

May 5, 2015

UPS Next Day

Mr. Gary Krueger Remediation Division Minnesota Pollution Control Agency 520 Lafayette Road North St. Paul, MN 55155

 Re: 3M Cottage Grove Site (Site)
 2014 Annual Perfluorochemical (PFC) Groundwater, Pore Water and Surface Water Report And Response to Comments on the 2013 Annual Groundwater Monitoring Report

Dear Mr. Krueger:

Enclosed please find three (3) electronic copies and three (3) hard copies of the 2014 Annual PFC Groundwater, Pore Water and Surface Water Report for the 3M Cottage Grove Site.

In addition, this letter provides a response to AECOM comments on the 2013 Annual PFC Groundwater, Pore Water and Surface Water Report, which was transmitted to 3M via email dated October 13, 2014, from the MPCA. The AECOM comments on the 2013 annual report were primarily in the form of summary discussions. Specific items in their discussions are identified and a response is referenced by page number and topic from their September 8, 2014, memorandum to MPCA. For ease of reference, comments or discussion items provided below are followed by 3M's response. Clarifying information regarding these comments was included, where possible and as appropriate, in the attached 2014 annual report.

AECOM Comments

Item 1 – (page 1, Groundwater Elevations, 1st paragraph): There is no discussion or interpretation of results that presents findings on the production well's ability to provide groundwater plume containment.

3M Response to Comment: In accordance with the MPCA approved Groundwater Sampling Plan for the Site, a Performance Evaluation Report will be submitted to the MPCA on an annual basis after the complete groundwater interception system has been installed and is fully operating. The Performance Evaluation Report will be submitted in addition to an Annual Monitoring Report that provides a summary of the groundwater quality data for the Site.

As discussed in the Groundwater Sampling Plan for the Site, the Performance Evaluation Report will include the following information:

- An evaluation of site-wide hydrogeologic and remediation systems.
- An assessment of PFC migration in groundwater.

Mr. Gary Knueger MPCA Page 2 of 4

- An evaluation of the groundwater remediation systems with respect to:
 - The effectiveness of plume capture by the existing system(s).
 - Modifications to pumping, if necessary, including the reduction or increase in pumping.
 - The effect from any of the removal actions that have been completed.
- A discussion of the effects of remediation including sediment removal from the East Cove and groundwater extraction from PW-09, PW-10 and existing production wells.
- Documentation that treated groundwater is discharged in accordance with state requirements as stated in the RD/RA Plan.

An extended pilot pump test program was performed at the Site from February 2013 to February 2014 to determine the number, and flow rates, of wells necessary to fulfill 3M's commitment under the selected groundwater alternative for the Site (Alternative GW-I). The results of the extended pilot pump test program and recommended groundwater interception system were discussed during a presentation made to the MPCA in June and November 2014, and are summarized in a document titled Extended Groundwater Pilot Pump Test and Design of Groundwater Recovery System, Cottage Grove Site, provided to MPCA on March 17, 2015.

Item 2 – (page 2, Groundwater Quality, 1st paragraph): By identifying each of the Areas on one figure (currently these Areas are identified using different maps symbols on three separate figures) using shading or outlining, there would be a simplified identification system and provide a greater degree of consistency between text and figures.

3M Response to Comment: A figure will be added to future reports to show the approximate location of each area referred to in the text.

Item 3 – (page 2, Groundwater quality, 4th paragraph) – Groundwater quality tables should provide a reference to Minnesota Department of Health (MDH) Risk Limits (HRLs).

3M Response to Comment: As presented in previous responses to comments, comparing the Site groundwater data to MDH HRLs is not appropriate for the Site since the groundwater is not being used as drinking water.

May 5, 2015

Mr. Gary Krueger MPCA Page 3 of 4

Item 3 – (page 2, Groundwater quality, 5th paragraph) – The hydraulic gradient value presented in Section 3.1 does not include units representing the numerical value.

3M Response to Comment: The units feet per feet (ft/ft) will be added to the text; however, this is a dimensionless parameter and units are not always reported.

