-ethyl POSE = 14C is probably greater than 70%. The results of analyses of liver, spleen, kidneys, lungs, and red blood cells for carbon-14 content by combustion and for carbon-14 in plasma by direct counting are shown in Table 5 for individual rats in all groups. (The data are expressed as percent of dose). Also included in Table 5 are results of analyses for carbon-14 content of digestive tract and carcass of rats sacrificed at 24 and 48 hours postdose. The data from analyses of liver, spleen, kidneys, lungs, red blood cells, plasma, bone marrow, digestive tract, carcass, subcutaneous fat, abdominal fat, and muscle are normalized to a 10 mg/kg dose and are shown in Table 6 as μ g N-ethyl FOSE-14C equivalents/g of tissue. [The same data (not normalized) are listed in Appendix 8]. Mean total recovery of radioactivity from rats sacrificed at 24 hours and 48 hours [sum of amount in tissue (Table 5) and amount excreted (Table 3)] was 86%. Since a correction for recovery from the combustion analyses was made, these results seem low. It is probable that some of the N-ethyl FOSE-14C and/or its metabolites were lost during preparation of the samples (N-ethyl FOSE-14C is slightly volatile at room temperature). From Table 5, it is apparent that as with FC-807 (3), potassium perfluorooctanesulfonate (4), and ammonium perfluorooctanoate (5) a significant portion (mean, 9.5%) of the dose of carbon-14 is retained in the liver at 32 days after a single oral dose of the labeled compound. The mean log carbon-14 levels (normalized to a 10 mg/kg dose) in liver and plasma are plotted versus time in Figure 1 for groups of rats (3 rats/group). The ratio (liver/plasma) of carbon-14 levels are plotted versus time in Figure 2. From Figure 2, it is apparent that the liver/plasma ratio is not constant and the

> equilibrium is not established until 16 days postdose. Selective retention of a biotransformation product in the liver with more rapid clearance of N-sthyl FOSE-14C and/or other metabolites would be a possible explanation for this pattern. At 32 days after a single oral dose of N-ethyl FOSE-14C, the mean liver/plasma, spleen/plasma, and bone marrow/plasma carbon-14 level ratios were 11.8, C.4, and O.4, respectively. At 124 days after a single iv dose of FC-807-14C, the mean liver/plasma, spleen/plasma, and bone marrow/plasma carbon-14 level ratios were 22.1, 202.8, and 48.1, respectively. Thus, the pattern of distribution of carbon-14 after FC-807-¹⁴C administration is so different from the pattern after N-ethyl FOSE-¹⁴C administra-

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

tion that despite the two different routes of administration (oral versus iv) and the difference in duration of the experiments (time from dosing to sacrifice), it is probable that FC-807 biotransformation is more complex than a simple conversion to N-ethyl FOSE by hydrolysis of the phosphorus-oxygen bond with subsequent biotransformation of the released alcohol as N-ethyl FOSE.

The mean liver/plasma, spleen/plasma, and bone marrow/plasma carbon-14 level ratios calculated from data reported for potassium perfluorooctanesulfonate (6) are 9.3, 0.2, and 0.2, respectively, at 89 days after a single intravenous dose. Thus, in contrast to the tissue carbon-14 ratio data from FC-807, the perfluorooctanesulfonate-14C tissue/plasma ratio data are similar to the N-ethyl FOSE-14C tissue/plasma ratio data. Although perfluorooctanesulfonate is shown to be a metabolite of N-ethyl FOSE (see below, this report), these tissue/plasma ratio similarities should not be interpreted as evidence that the carbon-14 labeled material at later times (32 days) in liver is due only to perfluorooctanesulfonate.

The half-life of the disappearance from plasma of carbon-14 from day 1 to day 16 (Figure 1) is 7.5 days after N-ethyl FOSE-14C administration. However, after day 16 the disappearance is much slower since the mean carbon-14 levels on day 32 are about the same as the mean levels on day 16 (2.2 µg equivalents on day 16, 2.1 µg equivalents on day 32). The plasma half-life value of 7.5 days for CB1bon-14 after N-ethyl FOSE-14C oral administration is the same as that reported for carbon-14 after oral administration of potassium perfluorcoctanesulfonate-14C to male rats (estimated from day 1 to day 6) (4). As with N-ethyl FOSE-14C, it is apparent that sometime after a few days (>6 days) the rate of disappearance of carbon-14 from plasma after administration of perfluorooctanesulfonate-14C decreases to a much lower rate.

Overall the pattern of carbon-14 distribution in tissue and the half-life values for the first few days post oral dosage are similar for N-ethyl FOSE-14C and potassium perfluorooctanesulfonate-14C. In addition, for both compounds, the rates of disappearance of carbon-14 seem to decrease so that later plasma values for carbon-14 levels are somewhat higher than would be predicted from the earlier levels and the half-life values. Thus for these compounds in rats (and likely other species), predictions of plasma levels at later times based on half-life estimates of elimination from plasma are inaccurate and should not be attempted.

The change in rate of elimination of total carbon-14 from plasma is not unique to N-ethyl FOSE-14C and perfluorooctanesulfonate-14C; it is quite common for other compounds.

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309 3MA10053194

Isolation and Identification of Metabolites

The liver homogenate pool (9:1, water/tissue) from rats sacrificed at 48 hours after a single oral dose of N-ethyl FOSE-14C was extracted with ether (Fraction 1) then with acid-ether (Fraction 2); after filtration, the filter cake was extracted with chloroformmethanol 1:1 (Fraction 3). The parcent of carbon-14 extracted from the liver homogenate for each fraction was: Fraction 1, 30.1%; Fraction 2, 25.1%; and Fraction 3, 11.8%. The water layer separated by filtration before the 1:1 chloroform-methanol extraction of the filter cake contained no detectable carbon-14 (0%). Thus, of the 1052 µg equivalents of N-ethyl FOSE-14C present in the feces pool, 705 µg equivalents (67%) was extracted.

The 3 fractions were chromatographed on separate silica gel columns and the columns were eluted successively with chloroform (Eluate A); 1:1 chloroform-methanol (Eluate B); and methanol (Eluate C). There was very little carbon-14 removed from any of the columns by methanol (Eluate C). For each of the liver homogenate extractions that were chromatographed on a silica gel column, there are two column eluates (A and B) containing carbon-14. The relative carbon-14 content of Eluates A and B for each fraction are shown in Table 7.

The six column fractions (Eluates A and B) were chromatographed by thin-layer chromatography. Radiochromatograms from thin-layer chromatography of these six fractions are shown in Figures 3-12. When chromatographed in the same solvent system (100 chloroform, 35 methanol, 5 ammonium hydroxide) (Figures 3-5), the three column eluates (B's) from the three extractions (ether, acid-ether, 1:1 chloroform-methanol) each have one major peak, and comparison of the radiochromatograms suggests that each contain the same metabolite. The extraction Fraction 2 (acid-ether) Eluate B was chromatographed in a second solvent system (100 butanol, 10 acetic acid, 10 water) (Figure 6) and in a third solvent system (100 chloroform, 100 methanol, and 2 acetic acid) (Figure 7). The three radiochromatograms of Fraction 2 Eluate B indicate that the radiochemical purity of the metabolite is ~95%.

The extraction Fraction 2 (acid-ether) Eluate B (chloroform-methanol) was labeled metabolite Fraction I and submitted to S. Pathre of the Central Analytical Laboratory for ¹⁹F-NMR analysis on the Varian XL-100 and XL-200 Spectrometers. The results are reported in Appendix 9; the metabolite was identified as the perfluorooctane-sulfonate anion.

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

3MA10053195

From the percent of total carbon-14 extracted from the liver homogenate pool (67%) and the total carbon-14 recovered from the columns in 1:1 chloroform-methanol and the percent composition of these eluates by thin-layer chromatography (95%) it can be estimated that at least 22% of the carbon-14 in liver at 48 hours after a single dose of N-ethyl FOSE-14C is due to perfluorooctanesulfonate-14C. It is quite likely that due to loss during extraction and to loss during chromatography that the actual amount of perfluorooctanesulfonate is somewhat greater than 22%.

The chloroform column eluates from the three extraction fractions were chromatographed using thin-layer chromatography in the same solvent system (100 chloroform, 35 methanol, 5 ammonium hydroxide) (Figures 8-10). As with the chloroform-methanol eluates, comparison of the three column eluates suggests that most of the carbon-14 is the same metabolite. The extraction Fraction 1 (ether) Eluate A was chromatographed in a second solvent system (100 butanol, 10 acetic acid, 10 water) (Figure 11) and in a third solvent system (100 chloroform, 100 methanol, and 2 acetic acid) (Figure 12).

The extraction Fraction 1 (ether) Eluste A (chloroform) was labeled metabolite Fraction II and submitted to S. Pathre of the Central Analytical Laboratory for ¹⁴F-NMR analysis on the Varian XL-100 and XL-200 Spectrometers. The results are reported in Appendix 9. The metabolite was tentatively identified as perfluoroctanesulfonamide. Similar to the calculation for perfluoroctanesulfonate, it can be estimated that at least 32% of the carbon-14 present in liver at 48 hours after a single oral dose of N-ethyl FOSE-¹⁴C is metabolite Fraction II.

Further refinement of these extractions and separations would likely result in a higher estimate of the percentage of perfluorooctanesulfonate and the metabolite tentatively identified as perfluorooctanesulfonamide with respect to the total carbon-14 present. However, since these estimates establish that the two metabolites are present in substantial quantities, further refinement of the extraction and separation is not planned. The presence of other peaks in radiochromatograms (Figures 8-10) and the 33% of the carbon-14 in the liver homogenate that was not extractable by these conditions indicate that other unidentified metabolites are present.

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

3MA10053196

References

- Johnson, JD and Behr, FE: Synthesis and Characterization of N-Ethyl FOSE-¹⁴C (Report), December 11, 1980.
- Thompson, RC and Hollis, OL: Irradiation of the Gastrointestinal Tract of the Rat by Ingested Ruthenium-106. Am J Physiol <u>194</u>, 308-312, 1958.
- Johnson, JD: Absorption of FC-807-14C in Rats After a Single Oral Dose (Report), July 10, 1979.
- Johnson, JD: Absorption of FC-95-14C in Rats After a Single Oral Dose (Report), October 26, 1979.
- Johnson, JD: Absorption of FC-143-14C in Rats After a Single Oral Dose (Report), December 28, 1979.
- Johnson, JD: Extent and Route of Excretion and Tissue Distribution of Total Carbon-14 in Rats After a Single Intravenous Dose of FC-95-¹⁴C (Report), December 28, 1979.
- Altman, PL and Dittmer, DS: <u>Blood and Other Body Fluids</u>. Bethesda, Maryland, Federation of American Societies for Experimental Biology, 1971, p.5.