Item 4 – (page 2, Pore Water/Surface Water Quality, 1st paragraph, 3rd sentence) – Including an additional sentence to the last paragraph of Section 3.3 indicating annual pore water and surface water sampling will continue in 2015 would provide clarification on the intent to perform additional annual sampling.

3M Response to Comment: As presented in previous responses to comments, and in meetings held with the MPCA, 3M's position is that the effectiveness of the Site remedial activities that have been completed, and are continuing, can be adequately assessed using groundwater elevation and groundwater PFC monitoring data. 3M does not agree that additional pore water and surface water sampling will provide a technically sound basis to evaluate the remedial alternatives selected for the Site. As presented to the MPCA in the past, with the completion of the September 2014 sampling round, 3M has met all their obligations regarding pore water/surface water sampling, as specified in Section 4.2 of the MPCA-approved Sampling Plan for the Site.

Item 5 – (page 2, Pore Water/Surface Water Quality, 2nd paragraph, 1st sentence) – Mississippi River Pore Water and Surface Water Sample Results does not include the units presented by the numeric values included in the table.

3M Response to Comment: Comment noted, a revised table is attached and presents the values of the numeric values as parts per billion (ppb).

Item 6 – (page 2, Findings/Future Course of Action, 1st paragraph, 1st sentence) – The Report indicates that baseline groundwater, pore water and surface water samples were collected in October 2012. Although this is accurate for groundwater samples, pore water and surface water baseline samples were collected in 2006 (with the exception of IW-25d and f) with a complete sampling event performed in 2011.

3M Response to Comment: The report uses the term "baseline" as the sampling event performed in October 2012 prior to the startup of the extended pilot pump test program in February 2013.

May 5, 2015

Mr. Gary Krueger MPCA Page 4 of 4

Item 7 – (page 2, Findings/Future Course of Action, 1st paragraph, 3rd sentence) – AECOM suggest that following completion and presentation of the extended pump test results to MPCA, that future annual reports include a discussion of production well pumping rates and the ability of the production wells to effectively provide plume containment. Future annual reports should also include, as previously requested by the MPCA, a summary of annual pore water and surface water sample results.

3M Response to Comment: See responses to Item 1 and Item 4.

Item 8 – (page 3, General Report Comments, 1st paragraph, 3rd sentence) – Although the results of the extended pump test will be discussed under separate cover, a brief discussion of the extended pumping test would provide context for the reviewer as it is discussed throughout the remainder of the report

3M Response to Comment: The report that was submitted in 2014 to the MPCA was for the 2013 monitoring program and the extended pilot pump test had not been completed as of the end of 2013. The extended pilot pump test was completed in September 2014 with the collection of the final pore water and surface water sampling. Results of the pump test are summarized in the Extended Groundwater Pilot Pump Test and Design of Groundwater Recovery System report submitted to MPCA via cover letter dated March 17, 2015.

If you have any questions regarding this information, please call me at (651) 737-3477.

Sincerely,

Karie Blomquist, P.E. Environmental Engineering Specialist Corporate Environmental Programs Building 224-5W-17

Enclosures

Cc: Mr. Sandeep Burman – MPCA Mr. Fred Campbell – MPCA Mr. Gerald Stahnke – MPCA Ms. Virginia Yingling – MDH bcc: G.A. Hohenstein – 224-5W-03
J. Kesari – Weston Solutions (cover only)
M.A. Nash – 220-9E-02
F.A. Tayab – Bickel & Brewer
M.C. Yeager – 220-9E-02
J.R. Kotsmith – 224-5W-17

相如國家

Table 3-4

Summary of Pore Water and Surface Water Sample Results

September/October 2006 through August 2013

3M Cottage Grove Site

LOCATION	Approximate distance from		POREWATER (ag/L; ppb)					SURFACE WATER (ag/L; ppb)				
					Oct-12	Aug-13	Sept/Oct 06		380-11	Oct-12	Aug-13	
	shoreline		IW	JW	IW	IW	Shallow	Deep	Composite	Composite	Composite	
IW:69b		FFBA	1.5S	67.6	1.67	30,3	<0.100	<0.050	<3.100	0.555	<0.023	
	50 feet	PFOA	0.585	43.2	2.03	109	<0.050	0.530	-0.025	0.187	<0.024	
		PFOS	0.114	45.6	1.27	2.84	<0.040	<0.050	<0.050	0.124	<0.0232	
		PFBA	5.01	2.32	4.65	£ 10	1.24	NR	<0.100	0.300	<0.025	
IW-09	100 feet	PFOA	2.69	1.25	1.41	5 74	6.192	0.187	<0.025	0.139	<0.024	
		PFOS	1.09	0.415	0.958	0.822	0.162	0.383	<0:050	0.688	<0.0232	
		PFBA	0.112	83,3	11.8	0.057	NR	₹0,260	<0.100	0,158	<0.025	
IW-09d	300 feet	PFOA		48.5	0.355	<0.0240	0.065	NR.	<0.025	0.054	<0.024	
		PFOS	-9.050	0.533	0.141	<0.0232	<0.050	<0.050	<0.050	0.043	<0.0232	
Hiller-drawerk attriction of drawer and the	500 feer	PFBA	NR	2,98	+=0.0500	30.7	0.405	0.477	<0.100	0.264	<0.025	
IW-09f		PFQA	0.054	0.158	<0.0240	2.83	<0.050	0.054	<0.025	0.085	<0.024	
		PFOS	-0.050	0.090	<0.6232	0.061	<0.060	<0.050	<0.050	0.051	<0.0233	
	59 foet	PFBA	695	79,9	34.9	32.1	NR .	0.540	<0.160	0:343	0.0415	
1W-14b		FFOA	436	467	123	221	0,195	0,158	<0.025	1,36	0.051	
1		PFOS	12.2	64,9	40,9	25,5	6,663	0,058	<0.050	0.760	<6.0232	
		PFBA	281	38 R	142	192	0.414	NR	<0.100	0.0518	<0.025	
IW-14	100 feet	PFOA	300	205	\$29	517	0.053	0,057	<0.025	<0.024	<0.024	
		PFOS	12.4	28.3	18,3	4.22	NR	<0,050	<0.050	<0.0232	<0.0232	
IW+14d	300 feet	PFBA	0.282	0.318	0.747	1.14	G 329	0.348	<0,100	<0.050	<0.025	
		PFOA	<0.050	0.054	0.257	0,115	<0.100	<0.100	≪0.025	<0.024	<0.024	
		PFOS	<0.050	0.089	0.947	0.032	<9,050	~0.050	<0,050	-<0,0232	<0.0212	
	-	PFBA	0.178	33.3	78.4	39.1	<0.050	<0.050	<0.100	<0.050	<0.023	
IW-14f	500 feet	PFOA	<0.030	0.813	59.3	0.926	<0:050	<0.050	<0.025	<0.024	<0.024	
	-		PFOS	<0.025	0.0%6	1.23	0.05	<0.050	<0.050	<9.050	<9.9232	<0.0232

pob - parts per billion

ugA. - micrograms per Iter IW - Interstitiat Water (Pore water) NR - Not reported due to quality control issues NS - Not sampled

Note: In September/Oclober 2006 two surface water samples were collected at describe depth intervals at each location (i.e., shallow and deep, 0.2 and 0.8 of the total depth of the water ocleans). In June 2011, October 2012, August 2013, and October 2014 one composite sample was collected at each location, composited from the same depth intervals

Table 3-2 Fire das Mexico. Mile

WEDDY

Table 3-4 (cont'd) Summary of Pore Water and Surface Water Sample Results September/October 2006 through August 2013 3M Cottage Grove Site