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

3MA10053197

Ĥ

List of Tables, Pigures, and Appendices

- Table 1: Cumulative Excretion of Total Carbon-14 in Feces After an Oral Dose of N-Ethyl FOSE-¹⁴C in Feed to Rats (Mean Dose, 10.13 mg/kg)
- Table 2: Cumulative Excretion of Total Carbon-14 in Urine After an Oral Dose of N-Ethyl FOSE-¹⁴C in Feed to Rats (Mean Dose, 10.13 mg/kg)
- Table 3: Cumulative Excretion of Total Carbon-14 in Urine and Feces After an Oral Dose of N-Ethyl FOSE-¹⁴C in Feed to Rats (Mean Dose, 10.13 mg/kg)
- Table 4: Carbon-14 Content in Digestive Tract (plus contents) and Feces After an Oral Dose of N-Ethyl FOSE-14C in Feed to Rats (Mean Dose, 10.13 mg/kg) at 24 and 48 Hours Fostdose
- Table 5: Carbon-14 Content in Tissues After an Oral Dose of N-Ethyl FOSE-¹⁴C in Feed to Rats (Mean Dose, 10.13 mg/kg)
- Table 6: Carbon-14 Content in Tissues After an Oral Dose of N-Ethyl FOSE-¹⁴C in Feed to Rats (Mean Dose, 10.13 mg 'kg)
- Table 7: Relative Carbon-14 Content of Eluates A and B for Extraction Fractions 1, 2, and 3
- Figure 1: Mean Log Carbon-14 Levels (Normalized to a 10 mg/kg Dose) in Liver and Plasma of Rats (Groups of 3) at 1, 2, 4, 8, 16, and 32 Days Post Oral Dose of N-Ethyl FOSE-14C in Feed NB-53102-43-44, NB-56531-5
- Figure 2: Ratio of Carbon-14 Level in Liver/Carbon-14 Level in Plasma of Rats (Groups of 3) at 1, 2, 4, 8, 16, and 32 Days Post Oral Dose of N-Ethyl FOSE-¹⁴C in Feed NB-53102-43-44, NB-56531-5
- Figure 3: Thin-Loyer Radiochromatogram of Extraction Fraction 1 (ether) Eluate B (1:1 chloroform-methanol) NB-51579-36
- Figure 4: Thin-Layer Radiochromatogram of Extraction Fraction 2 (acid-ether) Eluate B (1:1 chloroform-methanol) NB-51579-36
- Figure 5: Thin-Layer Radiochromatogram of Extraction Fraction 3 (1:1 chloroform-methanol) Eluate B (1:1 chloroform-methanol) NB-51579-36
- Figure 6: Thin-Layer Radiochromatogram of Extraction Fraction 2 (acid-ether) Eluate B (1:1 chloroform-methanol) NB-51579-35

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309 3MA10053198

List of Tables, Figures, and Appendices (Con't)

- Figure 7: Thin-Layer Radiochromatogram of Extraction Fraction 2 (acid-ether) Eluate B (1:1 chloroform-methanol) NB-51579-35
- Figure 8: Thin-Layer Radiochromatogram of Extraction Praction 1 (ether) Eluate A (chloroform) NB-51579-36
- Figure 9: Thin-Layer Radiochromatogram of Extraction Fraction 2 (acid-ether) Eluate A (chloroform) NB~51579-36
- Figure 10: Thin-Layer Radiochromatogram of Extraction Fraction 3 (1:1 chloroform-methanol) Eluate A (chloroform) NB-51579-36
- Figure 11: Thin-Layer Radiochromatogram of Extraction Fraction 1 (ether) Eluate A (chloroform) NB-51579-35
- Figure 12: Thin-Layer Radiochromatogram of Extraction Fraction 1 (ether) Eluate A (chloroform) NB-51579-35
- Appendix 1-Table 1: Thin-Layer Chromatography Systems for N-Ethyl FOSE-14C NB-51806-41
- Appendix 1-Figure 1: Thin-Layer Radiochromatogram of N-Ethyl FOSE-14C Dosing Solution, Plate Nc. 1 NB-51806-42
- Appendix 1-Figure 2: Thin-Layer Radiochromatogram of N-Ethyl POSE-14C Dosing Solution, Plate No. 2 NB-51806-42
- Appendix 1-Figure 3: Thin-Layer Radiochromatogram of N-Ethyl FOSE-14C Dosing Sclution, Plate No. 3 NB-51806-42
- Appendix 1-Figure 4: Thin-Layer Radiochromatogram of N-Ethyl FOSE-¹⁴C Dosing Solution, Plate No. 4 NB-51806-42
- Appendix 1-Figure 5: Thin-Layer Radiochromatogram of N-Ethyl FOSE-14C Dosing Solution, Plate No. 5 NB-51806-42
- Appendix 2: Determination of Carbon-14 Content of N-Ethyl FOSE-¹⁴C Dose/Feed Mixture
- Appendix 2-Table 1: Carbon-14 Content of N-Ethyl FOSE-14C Dose/Feed Mixture
- Appendix 3: Rat Weights and Amount of N-Ethyl FOSE-14C Dose/Feed Mixture Administered to Each Rat

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309 3MA10053199

List of Tables, Figures, and Appendices (Con't)

- Appendix 4: Determination of Recovery of Total Carbon-14 From Blank Biological Samples Spiked With N-Ethyl FOSE-14C
- Appendix 4-Table :: Recovery of Total Carbon-14 From Blank Biological Samples Spiked With N-Ethyl FOSE-¹⁴C, Combustion Set No. 1
- Appendix 4-Table 2: Recovery of Total Carbon-14 From Blank Biological Samples Spiked With N-Ethyl FOSE-¹⁴C, Combustion Set No. 2
- Appendix 4-Table 3: Recovery of Total Carbon-14 From Blank Biological Samples Spiked With N-Ethyl FOSE-¹⁴C, Combustion Set No. 3
- Appendix 4-Table 4: Recovery of Total Carbon-14 From Blank Biological Samples Spiked With N-Ethyl FOSE-¹⁴C, Combustion Set No. 4
- Appendix 5-Table 1: Total Carbon-14 in Feces After an Oral Dose of N-Ethyl FOSE-14C in Feed to Rats (Mean Dose, 10.13 mg/kg)
- Appendix 5-Table 2: Total Carbon-14 in Urine After an Oral Dose of N-Ethyl FOSE-¹⁴C in Feed to Rats (Mean Dose, 10.13 mg/kg)
- Appendix 6: Carbon-14 Content in Digestive Tract (plus contents) and Feces After an Oral Dose of N-Ethyl FOSE-¹⁴C in Feed to Rats (10.13 mg/kg)
- Appendix 7: Comparative Data Showing Normal Fecal Excretion for Rats
- Appendix 7-Table 1: Comparative Data Showing Normal Fecal Excretion for Rats
- Appendix 8: Carbon-14 Content in Fissues After an Oral Dose of N-Ethyl FOSE-14C in Feed to Rats (Mean Dose, 10.13 mg/kg)
- Appendix 9: Report of Central Analytical Laboratory Analysis of Metabolite Fractions I and II