LOCATION	Approximate distance from shoreline		POREWATER (µg/L; ppb)				SURFACE WATER (µg/L; ppb)				
			Sept/Oct 06	Jun-11	Oct-12 IW	Aug-13 TW	Sept/Oct 06		Jun-11	Oct-12	Aug-13
			ľW .	IW.			Shallow	Деер	Composite	Composite	
	50 feet	PFBA	KR.	198	134	157	2.81	1.96	- - ≪0.160	0.223	0.115
FW-19b		PFOA	118.5	34:4	10,5	6.96	0.154	0,129	<0.025	0.557	0.434
		PFOS	53,4	43.2	95.6	40.4	0,127	0.089	<0.050	0.100	0.412
		PFBA	\$6.6	107	112	18.3	NR	MR	<0.100	0,089	0.037
fW-19	100 feet	PFOA	28.9	257	8.43	1 63	0.119	0.126	<0.025	0.041	0.108
		PFOS	NR	30.3	81.1	D.591	0.105	0.097	<0.050	<0.0232	<0.0232
		PEBA	1,40	0,143	4.07	8.00	0.095	0.117	<0.100	0.069	<0,025
IW-19d	300 feet	PEOA	0.184	0.097	0.206	0.206	<0.050	~0.050	<0.025	<0.024	<0.024
		PFOS	0.081	0.118	0.245	0.207	×0.050	<0.050	i <0.050	<0.0232	<0.0232
	500 feet	PFBA		6.57	341	47.1	0,245	0.516		0.051	<0.025
TW-19F		PFOA	6.84	<0.0250	15:3	185	<0.050	NR	×0.025	0.028	<0.024
		PFOS	1.71	<0.0500	1 26	10.9	<0.050	<0.050	<0.050	<0.0232	+0.0232
		PFBA	NS	.56	1.47	37.2	NS 1	NS	1 12.5	0.686	0.397
IW-256	50 feet	PFOA	NS	97.3	1.2	169	NS	NS	1.01	0.202	0.328
		PFOS	NS	595	2.41	86	NS	NS	1.10	0.151	9.132
		PEBA		13.6	34.7	35.5	NR	MR	6.25	0.819	3.54
IW-25	100 feet	PFOA	129	110	74.7	9.98	0,153	0.146	0.583	0.575	1.26
		PFOS	206	82.4	<u> </u>	3,28	0.095	Q 102	0.586	0.422	0.311
		PFBA	NS	25	15.9	38,6	NS NS	NS	<0.106	0,389	0.043
TW-25d	300 feet	PFOA	NS	16,6	2.04	19.5	NS	MS	<0.025	0.335	<0.024
		PEOS	NS	0,138	19.J	0.141	NS.	NS	<0.050	0.236	<0,0232
		PFBA	NS	2.02	1,23	6.05	NŚ	NŠ	<0.100	0,760	<0.025
IW-25f	500 feet	PFOA	NS	3.25	0.482	5.18	NS.	NS	<0.025	0.163	<0.024
		PFOS	NŠ	2.64	0.201	2.18	NS	NS	<0.050	0.087	<0.0232

ppb - parts per billion

ug/L - micrograms per Rer

W - Interstitial Water (Pore water)

NR - Not reported due to quality control accuse

NS - Not sampled

Note: In September/October 2006 two surface water semples were collected at discrete depth intervals at each location (i.e., shallow and deep, 0.2 and 0.8 of the total depth of the water column). In June 2011, October 2012, August 2013, and October 2014 one composite sample was collected at each location, composited from the same depth intervals.

Table 3-2 PW SW Aussila der

3M_MN01595956

2014 ANNUAL PERFLUOROCHEMICALS (PFCs) GROUNDWATER, PORE WATER AND SURFACE WATER REPORT FOR THE 3M COTTAGE GROVE SITE

COTTAGE GROVE, MN

APRIL 2015

Prepared for:

3M Company

Prepared by:

WESTON SOLUTIONS, INC. West Chester, Pennsylvania 19380

W.O. #02181.002.197

3M_MN01595957

3630.0008

TABLE OF CONTENTS

Section

Page

1.	INT	RODUCTION	1-1
	1.1	PURPOSE AND OBJECTIVES OF THE SAMPLING PLAN	1-3
2.	SAM	IPLING PROGRAM	2-1
	2.1	GROUNDWATER	
	2.2	PORE WATER AND SURFACE WATER	
3.	WA]	FER MONITORING AND RESULTS	3-1
	3.1	GROUNDWATER ELEVATIONS	
	3.2	EXTENDED PILOT PUMP TEST	
	3.3	GROUNDWATER QUALITY	
		3.3.1 Background	
		3.3.2 D1/D2 Area	
		3.3.3 D9 Area	
		3.3.4 WWTP Area	
		3.3.5 D5 Area	
		3.3.6 D8 Area	
		3.3.7 East Cove Area	
	3.4	PORE WATER/SURFACE WATER QUALITY	3-8
4.	FINI	DINGS	4-1
	4.1	GROUNDWATER ANALYTICAL DATA	
	4.2	SURFACE WATER / PORE WATER ANALYTICAL DATA	
	4.3	SITE HYDROGEOLOGIC CONDITIONS	
5.	FUT	URE COURSE OF ACTION	
6.	REF	ERENCES	6-1

FIGURES

Figure	Page
Figure 1-1	Site Location Map1-4
Figure 2-1	Groundwater Monitoring Network
Figure 2-2	Pore Water and Surface Water Sampling Locations – 3M Cottage Grove Site 2-6
Figure 3-1	Well Locations and Site Geologic Map
Figure 3-2	Groundwater Elevation Contour Map, January 2014
Figure 3-3	Groundwater Elevation Contour Map, April 2014
Figure 3-4	Groundwater Elevation Contour Map, August 2014
Figure 3-5	Groundwater Elevation Contour Map, December 2014

2.\FOLDERS.0-913m-cottage_grove\\VESTON-Reports\2014-4Q-Annual-GVMCGMN_2014_Annual_Report.decx

TABLES

Table		Page
Table 2-1	PFCs Groundwater Monitoring Plan	2-7
Table 3-1	Depth-to-Groundwater and Groundwater Elevation Data - October 2012 – December 2014	3-15
Table 3-2	Summary of Groundwater PFC Analytical Data - October 2012 through October 2014	3-16
Table 3-3	Mann-Kendall Trend Test Summary	3-19
Table 3-4	Summary of Pore Water and Surface Water PFC Analytical Data	3-20

ATTACHMENTS

ATTACHMENT A	SUMMARY OF WELL CONSTRUCTION INFORMATION
ATTACHMENT B	PORE WATER AND SURFACE WATER SAMPLING SHEETS SEPTEMBER/OCTOBER 2014 SAMPLING EVENT
ATTACHMENT C	HYDROGRAPHS FOR SITE MONITORING WELLS
ATTACHMENT D	LABORATORY ANALYTICAL PACKAGES AND CHAIN-OF-CUSTODY DOCUMENTATION FOR GROUNDWATER SAMPLING EVENTS
ATTACHMENT E	PFBA, PFOA AND PFOS TREND GRAPHS
ATTACHMENT F	LABORATORY ANALYTICAL PACKAGES FOR PORE WATER AND SURFACE WATER SAMPLING – SEPTEMBER/OCTOBER 2014

2.\FOLDERS.0-93m-cottage_grove\\VESTON-Reports\2014-4Q-Annual-G/ACGNN_2014_Annual_Report.decx

1. INTRODUCTION

This annual 2014 report has been prepared by Weston Solutions, Inc. (WESTON_®) for 3M Company (3M), and includes an assessment of perfluorochemicals (PFCs) in groundwater, pore water, and surface water at the 3M Cottage Grove, Minnesota facility (Site). The Site has been in operation since 1947, and currently manufactures a range of products including adhesive products, specialty paper, industrial polymers, abrasives, and reflective road sign materials. Research and development of a proprietary nature are also performed at the facility. The Site is located approximately 3 miles southeast of the City of Cottage Grove, Minnesota, and is approximately 1,700 acres in size. The industrial, developed portion of the site is approximately 200 acres as shown in Figure 1-1.

Since the early 1980s, 3M has worked cooperatively with the Minnesota Pollution Control Agency (MPCA) in conducting investigations to characterize environmental media at the Site. More recently, as early as December 2004, 3M had worked with the MPCA to voluntarily assess the presence of PFCs at the Site. This included field activities to characterize site soil and groundwater quality as well as sediment and surface water quality at the East Cove. It also included field activities to characterize sediment, surface water, and pore water quality in the Mississippi River. Subsequently, 3M entered into a Settlement Agreement and Consent Order (the Agreement) in May 2007 for the purpose of performing the remedial investigations and response actions to address PFCs at the Site.