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309 3MA10053200

Table 1

Cumulative Excretion of Total Carbon-14 in Feces After an Oral Dose of N-Ethyl FOSE-14C in Feed to Rats (Mean Dose, 10.13 mg/kg)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0-1 $29.9k^{a}$ $1 Day Group$ 12.41 22.55 21.65 ± 8 0-1 18.99 15.60 11.80 15.46 ± 3 1-2 34.73 28.98 20.59 28.10 ± 7 0-1 7.74 5.27 9.53 7.51 ± 2 1-2 14.04 12.32 16.89 14.42 ± 2 2-3 20.03 17.78 21.74 19.85 ± 1 3-4 23.56 22.48 26.08 24.04 ± 1 0-1 2.36 7.71 4.31 4.79 ± 2 1-2 5.61 27.16 12.70 15.16 ± 10.42 2-3 25.77 38.21 20.32 28.10 ± 9 1-2 5.61 27.16 12.70 15.16 ± 10.42 2-3 25.77 38.21 20.32 28.10 ± 9 3-4 37.41 44.41 26.15 $32.92.7$ 40.44 ± 10.42 5-6 47.14 52.55 32.52 44.07 ± 10.5 6-7 50.65 54.86 35.83 47.11 ± 10.4		u = r	-	-		-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		50 00 ^a	1 Day Group	00 FF	21 65 4	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0-1	29.98-	12.41	22.55	21.65 +	8.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0-1 1-2 18.99 15.60 11.80 15.46 + 3.4 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2			2 Day Group			
$1-2$ 34.73 28.98 20.59 28.10 ± 7 $0-1$ 7.74 5.27 9.53 7.51 ± 2 $1-2$ 14.04 12.32 16.89 14.42 ± 2 $2-3$ 20.03 17.78 21.74 19.85 ± 1 $3-4$ 23.56 22.48 26.08 24.04 ± 1 $0-1$ 2.36 7.71 4.31 4.79 ± 2 $1-2$ 5.61 27.16 12.70 15.16 ± 10 $2-3$ 25.77 38.21 20.32 28.10 ± 9 $3-4$ 37.41 44.41 26.15 35.99 ± 9 $3-4$ 37.41 44.41 26.15 35.99 ± 9 $4-5$ 42.83 49.21 29.27 40.44 ± 10 $5-6$ 47.14 52.55 32.52 44.07 ± 10 $6-7$ 50.65 54.86 35.83 47.11 ± 10 $7-8$ 53.36 56.35 38.77 49.49 ± 9 $0-16$ 66.27 16 Day $Group$ $0-16$ 63.88 47.62 $56.72 - 56.07 \pm 8$ $16-32$ 66.73 56.93 59.36 61.01 ± 5	1-2 34.73 28.98 20.59 28.10 ± 7.5 0-1 7.74 5.27 9.53 7.51 ± 2.1 1-2 14.04 12.32 16.69 14.42 ± 2.3 2-3 20.03 17.78 21.74 19.85 ± 1.5 3-4 23.56 22.48 26.08 24.04 ± 1.6 0-1 2.36 7.71 4.31 4.79 ± 2.7 1-2 5.61 27.16 12.70 15.16 ± 10.5 2-3 25.77 38.21 20.32 28.10 ± 9.1 3-4 37.41 44.41 26.15 35.99 ± 9.2 $4-5$ 42.83 49.21 29.27 40.44 ± 10.1 $5-6$ 47.14 52.55 32.52 44.07 ± 10.3 $6-7$ 50.65 54.86 35.83 47.11 ± 10.0 $7-8$ 53.36 56.35 38.77 49.49 ± 9.4 $0-16$ 66.27 60.39 62.79 63.15 ± 2.9 $0-16$ 63.86 47.62 $56.72 - 56.07 \pm 8.1$ $16-32$ 66.73 56.93 59.36 61.01 ± 5.1 4 Data are expressed as percent of dose excreted during collection period.Notebook Reference: NE-55673-37 and 38	0-1	18.99	15.60	11.80	15.46 +	3.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1-2	34.73	28.98	20.59	28.10 -	7.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			4 Day Group			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-214.0412.3216.8914.42 +2.32-320.0317.7821.7419.85 +1.93-423.5622.4826.0824.04 +1.80-12.367.714.314.79 +2.71-25.6127.1612.7015.16 +10.92-325.7738.2120.3228.10 +9.13-437.4144.4126.1535.99 +9.24-542.8349.2129.2740.44 +10.15-647.1452.5532.5244.07 +10.36-750.6554.8635.8347.11 +10.07-853.3656.3538.7749.49 +9.40-1666.27 $\frac{16}{60.39}$ 62.7963.15 +2.90-1663.88 $\frac{32}{56.93}$ 59.3661.01 +5.116-3266.7356.9359.3661.01 +5.1aData are expressed as percent of dose excreted during collection period.Notebook Reference:NB-55673-37 and 38	0-1	7.74	5.27	9.53	7,51 +	2.1
2-3 3-4 20.03 17.78 21.74 19.85 $+$ 1 3-4 23.56 22.48 26.08 24.04 $+$ 1	2-3 3-4 20.03 17.78 21.74 19.85 $+$ 1.5 2.3 23.56 22.48 26.08 24.04 $+$ 1.6 2.3 23.56 22.48 26.08 24.04 $+$ 1.6 2.7 1-2 2.36 7.71 4.31 4.79 $+$ 2.7 1.516 $+$ 10.5 2-3 25.77 38.21 20.32 28.10 $+$ 9.1 3-4 37.41 44.41 26.15 35.99 $+$ 9.2 4-5 42.83 49.21 29.27 40.44 $+$ 10.1 5-6 47.14 52.55 32.52 44.07 $+$ 10.3 6-7 50.65 54.86 35.83 47.11 $+$ 10.0 7-8 53.36 56.35 38.77 49.49 $+$ 9.4 0-16 66.27 <u>16 Day Group</u> 0-16 63.88 <u>32 Day Group</u> 0-16 63.88 <u>32 Day Group</u> 0-16 63.88 <u>32 Day Group</u> 0-16 63.88 <u>32 Day Group</u> 0-16 64.73 56.93 59.36 61.01 $+$ 5.1 <u>35</u> 38.77 49.49 $+$ 9.4 2.9 2.7 55.72 56.72 56.72 56.07 $+$ 8.1 61.01 $+$ 5.1 <u>35</u> 38.77 49.49 49.49 51.75 51.7	1-2	14.04	12.32	16.89	14.42 +	2.3
3-4 23.56 22.48 26.08 24.04 ± 1 0-1 2.36 7.71 4.31 4.79 ± 2 1-2 5.61 27.16 12.70 15.16 ± 10 2-3 25.77 38.21 20.32 28.10 ± 9 3-4 37.41 44.41 26.15 35.99 ± 9 4-5 42.83 49.21 29.27 40.44 ± 10 5-6 47.14 52.55 32.52 44.07 ± 10 6-7 50.65 54.86 35.83 47.11 ± 10 7-8 53.36 56.35 38.77 49.49 ± 9 0-16 66.27 $\frac{16 \text{ Day Group}}{60.39}$ 62.79 63.15 ± 2 0-16 63.88 47.62 56.72 $- 56.07 \pm 8$ 56.35 16-32 66.73 56.93 59.36 61.01 ± 5	3-423.5622.4826.08 24.04 ± 1.8 0-12.36 7.71 4.31 4.79 ± 2.7 1-25.61 27.16 12.70 15.16 ± 10.9 2-3 25.77 38.21 20.32 28.10 ± 9.1 3-4 37.41 44.41 26.15 35.99 ± 9.2 4-5 42.83 49.21 29.27 40.44 ± 10.1 5-6 47.14 52.55 32.52 44.07 ± 10.3 6-7 50.65 54.86 35.83 47.11 ± 10.0 7-8 53.36 56.35 38.77 49.49 ± 9.4 0-16 66.27 16 Day Group 62.79 63.15 ± 2.9 0-16 66.73 56.93 59.36 61.01 ± 5.1 $\frac{32}{16.32}$ 66.73 56.93 59.36 61.01 ± 5.1 $\frac{a}{2}$ Data are expressed as percent of dose excreted during collection period.Notebook Reference:NE-55673-37 and 38	2-3	20.03	17.78	21.74	19.85 +	1.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3-4	23.56	22.48	26.08	24.04 +	1.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0-1 2.36 7.71 4.31 4.79 ± 2.7 1-2 5.61 27.16 12.70 15.16 ± 10.9 2-3 25.77 38.21 20.32 28.10 ± 9.1 3-4 37.41 44.41 26.15 35.99 ± 9.2 4-5 42.83 49.21 29.27 40.44 ± 10.1 5-6 47.14 52.55 32.52 44.07 ± 10.3 6-7 50.65 54.86 35.83 47.11 ± 10.0 7-8 53.36 56.35 38.77 49.49 ± 9.4 0-16 66.27 $\frac{16 \text{ Day Group}}{60.39}$ 62.79 63.15 ± 2.9 0-16 63.88 $\frac{47.62}{56.93}$ 56.72 - 56.07 ± 8.1 51.01 ± 5.1 $\overline{16-32}$ 66.73 56.93 59.36 61.01 ± 5.1 $\overline{2}$ Data are expressed as percent of dose excreted during collection period. Notebook Beference: NB-55673-37 and 38			8 Day Group			
$1-2$ 5.61 27.16 12.70 15.16 10 $2-3$ 25.77 38.21 20.32 28.10 $+$ 9 $3-4$ 37.41 44.41 26.15 35.99 $+$ 9 $4-5$ 42.83 49.21 29.27 40.44 $+$ 10 $5-6$ 47.14 52.55 32.52 44.07 $+$ 10 $6-7$ 50.65 54.86 35.83 47.11 $+$ 10 $7-8$ 53.36 56.35 38.77 49.49 $+$ 9 $0-16$ 66.27 $\frac{16}{60.39}$ 62.79 63.15 $+$ 2 $0-16$ 63.88 47.62 56.72 -56.07 $+$ 8 $16-32$ 66.73 56.93 59.36 61.01 $+$ 5	1-25.6127.1612.7015.1610.92-325.7738.2120.3228.10 $+$ 9.13-437.4144.4126.1535.99 $+$ 9.24-542.8349.2129.2740.44 $+$ 10.15-647.1452.5532.5244.07 $+$ 10.36-750.6554.8635.8347.11 $+$ 10.07-853.3656.3538.7749.49 $+$ 9.40-1666.27 $\frac{16}{60.39}$ 62.7963.15 $+$ 2.90-1663.88 $\frac{32}{47.62}$ 56.72 -56.07 $+$ 8.116-3266.7356.9359.3661.01 $+$ 5.1 $\frac{a}{2}$ Data are expressed as percent of dose excreted during collection period.Notebook Reference:NE-55673-37 and 38	0-1	2.36	7.71	4.31	4.79 +	2.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2-3 25.77 38.21 20.32 28.10 \pm 9.1 3-4 37.41 44.41 26.15 35.99 \pm 9.2 4-5 42.83 49.21 29.27 40.44 \pm 10.1 5-6 47.14 52.55 32.52 44.07 \pm 10.3 6-7 50.65 54.86 35.83 47.11 \pm 10.0 7-8 53.36 56.35 38.77 49.49 \pm 9.4 0-16 66.27 $\frac{16 \text{ Day Group}}{60.39}$ 62.79 63.15 \pm 2.9 0-16 63.88 $\frac{32 \text{ Day Group}}{47.62}$ 56.72 \pm 56.07 \pm 8.1 16-32 66.73 56.93 59.36 61.01 \pm 5.1 $\frac{a}{2}$ Data are expressed as percent of dose excreted during collection period.	1-2	5.61	27.16	12.70	15.16 +	10.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2-3	25.77	38.21	20.32	28.10 +	9.1
$4-5$ 42.83 49.21 29.27 40.44 $+10$ $5-6$ 47.14 52.55 32.52 44.07 $+10$ $6-7$ 50.65 54.86 35.83 47.11 $+10$ $7-8$ 53.36 56.35 38.77 49.49 $+9$ $0-16$ 66.27 $\frac{16 \text{ Day Group}}{60.39}$ 62.79 63.15 $+2$ $0-16$ 63.88 $\frac{32 \text{ Day Group}}{47.62}$ 56.72 -56.07 $+8$ $16-32$ 66.73 56.93 59.36 61.01 $+5$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3-4	37.41	44.41	26.15	35.99 +	9.2
5-6 47.14 52.55 32.52 44.07 $\frac{1}{+}$ 10 6-7 50.65 54.86 35.83 47.11 $\frac{1}{+}$ 10 7-8 53.36 56.35 38.77 49.49 $\frac{1}{+}$ 9 0-16 66.27 $\frac{16 \text{ Day Group}}{60.39}$ 62.79 63.15 $\frac{1}{+}$ 2 0-16 63.88 $\frac{32 \text{ Day Group}}{47.62}$ 56.72 -56.07 $\frac{1}{+}$ 8 16-32 66.73 56.93 59.36 61.01 $\frac{1}{+}$ 5	5-6 47.14 52.55 32.52 44.07 \pm 10.3 6-7 50.65 54.86 35.83 47.11 \pm 10.0 7-8 53.36 56.35 38.77 49.49 \pm 9.4 0-16 66.27 $\frac{16 \text{ Day Group}}{60.39}$ 62.79 63.15 \pm 2.9 0-16 63.88 $\frac{32 \text{ Day Group}}{47.62}$ 56.72 -56.07 \pm 8.1 16-32 66.73 56.93 59.36 61.01 \pm 5.1 $\frac{a}{2}$ Data are expressed as percent of dose excreted during collection period. Notebook Reference: NB-55673-37 and 38	4-5	42.83	49.21	29.27	40.44 +	10.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5-6	47.14	52.55	32.52	44.07 +	10.3
7-8 53.36 56.35 38.77 $49.49 + 9$ $0-16$ 66.27 16 Day Group 62.79 $63.15 + 2$ $0-16$ 63.88 47.62 $56.72 - 56.07 + 8$ $16-32$ 66.73 56.93 59.36 $61.01 + 5$	$7-8$ 53.36 56.35 38.77 49.49 ± 9.4 $0-16$ 66.27 $\frac{16 \text{ Day Group}}{60.39}$ 62.79 63.15 ± 2.9 $0-16$ 63.88 $\frac{32 \text{ Day Group}}{47.62}$ $56.72 - 56.07 \pm 8.1$ $16-32$ 66.73 56.93 59.36 61.01 ± 5.1 $\frac{a}{2}$ Data are expressed as percent of dose excreted during collection period. NB=55673=37 and 38	6-7	50.65	54.86	35.83	47.11 +	10.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0-16 66.27 $\frac{16 \text{ Day Group}}{60.39}$ 62.79 63.15 \pm 2.9 0-16 63.88 $\frac{32 \text{ Day Group}}{47.62}$ 56.72 $-56.07 \pm$ 8.1 16-32 66.73 56.93 59.36 61.01 \pm 5.1 $\frac{a}{2}$ Data are expressed as percent of dose excreted during collection period.	7-8	53.36	56.35	38.77	49.49 <u>+</u>	9.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0-16 66.27 60.39 62.79 63.15 \pm 2.9 0-16 63.88 47.62 56.72 $-56.07 \pm$ 8.1 16-32 66.73 56.93 59.36 61.01 \pm 5.1 $\frac{a}{c}$ Data are expressed as percent of dose excreted during collection period.			16 Day Group			
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0-16	66.27	60.39	62.79	63.15 <u>+</u>	2.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0-16 63.88 47.62 56.72 -56.07 + 8.1 16-32 66.73 56.93 59.36 61.01 + 5.1 <u>a</u> Data are expressed as percent of dose excreted during collection period. Notebook Reference: NB-55673-37 and 38			32 Day Group			
16-32 66.73 56.93 59.36 61.01 \pm 5	 16-32 66.73 56.93 59.36 61.01 ± 5.1 <u>a</u> Data are expressed as percent of dose excreted during collection period. Notebook Reference: NB-55673-37 and 38 	0-16	63.88	47.62	56.72	56.07 +	8.1
	 <u>a</u> Data are expressed as percent of dose excreted during collection period. Notebook Reference: NB-55673-37 and 38 	16-32	66.73	56.93	59.36	61.01 <u>+</u>	5.1
	 Data are expressed as percent of dose excreted during collection period. Notebook Reference: NB-55673-37 and 38 		<u></u>				
<u>a</u> Data are expressed as percent of dose excreted during	collection period.	<u>a</u> Data ar	e expressed as p	ercent of dose	excreted (during	
collection period.	Notebook Reference: NB-55673-37 and 38	collect	ion period.				
Notebook Reference: NB-55673-37 and 38	HULLOON HEREIGHER. HE STOLD ST WHO SS	Notebook R	eference: NB-55	673-37 and 38			
•							
•							
•				· •	n nnm		75 1 1 1 1 1 1
				11 1	日 日子所有为花	2 1 2	

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

3MA10053201

11

2813.0016

9

.

Table 2

Cumulative Excretion of Total Carbon-14 in Urine After an Oral Dose of N-Ethyl FOSE-14C in Feed to Rats (Mean Dose, 10.13 mg/kg)

0.0 0.0
0.0
0.0
0.0
0.0
0.03
0.0
0.02
0.02
0.04
0.02
0.02
0.03
0.13
0.18
0.19
0.20
0.19
0.75
0.56

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

2813.0017

and the second second

a linder

Table 3

Cumulative Excretion of Total Carbon-14 in Urine and Feces After an Oral Dose of N-Ethyl FOSE-14C in Feed to Rats (Mean Dose, 10.13 mg/kg)

Collection	1	Rat Identificati	lon	Marn + S D		
Period (Days)	A		C	Mean _ 5.5		
		1 Day Group				
0.1	30 11 <u>a</u>	12 53	22.66	21.77 + 8.82		
0-1	50.11-	12.33	22.000			
		2 Day Group				
0-1	19.13	15.69	11.91	15.58 + 3.6		
1-2	34.96	29.15	20.79	28.30 + 7.1.		
		4 Day Group				
0-1	7.85	5.37	9.64	7.62 + 2.1		
1-2	14.29	12.56	17.11	14.65 + 2.3		
2-3	20.39	13.12	22.07	20.19 <u>+</u> 1.9		
3-4	24.06	22.92	26.51	24.50 <u>+</u> 1.8		
		8 Day Group				
0-1	2.46	7.77	4.40	4.88 + 2.6		
1-2	5.78	27.34	12.91	15.34 + 10.9		
2-3	26.07	38.49	20.66	28.41 + 9.1		
3-4	38.03	44.77	26.59	36.46 + 9.1		
4-5	43.71	49.82	29.80	41.11 + 10.2		
5-6	4B.11	53.22	33.13	44.82 + 10.4		
6-7	51.71	55.58	36.54	47.94 + 10.0		
7-8	54.4B	57.12	39.58	50.39 ± 9.4		
		16 Day Group	•			
0-16	68.72	61.58	63.89	64.73 <u>+</u> 3.6		
		32 Day Group				
0-22	. 68 58	59.62	60.98	63.06 + 4.8		
0-32	00.00	JJ. 02				
<u>a</u> Data are exp collection p	ressed as p eriod.	ercent of dose	excreted	during		
Notebook Refere	nce: NB-55	673-39 and 40 '				
				a a an dui à sait 5 di 2		
			~ ~ *			
		3M	CON	IUENHAL		
		3M	CONI	IDENHAL		

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

3MA10053203

4

--.

بندنة

Table 4

Carbon-14 Content in Digestive Tract (plus contents) and Feces After an Oral Dose of N-Ethyl FOSE-14C in Feed to Rats (Mean Dose, 10.13 mg/kg) at 24 and 48 Hours Postdose

Rat Identification	Time Post- Dose (Hours)	Digestive Tract (plus contents)	Feces
1A	24	12.84 ^a	29.98
1B	24	22.40	12.41
1C	24	14.60	22.55
lean <u>+</u> S.D.		16.61 <u>+</u> 5.09	21.65 <u>+</u> 8.82
2 A	48	11.10	34.73
2B	4 8	13.03	28.98
2C	48	10.10	20.59
lean <u>+</u> S.D.		11.41 <u>+</u> 1.49	28.10 + 7.11

<u>a</u> Data are expressed as percent of dose.

Notebook Reference: NB-51806-49-51

4

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

3MA10053204

,i

-1

Table 5

Carbon-14 Content in missues After an Oral Dose of N-Ethyl POSE-14C in Feed to Rats (Mean Dome, 10.13 mg/kg)

Rat Identification	Liver <u>a</u>	Spleen ^a	Kidney s	Lungs-	Red Blood Cells-	Plasma ^C	Digestive Tract ^a	Carcass ^a
18	16.85	0.16	0.71	0.43	6.39	2.55	12.84	18.76
18	17.98	0.13	1.12	0.60	6.80	3.10	22.40	23.48
10	16.95	0.11	0.80	0.39	7.82	2.80	14.60	17.40
Hean	17.26	0.13	0.88	0.47	7.00	2.82	16.61	19.88
23	17 73	0.14	0.65	0.35	5, 99	2.06	11.10	12.30
20	19 73	0 10	0.77	0.40	5.77	2.17	13.03	15.62
20	24.17	0.16	1.00	0.59	3.62	3.32	10.10	19.29
Mean	20.04	0.13	0.81	0.45	5.09	2.52	11.41	15.74
					.		đ	đ
4A	21.59	0.14	0.77	0.43	5.44	2.67		
4B	18.47	0.12	0.98	0.43	5.85	2.96		
4C	17.69	0.13	0.75	0.38	5.74	2.12		
Mean	19.25	0.13	0.83	0.41	5.68	2.78 .		
8A	15.44	0.04	0.32	0.16	2.78	1.15		
8B	12.83	0.04	0.27	0.14	2.37	1.19		
8C	18.30	0.09	0.54	0.36	3.84	2.05		
Mean	15.52	0.06	0.38	0.22	3.00	1.46		
151	9, 52	0.02	0.18	0.09	0.77	0.72		
16B	12.10	0.02	0.16	0.09	0.99	0.85		
160	10.32	0.03	0.27	0.14	1.08	1.16		
Mean	10.65	0.02	0.20	0.11	0.95	0.91		
308	7-84	0.02	0.18	0.07	0.28	0.78		
338	12.71	0.03	0.31	0.13	0.87	1.13		
320	8.04	0.01	D.16	0.07	0.30	0.64		
Mean	9.53	0.02	0.22	0.09	0.48	0.85		

Data are expressed as percent of dose in tissue.

Data are expressed as percent of dose in tissue.
Data are estimates of percent of dose present in red blood cells. Red blood cell volume = 26.3 ml/kg body weight (7).
Data are estimates of percent of dose present in red blood cells. Red blood cell volume = 26.3 ml/kg body weight (7).

26.3 ml/kg body weight (/). C Data are estimates of percent of dose present in plasma. Plasma volume = 31.3 ml/kg body weight (7). d Sample was not taken.