In September and October 2008, two groundwater production wells (PW-09 and PW-10) were installed at the Site and a 48-hour pumping test was performed on each. The results of the short-term pump tests were utilized to develop groundwater remedial Alternative GW-1, which consists of an expanded groundwater extraction network to prevent off-site migration of groundwater beneath the Eastern Disposal Areas (Areas D1, D2 and D9) and the East Cove, as well as the eastern portion of the main plant area. These areas are shown on Figure 1-2. The extracted groundwater would be routed through a new granular activated carbon (GAC) treatment building and subsequently used in manufacturing operations prior to discharge.

1-1

Z:\FOLDERS.0-9\3m-cottage_grove\WESTON-Reports\2014-4Q-Annual-GW/CGMN_2014_Annual_Report.doc

As described in the MPCA-approved Feasibility Study (FS) Report (WESTON, 2008) and the Remedial Design/Response Action (RD/RA) Plan (WESTON, 2009) for the Site, 3M and MPCA agreed that the remedial Alternative GW-1 would be implemented in a phased manner. The phased implementation of the remedial Alternative GW-1 involves the performance of an extended pilot pump test on the two new production wells (PW-09 and PW-10), to refine and optimize the long-term pumping system operational parameters, and to identify if additional production wells are needed.

Soil and East Cove sediment response actions also have been completed in accordance with the Agreement and MPCA-approved RD/RA Plan to address the PFCs found in these media. In June 2011, prior to the implementation of remedial measures in the East Cove, pore water (interstitial water (IW)) and surface water sampling was performed in the Mississippi River at a subset of the locations previously sampled in 2006. PFBA, PFOA, and PFOS concentrations in pore water and surface water were obtained at four transect locations to characterize pre-remediation conditions for comparison to future PFC concentrations detected in these media.

At a meeting with the MPCA on March 15, 2012, 3M agreed to prepare a monitoring plan for PFCs in groundwater at the Site, which also would include pore water and surface water sampling in the Mississippi River prior to, during, and after the extended pump test. The *Groundwater, Pore Water and Surface Water Sampling Plan for Perfluorochemicals* (PFCs) - 3M Cottage Grove Site (Sampling Plan) was submitted to the MPCA on May 4, 2012.

After resolution of MPCA and AECOM comments on the Sampling Plan, the PFCs baseline (i.e. prior to the extended pump test) groundwater, pore water, and surface water sampling was performed in October 2012. The results of the October 2012 sampling event were provided to MPCA in the June 2013 in the *Baseline Monitoring Report for Perfluorochemicals (PFCs) in Groundwater, Pore Water, and Surface Water, 3M Cottage Grove Site, Cottage Grove, MN* (WESTON, 2013).

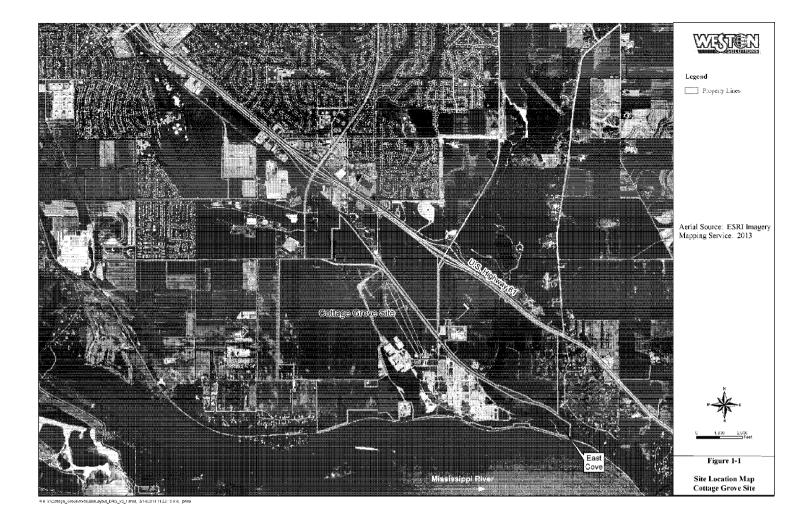
The extended pilot pump test was initiated in February 2013 with the startup of production wells PW-09 and PW-10. Groundwater extracted from PW-09 and PW-10 was routed to

Z:\FOLDERS.0-9\3m-cottage_grove\WESTON-Reports\2014-4Q-Annual-GW/CGMN_2014_Annual_Report.doc

the new GAC treatment facility. The field data collection period of the extended pilot pump test continued until February 2014. The details of the extended pilot pump test were submitted to MPCA in March 2015 in a separate report. In accordance with the RD/RA Plan, PW-09 and PW-10 continue to operate in conjunction with existing Site production wells to intercept groundwater migrating toward the Mississippi River.