Notebook References: NB-56531-8 and 9, NB-51806-49, and NB-53102-49

3M CONFIDENTIAL

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

3MA10053205

-

Table 6

	Liver ^a	Spleen ^A	Kidney a	Lunge	Cells-	Plasma ⁸	Marrow ^a	Tract ^a	Carcase	Fat-	Fat-	Muscle ^a
	32.4	6.72	8,87	8.07	21.80	7.31	12.31	11.77	2.27	6.40	8.04	0.40
18	48.7	6.88	14.39	11.68	27.24	10.42	14.73	31.41	3.17	7.79	9.51	0.42
10	30.4	6.06	8.54	7.78	25.69	7.74	11.02	10.78	2.03	4.92	6.15	0.34
Mean	37.2	6.55	10.60	9.18	24.91	8.49	12.69	17.99	2.49	6.37	7.90	0.39
21	20.4	5 76	6 70	6 71	19 83	5. 53	10.42	8.27	1.43	3.96	3.26	0.22
28	41 0	4 69	8.00	6.57	20.10	6.36	10.59	12.03	1.93	4.18	3.99	0.37
20	41.4	7.26	10.44	8.76	12.25	9.46	11.35	8.08	2.39	3.95	4.28	0.52
Mean	37.9	5.90	8.38	7.18	17.06	7.12	10.79	9.46	1.92	4.03	3.84	0.37
					10 28	7 52	7 67	b	b	2.15	2.08	1.58
4A	43.1	0.55	8.30	5.00	10.40	7.33	9.80			2.99	1.75	1.36
4D 4C	39.2	6.65	9.54	7.59	19.34	7.69	8.67			1.82	1.74	1.32
Mean	42.0	6.87	9.69	8.16	19.49	8.02	8.81	-	-	2.32	1.86	1.42
										A 53	0 27	. 0. 22
8A	26.1	2.09	3.25	2.79	8.19	2,85	3.2/			0.55	0.3/	0.24
88	24.0	1.75	3.35	2.55	/.40	3.15	2.0J E 49	_		0.50	0.47	0.95
80	33.6	3.87	6.16	0.34	12.27	5.50	5.40			0.07		
Mean	27.9	2.57	4.25	3.89	9.31	3.83	3.86			- 0.73	0.35	0.51
161	20.4	A 81	1 90	1 43	2 18	1.70	0.96			0.03	0.04	0.16
104	20.4	0.84	1.99	1.76	2.95	2.13	D.98			0.13	0.01	0.16
160	26.3	1.08	2.98	2.29	3.16	2.84	1.48			0.35	0.03	0.20
Mean	24.9	0.91	2.28	1.83	2.76	2.22	1,14			0.17	0.03	0.17
					A B ⁴	1 80	0.67			0.09	0.00	0.13
32A	19.7	0./4	1.81	1.01	0.01	1.05	1 24			0.28	0.00	0.28
328	32.8	0.67	3.4/	1 30	4.30 N 84 ·	1 54	0.61			0.06	0.00	0.09
320	20.4	0.02	1.73	1+34	0.00	1	0.01					

Carbon-14 Content in Tissues After an Oral Dose of N-Ethyl FOSE- $^{14}\mathrm{C}$ in Feed to Rats (Hean Dose, 10.13 mg/kg)

 $\frac{a}{b}$ Data is normalized to a 10 mg/kg dose and expressed as ug N-ethyl TOSE-¹⁴C equivalents/g. Sample was not taken.

Notebook References: NB-56531-5 and 6, NB-53102-43 and 44

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

3MA10053206

Table 7

	Fraction 1 (ether)	Fraction 2 (acid-ether)	Fraction 3 (1:1 chloroform-methanol)
Eiuate A chloroform)	938	238	618
Eluate B 1:1 chloroform	198	61%	22%
methanol)			
Total %	112%	842	83%

Relative Carbon-14 Content of Eluates A and B for Extraction Fractions 1, 2 and 3

Notebook Reference: NB-51579-34

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

3MA10053207

.

-

Figure l

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

3MA10053208

Figure 2

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

3MA10053209

Thin-Layer Radiochromatogram of Extraction Fraction 1 (ether) Eluate B (1:1 chloroform-methanol)

Pre-adsorbent SGF Uniplate: 100 chloroform 35 methanol

5 ammonium hydroxide

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309 3MA10053210

Thin-Layer Radiochromatogram of Extraction Fraction 2 (acid ether) Eluate B (1:1 chloroform-methanol)

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

3MA10053211

Thin-Layer Radiochromatogram of Extraction Fraction 3 (1:1 chloroform-methanol) Eluate B (1:1 chloroform-methanol)

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309 3MA10053212

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309 3MA10053213

Thin-Layer Radiochromatogram of Extraction Fraction 2 (acid-ether) Eluate B (1:1 chloroform-methanol)

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309 3MA10053214

q

Thin-Layer Radiochromatogram of Extraction Fraction 1 (ether) Eluate A (chloroform)

Pre-adsorbent SGF Uniplate: 100 chloroform 35 methanol

5 ammonium hydroxide

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

Thin-Layer Radiochromatogram of Extraction Fraction 2 (acid-ether) Eluate A (chloroform)

Pre-adsorbent SGF Uniplate: 100 chloroform 35 methanol

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

3MA10053216

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309 3MA10053217

Thin-Layer Radiochromatogram of Extraction Fraction 1 (ether) Eluate A (chloroform)

Pre-adsorbent SGF Uniplate: 100 butanol 10 water 10 acetic acid

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309 3MA10053218

Thin-Layer Radioc'romatogram of Extraction Fraction 1 (ether) Eluate A (chloroform)

Pre-adsorbent SGF Uniplate: 100 chloroform 100 methanol 2 acetic acid

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

3MA10053219

1

No.	Solvent System	R_{f}^{b} of N-Ethyl POSE-14C
1	100 chloroform 100 acetone	0.70
2	100 chloroform 100 methanol 2 acetic acid ^C	0.90
3	150 chloroform 50 methanol 5 ammonium hydroxide ^C	0.90
4	100 chloroform 35 methanol 5 ammonium hydroxide ^C	1.00
5	100 butanol 10 water 10 acetic acid ^C	0.77
b Rf is of Graphy f C Acetic a Notebook Re	mixture was added to the chro f major (> 98%) peak on the th plate. acid and ammonium hydroxide we eference: NB-51806-41-42	matography tank. in-layer chromato- re concentrated.
solvent <u>b</u> R _f is of graphy <u>p</u> <u>c</u> Acetic a Notebook Re	mixture was added to the chro f major (> 98%) peak on the th plate. acid and ammonium hydroxide we eference: NB-51806-41-42	matography tank. in-layer chromato- re concentrated.
solvent <u>b</u> R _f is of graphy <u>p</u> <u>c</u> Acetic a Notebook Re	mixture was added to the chro f major (> 98%) peak on the th plate. acid and ammonium hydroxide we eference: NB-51806-41-42	matography tank. in-layer chromato- re concentrated.
solvent <u>b</u> R _f is of graphy <u>f</u> <u>c</u> Acetic a Notebook Re	mixture was added to the chro f major (> 98%) peak on the th plate. acid and ammonium hydroxide we eference: NB-51806-41-42	matography tank. in-layer chromato- re concentrated.
solvent <u>b</u> R _f is of graphy <u>p</u> <u>c</u> Acetic a Notebook Re	mixture was added to the chro f major (> 98%) peak on the th plate. acid and ammonium hydroxide we eference: NB-51806-41-42	matography tank. in-layer chromato- re concentrated.
solvent <u>b</u> R _f is of graphy <u>r</u> <u>c</u> Acetic a Notebook Re	mixture was added to the chro f major (> 98%) peak on the th plate. acid and ammonium hydroxide we eference: NB-51806-41-42	matography tank. in-layer chromato- re concentrated.
b Rf is of graphy f <u>C</u> Acetic a Notebook Re	mixture was added to the chro E major (> 98%) peak on the th plate. acid and ammonium hydroxide we eference: NB-51806-41-42	matography tank. in-layer chromato- re concentrated.

Thin-Layer Chromatography Systems for N-Ethyl FOSE- ^{14}C

. .

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

3MA10053220

Thin-Layer Radiochromatogram of N-Ethyl FOSE- C Dosing Solution, Plate No. 1

Pre-adsorbent SGF Uniplate: 100 chloroform 100 acetone

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309 3MA10053221

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309 3MA10053222

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309 3MA10053223

Appendix 1 - Figure 4

Thin-Layer Radiochromatogram of N-Ethyl FOSE- C Dosing Solution, Plate No. 4

Pre-adsorbent SGF Uniplate: 100 chloroform 35 methanol 5 ammonium hydroxide

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309 3MA10053224

Thin-Layer Radiochromatogram of N-Ethyi FOSE- C Dosing Solution, Plate No. 5

Pre-adsorbent SGF Uniplate: 100 butanol 10 water 10 acetic acid

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309 3MA10053225

Appendix 2

Determination of Carbon-14 Content of N-Ethyl FOSE-¹⁴C Dose/Feed Mixture

Five aliquots of the dose/feed mixture were weighed into tared combustion cones and pads— on a five-place analytical balance. The carbon-14 content of the dose/feed aliquots was determined by combustion with a Packard Model 306 Oxidizer. Recovery of carbon-14 was determined to be 84.1% (see Appendix 4 and Appendix 4 - Table 1). This recovery was uniformly low throughout the combustion sample set, thus the data were corrected using this recovery factor.

<u>a</u> Packard Instrument Company, Inc., 2200 Warrenville Road, Downers Grove, Illinois.

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

3MA10053226

ł

· ·

·".

Carbon-14 Content of N-Ethyl FOSE-14C Dose/Feed Mixture

;

µg N−E	thyl FOSE- ¹⁴ C equivalents/g	
	523.69	
	535.61	
	517.61	
	517.37	
	559.24	
Overall 🕱 =	530.7 <u>+</u> 17.58	

Notebook Reference: NB-51806-45

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

3MA10053227

. . . .

Appendix 3

Rat Weights and Amount of N-Ethyl FOSE-14C Dose/Feed Mixture Administered to Each Rat

Rat Identification	Weight (g) at Time of Dose	Amount (g) of Dose/ Feed Mixture Consumed	Dose in mg/kg
1A	236	4.48	10.07
18	221	4.24	10.1B
1C	242	3.61	7.92
2A	231	4.48	10.29
2B	220	4.26	10.28
2C	237	4.49	10.05
4A	315	6.11	10.30
4B	329	6.37	10.28
4C	327	6.34	10.29
8A	270	5.23	10.28
8B	289	5.61	10.30
8C	288	5.58	10.28
16A	280	5.42	10.27
16B	289	5.61	10.30
16C	276	5.35	10.29
32A	317	6.15	10.30
32B	309	5.99	10.29
32C	301	5.84	10.30

Notebook Reference: NB-56531-16b-s and NB-51806-46

3M CONFIDENTIAL

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

3MA10053228

Appendix 4

Determination of Recovery of Total Carbon-14 From Blank Biological Samples Spiked With N-Ethyl FOSE-14C

For each of the four sets of samples combusted, five replicates of 10 µl, 50 µl, and 100 µl of diluted N-ethyl FOSE-14C dosing solution were aliquoted with calibrated micropipettors directly into scintillation vials. At the same time using the same solution and pipets, either five or six replicates of 10 µl, 50 µl, and 100 µl were aliquoted directly into combustion cones containing 1 g blank biological material (fecal, liver, spleen, or muscle homogenates). The combustion cones were dried and then pelletized with 5 cm ashless filter paper. Blank filter paper pellets were combusted and the solvents collected in the vials to which the FC-95-14C had been added directly. One of each of the 10 µl, 50 µl, and 100 µl N-ethyl FOSE-14C spiked pellets were routinely combusted at the beginning, middle, and end of each set of samples. After correction for background and counting efficiency, percent recovery was calculated by comparing mean results from direct addition and combustion. The recovery data for four sets of samples that were analyzed on different days for total carbon-14 (N-ethyl FOSE-14C) are shown in Appendix 4 - Tables 1-4. The mean recoveries for the four sample sets are 84.1%, 92.7%, 93.3%, and 95.0%. The recoveries were uniformly low throughout the combustion sample sets, so the data were corrected using the appropriate recovery factors.

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309 3MA10053229

Ц

Ę

į.

2813.0044

3M CONFIDENTIA

Recovery of Total Carbon-14 From Blank Biological Samples Spiked With N-Ethyl FOSE-14C, Combustion Set No. 1

	Feces	Feces	Feces	Liver	Liver	Liver	x of Liver and Feces
10 µ1 a	1563 ^b	1648	1682	1750	1748	1713	1684
50 µl	8328	8329	7768	8219	7605	7475	7954
100 µl	16381	14905	15581	15724	15693	14498	15464
		Dire	ct Addi	tion Sa	mples		x
10 µl	1917	1907	1912	1946	1962		1929
50 µl	9547	9558	9509	9605	9819		9628
100 µl	18943	18415	18654	19154	18741		18781
1	10 ul			50 µl			100 µl
<u>1684</u> x 1929	100 = 87	.38	7954 9629 ×	100 =	82.6%	<u>15464</u> 18781	x 100 = 82.3
Overall samples <u>A</u> Amoun <u>b</u> Data	$\overline{x} + S.D$ = 84.1 at of N- are exp	. recov + 2.8%. ethyl F	ery use OSE-14C as dpm.	d for c	orrecti g solut	on of o	xidized
	k Refere	nce: N	B-51806	-44			
Noteboo							
Notebool							
Noteboo							·
Noteboo							
Noteboo				3 M (CONF	IDEN	TIAL

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

3MA10053230

•

·. •

Recovery of Total Carbon-14 From Blank Biological Samples Spiked With N-Ethyl FOSE-¹⁴C, Combustion Set No. 2

	Spleen	Spleen	Muscle	<u>Muscle</u>	Liver	x of Spleen	x of Muscle	x of Splee Muscle, an Liver
10 µl <u>a</u>	1650 ^b	1892	1701	1622	1985	1771	1661	1806
50 µl	9392	7837	9397	9387	8775	8615	9392	8927
100 µl	18645	18613	16306	<u> </u>	19135	18629	16306	18023
		Di	rect Add	lition Sa	amples			x
10 µl	1933	1938	1713	1925	1919			1886
50 µl	9877	9829	9883	9861	9931			9876
100 µl	19743	19735	19546	19523	19338			19577
1806 x 1 1886 Overall samples	00 = 95. $\overline{x} + S.D.$ = 92.7 +	76% <u>89</u> 91 recover 2.8%.	$\frac{927}{876} \times 100$	0 = 90.3 or corre	6% <u>18</u> 19 ction o	<u>023</u> x 10 577 f oxidiz	0 = 92.06 ed	5 8
$\frac{1806}{1886} \times 1$ 1886 Overall samples $\frac{a}{b}$ Data $\frac{c}{c}$ Spik:	$00 = 95.$ $\overline{x} + S.D.$ $= 92.7 +$ $10 \text{ of } N-e$ are exprising error	recover 2.8%. thyl FOS essed as ; sample	$\frac{927}{876} \times 10^{10}$ y used fr $E-14_{C}$ sp dpm. was not	0 = 90.3 or corre iking so used.	6% <u>18</u> 19 ction o lution	023 x 10 577 f oxidizo added.	0 = 92.06 eđ	5 8
$\frac{1806}{1886} \times 1$ 1886 Overall samples $\frac{a}{b}$ Data $\frac{c}{c}$ Spik: Notebook	$00 = 95.$ $\overline{x} + S.D.$ $= 92.7 +$ $nt of N-e$ are expraining error $Referendered$	recovery 2.8%. thyl FOS essed as ; sample ce: NB-	$\frac{927}{876} \times 10^{10}$ with a second secon	0 = 90.3 or corre iking so used.	6% <u>18</u> 19 ction o lution	023 x 10 577 f oxidiz added.	0 = 92.06 eđ	5 8
$\frac{1806}{1886} \times 1$ 1886 Overall samples $\frac{a}{b} \text{ Data}$ C Spik: Notebool	$00 = 95.$ $\overline{x} + S.D.$ $= 92.7 +$ $\overline{y} + 0$ $\overline{y} +$	recover 2.8%. thyl FOS essed as ; sample ce: NB-	$\frac{927}{876} \times 10^{10}$ y used fr E-14C sp dpm. was not 53102-46	0 = 90.3 or corre iking so used.	6% <u>18</u> 19 ction o	023 x 10 577 f oxidizo added.	0 = 92.06 eđ	58
1806 x 1 1886 Overall samples <u>a</u> Amour <u>b</u> Data <u>c</u> Spik: Notebook	$00 = 95.$ $\overline{x} + S.D.$ $= 92.7 +$ $nt of N-e$ are expraining error $Referender$	recover 2.8%. thyl FOS essed as ; sample ce: NB-	927 x 10 876 y used fr E-14C sp dpm. was not 53102-46	0 = 90.3 or corre iking 50 used.	6% <u>18</u> 19 ction o	023 x 10 577 f oxidiza added.	0 = 92.06 eđ	5 8

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

.

Recovery of Total Carbon-14 From Blank Biological Samples Spiked With N-Ethyl FOSE-¹⁴C, Combustion Set No. 3

	Spleen	Spleen	Feces	Feces	Feces	x of Spleen	x of Feces	x of Spleen and Feces
10 µlª	1978 ^b	2071	2084	2052	1979	2025	2038	2032
50 µl	9530	<u> c</u>	10347	10061	10049	9530	10152	984 1
100 µl	18332	18070	18944	19641	19778	18201	19454	18829
		Di	rect Add	ition S	mples			x
10 µl	2050	2055	2085	2087	2105			2076
50 µl	10624	10664	10609	10525	10466			10578
100 µl	21668	20617	21263	20810	21253			21122
2032 x 2076 Overall	100 = 97.9	recovery	<u>841</u> x 10 578 used fo	0 = 93.0 r correc	188 211 ction of	28 x 100 22 oxidize	≖ 89.1% đ	
2032 x 2076 Overall samples	100 = 97.9 $\overline{x} + S.D.$ = 93.3 + nt of N-et	necovery 4.4%.	841 x 10 578 used fo -14C spi	0 = 93.4 r correct	211 211 ction of lution a	128 x 100 22 coxidize	= 89.1% đ	
2032 x 2076 Overall samples <u>a</u> Amou <u>b</u> Data <u>c</u> Spik	$100 = 97.9$ $\overline{x} + S.D.$ $= 93.3 +$ nt of N-et are expreing error;	necovery 4.4%. hyl FOSE sample	841 x 10 578 used fo -14C spi dpm. was not 3102-53	0 = 93.4 r correct king solused.	211 211 ction of	128 x 100 22 coxidize	= 89.1% đ	
2032 x 2076 Overall samples <u>a</u> Amou <u>b</u> Data <u>c</u> Spik Noteboo	$100 = 97.9$ $\overline{x} + S.D.$ $= 93.3 +$ nt of N-et are expreing error; k Reference	10 recovery 4.4%. hyl FOSE ssed as sample e: NB-5	<pre>841 x 10 578 used fo -14C spi dpm. was not 3102-53</pre>	0 = 93.4 r correct king solused.	211 211 ction of lution a	128 x 100 22 coxidize	= 89.1% đ	
2032 x 2076 Overall samples <u>a</u> Amou <u>b</u> Data <u>c</u> Spik Noteboo	$100 = 97.9$ $\overline{x} + \text{S.D.}$ $= 93.3 +$ $nt of N-et$ are expreing error; k Reference	necovery 4.4%. hyl FOSE ssed as sample e: NB-5	841 x 10 578 used fo -14C spi dpm. 3102-53	0 = 93.4 r correct king solused.	211 211 ction of lution a	22 x 100 22 coxidize	a 89.18	
2032 x 2076 Overall samples <u>a</u> Amou <u>b</u> Data <u>c</u> Spik Noteboo	$100 = 97.9$ $\overline{x} + S.D.$ $= 93.3 +$ nt of N-et are expre- ing error; k Reference	necovery 4.4%. hyl FOSE sample ne: NB-5	841 x 10 578 used fo -14C spi dpm. was not 3102-53	0 = 93.4 r correct king solused.	211 211 ction of lution a	22 x 100 22 coxidize	a 89.18	

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

1.1 "

3MA10053232

2813.0047

.....