1.1 PURPOSE AND OBJECTIVES OF THE SAMPLING PLAN

In addition to the baseline groundwater sampling, the Sampling Plan includes a requirement for quarterly (for four years after completion of the extended pilot pump test) and annual groundwater sampling for PFCs. The monitoring for PFCs is being implemented in accordance with the provisions of the MPCA-approved RD/RA Plan to provide groundwater quality data to assess the impact of the completed PFCs soil and sediment remediation activities, and the effectiveness of on-going groundwater remediation activities. The Sampling Plan includes Mississippi River pore water and surface water sampling for PFCs prior to, during, and after the extended pilot pump test to assess whether any trends are apparent for these environmental media.


The components of the Sampling Plan include:

- Identification of sample type and locations, monitoring frequency, and monitoring rationale,
- Procedures for sample collection,

Z:\FOLDERS.0-9\3m-cottage_grove\WESTON-Reports\2014-4Q-Annual-GW/CGMN_2014_Annual_Report.doc

- Procedures for documentation and quality assurance/quality control (QA/QC),
- Sample analysis and analytical parameters, and
- Reporting.

This is the second annual monitoring report since baseline sampling activities were conducted in October 2012. It contains a description of sampling methodologies and the results of groundwater, pore water and surface water sampling performed in 2014 in Sections 2 and 3. A summary of the findings of the groundwater, pore water and surface water investigations is provided in Section 4 and future course of action is presented in Section 5.

3630.0015

3630.0016

2. SAMPLING PROGRAM

The PFC Sampling Plan contains the monitoring program for the Site. As indicated in the Sampling Plan, 3M implemented baseline groundwater monitoring for PFCs in October 2012, prior to the startup of the extended pilot pump test. These baseline monitoring results are used as a reference point for comparison to future monitoring. The 2014 PFC sampling program that was conducted to assess groundwater, pore water, and surface water conditions at the Site is described in the following sections.

2.1 GROUNDWATER

The current groundwater monitoring network at the Site consists of 33 monitoring wells and one piezometer. In addition, there are six existing production wells (PW-01 through PW-05/PW-06), one infrequently used production well (PW-07), and two new production wells (PW-09 and PW-10). Production wells PW-02 and PW-05 are currently the primary production wells used for water supply (not used for drinking water) at the Cottage Grove Plant. Production wells PW-01, PW-03, PW-04 and PW-05/PW-06 are not routinely pumped, but are available for use on an as-needed basis. Former production well PW-08 was abandoned in April 2012 as it was no longer used.

The monitoring wells and production wells that are included in the annual and quarterly sampling network for PFCs are presented in Table 2-1 and shown on Figure 2-1. A table summarizing available well construction and other information for the Site wells is included in Attachment A.

In accordance with the Sampling Plan, the annual groundwater sampling event was performed in April 2014 and included the analysis of the following 12 PFCs:

- Perfluorooctanoic acid (PFOA)
- Perfluorooctane sulfonate (PFOS)
- Perfluorobutane sulfonate (PFBS)
- Perfluorohexane sulfonate (PFHS)
- Perfluorobutanoic acid (PFBA)
- Perfluoropentanoic acid (PFPeA)
- Perfluorohexanoic acid (PFHxA)

Z:\FOLDERS.0-9\3m-cottage_grove\WESTON-Reports\2014-4Q-Annual-GWVCGMN_2014_Annual_Report.doc

2-1

- Perfluoroheptanoic acid (PFHpA)
- Perfluorononoic acid (PFNA)
- Perfluorodecanoic acid (PFDA)
- Perfluoroundecanoic acid (PFUnA)
- Perfluorododecanoic acid (PFDoA)

Quarterly groundwater sampling was performed in January, July and October 2014, and included analysis for: PFBA, PFBS, PFHS, PFOS and PFOA.