Recovery of Total Carbon-14 From Blank Biological Samples Spiked With N-Ethyl POSE-14C, Combustion Set No. 4

	Kidney	Kidney	Kidney	Fecea	Feces	x of Kidney and Feces
10 µl a	2420 ^b	2386	2210	2341	2310	2333
50 µl	11892	11876	11844	11584	10782	11596
100 µl	22569	22444	22622	22867	21969	22494
		Direct	Additi	on Sampi	les	x
10 µl	2412	2394	2384	2413	2425	2406
50 µl	11299	12222	12232	12214	12127	12019
100 µl	24816	24405	24289	24873	24753	24627
				50 ul		100 ul
2333 x 2406	100 = 96.	97% <u>1</u>	1596 x 12019	100 = 9	6.48% <u>2</u> 2	2494 x 100 = 91.34 4627
2333 2406 Overall samples	100 = 96. x + s.d. = 95.0 +	978 <u>1</u> 1 recover 3.18.	1596 x 2019 cy used	100 = 9	5.48% <u>2</u> 2 rection	2494 x 100 = 91.34 4627 of oxidized
2333 x 2406 Overall samples <u>a</u> Amou b Data	$\overline{x} + S.D.$ = 95.0 <u>+</u> nt of N-e are expr	97% 1 recover 3.1%.	$x = \frac{11596}{2019} x$ $x = \frac{140}{52} x$	100 = 9 for cor piking	6.48% 2 2 rection solutior	2494 x 100 = 91.34 4627 of oxidized n added.
2333 x 2406 Overall samples <u>a</u> Amou <u>b</u> Data Noteboo	$\overline{x} + S.D.$ = 95.0 <u>+</u> nt of N-e are expr < Referen	97% 1 recover 3.1%. ethyl FOS ressed as	$\frac{11596}{2019}$ x $\frac{12019}{2019}$ $\frac{12019}$	100 = 9 for cor piking 0	6.48% 2 2 rection solutior	2494 x 100 = 91.34 4627 of oxidized n added.
2333 x 2406 Overall samples <u>a</u> Amou <u>b</u> Data Notebool	x + S.D. = 95.0 \pm nt of N-e are expr	97% 1 recover 3.1%. ethyl FOS ressed as	11596 x 2019 cy used SE- ¹⁴ C s s dpm. -56531-1	100 = 9 for cor piking 0	5.48% 2 2 rection solutior	2494 x 100 = 91.34 4627 of oxidized
2333 x 2406 Overall samples <u>a</u> Amou: <u>b</u> Data Notebool	$\frac{x}{x} + S.D.$ $= 95.0 + \frac{1}{95.0}$ of N-e are exprised are exprised as the second state of the second	97% 1 recover 3.1%. thyl FOS ressed as	11596 x 2019 cy used SE- ¹⁴ C s s dpm. -56531-1	100 = 9 for cor piking 0	5.48% 2 rection	2494 x 100 = 91.34 4627 of oxidized
2333 2406 Overall samples <u>a</u> Amou b Data Noteboo	$\overline{x} + S.D.$ = 95.0 ± 100	97% 1 recover 3.1%. thyl FOS ressed as	<u>11596</u> х 2019 су цвед 5E- ¹⁴ С в а dpm. -56531-1	100 = 9 for cor piking 0	5.48% 2 rection solution	2494 x 100 = 91.34 4627 of oxidized
2333 2406 Overall samples <u>a</u> Amou <u>b</u> Data Noteboo	$\overline{x} + S.D.$ = 95.0 <u>+</u> are expr	97% 1 recover 3.1%. thyl FOS ressed as	<u>11596</u> х 2019 су ивед 5E- ¹⁴ С s 3 dpm. -56531-1	100 = 9 for cor piking 0	6.48% 2 rection solution	2494 x 100 = 91.34 4627 of oxidized
2333 x 2406 Overall samples <u>a</u> Amou: <u>b</u> Data Notebool	x + S.D. $= 95.0 + 4$ $are expr$ $c Reference$	97% 1 recover 3.1%. ethyl FOS ressed as	11596 x 2019 cy used 5E-14C s 5 dpm. -56531-1	100 = 9 for cor piking 0	6.48% 2 rection solution	2494 x 100 = 91.34 4627 of oxidized h added.

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

.

3MA10053233

A design of the second s

C 432.1 281.2 209.5 320.6 247.8	B 1 Day Group 279.3 2 Day Group 352.8 302.6 4 Day Group 178.0	A 712.8 ^a 451.5 374.4	Period (Days)
432.1 281.2 209.5 320.6 247.8	1 Day Group 279.3 2 Day Group 352.8 302.6 4 Day Group 178.0	712.8 ⁸ 451.5 374.4	0-1 0-1 1-2
432.1 281.2 209.5 320.6 247.8	279.3 2 Day Group 352.8 302.6 4 Day Group 178.0	712.8 ^a 451.5 374.4	0-1 0-1 1-2
281.2 209.5 320.6 247.8	2 Day Group 352.8 302.6 4 Day Group	451.5 374.4	0-1 1-2
281.2 209.5 320.6 247.8	352.8 302.6 <u>4 Day Group</u> 178.0	451.5 374.4	0-1 1-2
320.6 247.8	4 Day Group	374.4	1-2
320.6 247.8	4 Day Group		
320.6 247.8	178.0		
247.8	1,010	251.0	0-1
	238.5	204.2	1-2
163.2	184.7	194.4	2-3
146.0	159.0	114.4	3-4
	8 Day Group		
127.7	229.6	65.6	0-1
248.3	579.0	90.3	1-2
225.7	329.0	559.5	2-3
172.7	184.6	323.1	3-4
92.3	142.8	150.4	4-5
96.2	99.4	119.6	5-6
98.0	68.7	97.5	6-7
86.9	44.2	75.3	7-8
	16 Day Grou		
1782.6	1797.8	1906.0	0-16
<u>.</u>	32 Day Group		
1757.6	1513.8	2085.0	0-16
81.7	295.8	93.0	16-32
127.7 248.3 225.7 172.7 92.3 96.2 98.0 86.9 1782.6 1757.6 81.7	8 Day Group 229.6 579.0 329.0 184.6 142.8 99.4 68.7 44.2 16 Day Group 1797.8 32 Day Group 1513.8 295.8	65.6 90.3 559.5 323.1 150.4 119.6 97.5 75.3 1906.0 2085.0 93.0	0-1 -2 2-3 3-4 4-5 5-6 6-7 7-8 0-16 16-32

Total Carbon-14 in Feces After an Oral Dose of

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

3MA10053234

1

Collection		Rat Identificatio	חכ	
Period (Days)	A	В	С	Mean <u>+</u> S.D.
<u> </u>		1 Day Group		
0-1	3.15 <u>a</u>	2.73	2.11	2.66 + 0.52
		2 Day Group		
0-1	3.30	2.11	2.65	2.69 ± 0.60
1-2	2.16	1.71	2.18	2.02 + 0.27
		4 Day Group		
0-1	3.72	3.31	3.76	3.60 + 0.25
1-2	4.67	4.62	3.62	4.30 + 0.59
2-3	3.72	3.31	3.76	3.50 + 0.25
3-4	4.71	3.25	3.22	3.73 ± 0.85
		8 Day Group		
0-1	2.86	2.05	3.12	2.68 + 0.56
1-2	2.34	3.95	4.08	3.46 + 0.97
2-3	4.20	3.31	4.86	4.12 + 0.78
3-4	10.42	2.60	3.53	5.52 + 4.27
4-5	8.46	8.34	3.12	5.64 + 3.05
5-6	2.45	1.85	2.47	2.26 + 0.35
5-7	2.63	1.51	2.92	2.35 + 0.74
7-8	1.78	1.37	2.81	1.99 ± 0.74
		16 Day Group		
0-16	70.34	35.46	31.27	45.69 + 21.45
		32 Day Group		
0-32	60.36	85.44	50.07	65.29 <u>+</u> 18.19

Total Carbon-14 in Urine After an Oral Dose of N-Ethyl FOSE-¹⁴C in Feed to Rats (Mean Dose, 10.13 mg/kg)

<u>a</u> Data are expressed as µg N-ethyl FOSE-¹⁴C equivalents/sample collection period.

Notebook Reference: NB-51806-52-55

3M CONFIDENTIAL

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

3MA10053235

Appendix 6

Rat Identification	Time Post- Dose (Hours)	Digestive Tract (plus contents)	Feces
1A	24	11.85 a	64.04
18	24	31.98	105.79
1C	24	8.54	57.38
Mean <u>+</u> S.D.		17.46 <u>+</u> 12.69	75.74 + 25.2
2A	48	8.51	91.79
2B	48	12.37	115.74
2C	48	8.12	44.15
Mean <u>+</u> S.D.		9.67 <u>+</u> 2.35	83.89 <u>+</u> 36.4

Carbon-14 Content in Digestive Tract (plus contents) and Feces After an Oral Dose of N-Ethyl FOSE-14C in Feed to Rats (Mean Dose, 10.13 mg/kg)

 $\frac{a}{2}$ Data are expressed as ug N-ethyl FOSE-¹⁴C equivalents/g.

Notebook Reference: NB-51806-49-50

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

3MA10053236

• •

2813.0051

3M CONFIDENTIAL

Appendix 7

Comparative Data Showing Normal Fecal Excretion for Rats

Appendix 7 - Table 1 shows comparative data showing normal fecal excretion for rats. Grams of feces excreted by rats at 24 hour intervals for a 7 day postdose period are given for rats in this study and for rats used as control groups in previous studies (FC-Experiments 8 and 9). These data show that the fecal excretion rates of rats in this study are comparable to the excretion rates of rats used as control groups in 2 other studies.

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309 3MA10053237

Collection Period (Days)	$\overline{x} + S.D.$ of 3 rats from the present study	x + S.D. of 5 control rats from FC-Exp. 8	x + S.D. of 5 control rats from FC-Exp. 9
0-1	8.0 $\pm 2.68^{a,b}$	10.29 <u>+</u> 3.63	7.04 + 4.38
1-2	9.47 <u>+</u> 2.90 ^b	7.79 <u>+</u> 1.58	.9.00 <u>+</u> 2.21
2-3	10.79 <u>+</u> 1.14 ^C	10.27 + 2.04	8.30 <u>+</u> 1.20
3-4	11.61 ± 0.91^{c}	10.33 + 2.22	9.74 + 1.25
4-5	8.92 <u>+</u> 2.47 ^C	8.51 + 2.63	9.15 <u>+</u> 0.86
5-6	9.78 <u>+</u> 2.17 ^C	9.11 <u>+</u> 1.79	9.57 <u>+</u> 1.54
6-7	10.69 <u>+</u> 1.27 ^C	8.65 <u>+</u> 1.93	8.62 <u>+</u> 1.07
Notebook Refer	ences: NB-56531- NB-53102-1	16u-16v and 16dd-16h1 29t-29bb and 42g	n, and
Notebook Refer	ences: NB-56531- NB-53102-;	16u-16v and 16dd-16h) 29t-29bb and 42g	n, and
Notebook Refer	ences: NB-56531- NB-53102-:	16u-16v and 16dd-16h) 29t-29bb and 42g	n, and
Notebook Refer	ences: NB-56531- NB-53102-:	16u-16v and 16dd-16h) 29t-29bb and 42g	n, and
Notebook Refer	rences: NB-56531- NB-53102-:	16u-16v and 16dd-16h) 29t-29bb and 42g	n, and
Notebook Refer	rences: NB-56531- NB-53102-:	16u-16v and 16dd-16h) 29t-29bb and 42g	n, and
Notebook Refer	телсеs: NB-56531- NB-53102-:	16u-16v and 16dd-16h) 29t-29bb and 42g	n, and
Notebook Refer	телсеs: NB-56531- NB-53102-:	16u-16v and 16dd-16h) 29t-29bb and 42g	n, and
Notebook Refer	ences: NB-56531- NB-53102-:	16u-16v and 16dd-16h) 29t-29bb and 42g	n, and
Notebook Refer	ences: NB-56531- NB-53102-:	16u-16v and 16dd-16h) 29t-29bb and 42g	n, and
Notebook Refer	ences: NB-56531- NB-53102-:	16u-16v and 16dd-16h) 29t-29bb and 42g	n, and
Notebook Refer	rences: NB-56531- NB-53102-:	16u-16v and 16dd-16h 29t-29bb and 42g 3M	GONFIDENTI

Comparative Data Showing Normal Fecal Excretion for Rats

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

3MA10053238

Appendix 8

Rat Identification	Liver <u>a</u>	Spleen ^a	Kidneye ^a	Lungs-	Red Blood Cells	Plasma ^a	Bone Marrow ^a	Digestive Tract-	Carcas s	Subcut. Pat ^a	Abdom. Pat ^a	Muscle
18	32.55	6.77	8.93	8.13	21.95	7,36	17.40	11.85	2.29	6.44	8.10	1.79
1B	49.58	7.00	14.65	11.89	27.73	10.61	15.00	31.98	3.23	7.93	9.68	2.21
10	24.05	4.80	6.76	6.16	20.35	6.13	8.73	8.54	1.61	3.90	4.87	0.97
Mean	35.39	6.19	10.11	8.73	23.34	8.03	12.04	17.46	2.38	6.09	7.55	1.66
2A	31.25	5.93	6.89	6.39	19.38	5.69	10.72	B.51	1.47	4.07	3.35	1.13
2B	42.95	1.01	8.22	6.75	20.66	6.54	10.89	12.37	1.98	4.30	4.10	1.65
20	41.58	7 30	10.49	8.80	12.31	9.51	11.41	8.12	2.40	3.97	4.30	1.98
Mean	38.59	6.01	8.53	7.31	17.45	7.25	11-01	9.67	1.95	4.11	3.92	1.55
4 λ	44.42	6.75	8.82	8.30	18.83	7.76	8.21	<u>Þ</u>	<u> </u>	2.21	2.14	1.63
4B	44.95	7.62	11.29	9.08	21.44	9.10	10.07			3.07	1.80	1.40
<u></u>	40.34	6.84	9.82	7.81	19.90	7.92	8.92			1.87	1.79	1.36
Mean	43.24	7.07	9.98	8.40	20.06	8.26	9.07			2.38	1.91	1-46
BA	26.81	2.15	3.34	2.87	8.42	2.94	3.36			0.54	0.38	0.34
BB	24.65	1.80	3.45	2.63	7.68	3.24	2,91			1.01	0.23	0.25
BC	34.52	3.98	6,33	6.52	12.61	5.66	5.63			0.71	0.48	0.98
Mean	28.66	2.64	4.37	4.01	9.57	3.95	3.97			0.75	0.36	0.52
168	20.97	0.83	1.93	1.47	2.24	1.75	0.99			0.03	0.04	0.16
16B	28.67	0.87	2.05	1.61	3-04	2.19	1.01			0.13	0.01	0.16
1 6C	27.09	1.11	3.07	2.36	3.25	2.92	1.52			0.36	0.03	0.21
Mean	25.58	0.94	3,35	1.88	2.54	2.29	1.17			0.17	0.03	0.18
32A	20.25	0.76	1.86	1.66	0.83	1.95	0.69			0.08	0.00	0.13
328	33.78	1.37	3.57	2.45	2.65	2.87	1.50			0.28	0.00	0.29
32C	20.95	0.64	1.80	1.36	0.89	1.59	0.63			0.05	0.00	0.09
Mean	24.99	0.92	2.41	1.82	1.46	2.14	0.94			0.14	0.00	0.17

Carbon-14 Content in Tissues After an Oral Dose of N-Ethyl FOSE-14C in Feed to Rats Mean Dose, 10.13 mg/kg)

 $\frac{a}{b}$ Data are expressed up Sample was not taken. Data are expressed as ug N-ethyl FOSE-14C equivalents/g.

Notebook References: NB-51806-47-49, NB-53102-43-44, 47-52, and 54, NB-56531-11-12

.....

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

3MA10053239

i

ii.

, ⁻¹

Dete June 9, 1981

TECHNICAL REPORT SUMMARY

TO, TECHNICAL COMMUNICATIONS CENTER - 201-2CN

sportant - If report is printed on both sides of paper, send two copies to TCC.J

		· · · · · · · · · · · · · · · · · · ·		
Division	PONTONIES included and D	roportion Pares	Tch Isborstory	0502
CENTRAL RESEARCH LA	ABURATURIES, ANALYTICAL AND P	roperties kesea	ICH Laboratory	Project Number
Service to Riker -	Isolation of Trace Fluorocher	micals		A000007
Report Title . Perfl	Luorooctane Sulfonic Acid - A	Rat-Liver		17/
AR No. 7474 - Metal	bolite of FM-3422 - June 9, 1	981		
S. J. Gibson, J. D.	Johnson - 218-2-02			
Author(s)			23315	
S. V. Pathre Notebook Asterance			No. of Page	including Coversheet
	Confidential) (Special Authorization)		New Chem	icals Reported
KEYWORDS:	CURRENT OBJECTIVE:			
Theseurus, Suggest other	Request No. C57427			
	Project No. 91505026			1
CRLAP	Requestor - S. J. Gibson	. J. D. Johnson		E .
Analytical Report		-		
Chemical Analysis				
	REPORT ABSTRACT: (200-250 words) This a	barract information is dist	ributed by the Technics	I Communications Center to
	alart 3M'ars to Company R&D. It is Company o	confidentiel material.		
		- disabilitat an		ne sulfonic
	A rat-liver metabolite is acid by ¹⁹ F-NMR.	s identified as	periluoroocca	de Bullonic
×				
×				
		·		
		•		
Inities:		3M CONFIDENTIAL		
	•			
		2 M	COMPLET	
		JIAI		
and a state of the second	and has been as a second of the second s	a second and the second se	Lating the first second second	

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

3MA10053240

2813.0055

CENTRAL ANALYTICAL LABORATORY

Report No. _____7474_____

June 9, 1981

 Subject:
 Perfluorooctane Sulforic Acid - A Rat-Liver Metabolite of FM-3422

 S. J. Gibson
 Dept. Name _____Riker_____

 Requestor:
 J.D. Johnson

 Dept. Name _____Riker_____
 Proj, No.91505026

 Request No.______
 Dated ________

 Dated _______
 J980_____

Report:

10AN 2043-9 **

Two metabolites isolated from the liver of a rat administered ¹⁴C-labeled FM-3422 were submitted for spectroscopic analysis. These two metabolites were labeled as I-CH₃Cl-MeOH eluted and II-CH₃ eluted.

 $CF_3CF_2-CF_2(CF_2)_3-CF_2CF_2N-CH_2-CH_2OH$

FM-3422

Experimental

Both samples were reconstituted in CD3OD. The ¹⁹F-NMR spectra on these samples were obtained on the Varian XL-100 and XL-200 NMR spectrometers.

Metabolite I ¹⁹F NMR 13675N Metabolite II ¹⁹F NMR 30190X

Results

The chemical shifts (ppm upfield from CFCl₃) of the major peaks in the fluorine spectra are given below. The peak frequencies are normalized to $\delta(CF_1) = 81.0$ ppm.

I	81.0	114.3	120.4	121.5	122.4	126.0
II	81.0	112.9	120.2	121.8	122.8	126.2

Discussion

Both spectra were typical of perfluorooctane sulfonyl derivatives. The metabolite I was identical to perfluorooctane sulfonic acid as determined by comparing the reference ¹⁹F NMR (11252X) of the latter with that of I.

 $CF_3 - CF_2 - CF_2 - (CF_2)_3 - CF_2 - CF_2 - SO_3H$ 81.0 126.0 122.4 121.5 120.4 114.3

The spectrum of the metabolite II was very similar to that of I except the chemical shift of the fluoromethylene alpha to the sulfonyl group. It is observed at 112.9 ppm in II, 1.4 ppm upfield from that in I. The 112.9 ppm peak,

(I)

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309

3MA10053241

AR No. 7474 June 9, 1981 Page 2

although not unambiguously, can be assigned to the alpha fluoromethylene of the sulfonamide $(-SO_2NH_2)$ group:

$$CF_3 - CF_2 - CF_3 - (CF_2)_3 - CF_2 - CF_2 - SO_2NH_2$$

112.9

(11)

Conclusion

The liver metabolite labeled I-CHCl₃-MeOH is identified as perfluorooctane sulfonic acid and that labeled II-CHCl₃ is suggested as perfluorooctane sulfanamide.

S. V. Pathre

SVP/rs

Made Available by 3M for Inspection and Copying as Confidential Information: Subject to Protective Order In Palmer v. 3M, No. C2-04-6309 3MA10053242