As noted in Table 2-1, a few modifications to the Site monitoring well network have occurred since the implementation of the Groundwater Sampling Plan. A summary of these modifications are provided in the following paragraphs.

Monitoring wells MW-06 and MW-14 were abandoned in May 2013 in accordance with Minnesota Department of Health (MDH) regulations. Attempts to rehabilitate both monitoring wells were made prior to abandonment. The screened interval of monitoring well MW-14 was clogged and could not be restored to a useable condition. An obstruction was present in monitoring well MW-06 at approximately 85 feet below ground surface (ft bgs) that could not be removed. A new monitoring well to replace MW-06 was not installed because MW-06 was an upgradient monitoring well and another upgradient monitoring well MW-05 is being used to assess upgradient conditions.

New monitoring wells MW-04R, MW-14R and MW-112 were installed in May 2013. Monitoring well MW-04R was installed as a replacement well for adjacent monitoring well MW-04. The open borehole interval of monitoring well MW-04 had partially collapsed limiting the flow of groundwater into this well. This well could not be abandoned due to overhead power lines that prevent access to the location by a drilling rig. Monitoring well MW-14R was installed as a replacement for monitoring well MW-14 to provide groundwater quality and elevation data in the vicinity of production wells PW-05 and PW-05/PW-06. Per MPCA approval received by 3M in January 2014, monitoring well MW-14R will replace production well PW-05/PW-06, which is not routinely pumped, as a groundwater monitoring point in the sampling program. Finally, monitoring well MW-112 was installed in the eastern Site area to provide an additional groundwater monitoring point between the East Cove and the former D1/D2 Area. Groundwater samples were collected

Z:\FOLDERS.0-9\3m-cottage_grove\WESTON-Reports\2014-4Q-Annual-GW/CGMN_2014_Annual_Report.doc

in July 2013 from monitoring wells MW-04R, MW-14R and MW-112 to provide baseline PFC groundwater quality data at these locations.

2.2 PORE WATER AND SURFACE WATER

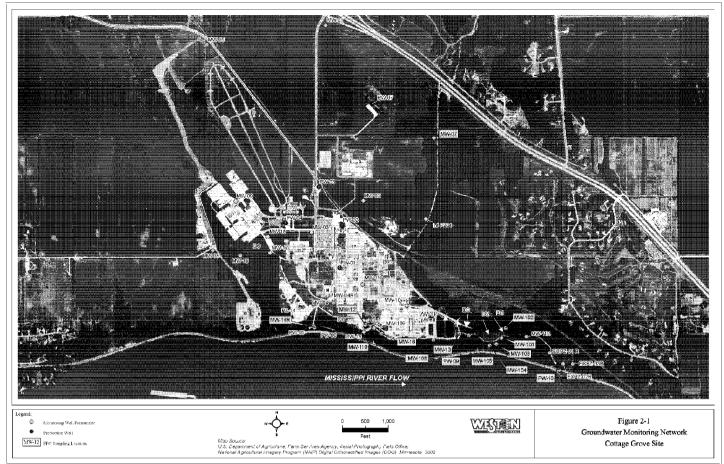
Paired pore water and surface water samples were collected from the Mississippi River during the week of September 29, 2014. This sampling event was performed after the extended pilot pumping test was completed at production wells PW-09 and PW-10. This pore water and surface water sampling event could not be performed until after water levels in the Mississippi River had subsided due to above normal precipitation that caused high water conditions in the river.

Samples were collected from the same locations as the September/October 2006, June 2011 (pre-East Cove remediation), October 2012 (pre-extended pilot pump test), and August 2013 (mid-point of extended pilot pump test) sampling events. The samples were collected from the four transect locations in the Mississippi River perpendicular to the shoreline to assess the current distribution of PFCs in surface water and groundwater beneath the river (Figure 2-2). As shown in Figure 2-2, four samples were collected from each of the four transects (IW-09, IW-14, IW-19 and IW-25). The sampling locations were approximately 50 feet (ft), 100 ft, 300 ft and 500 ft from the shoreline.

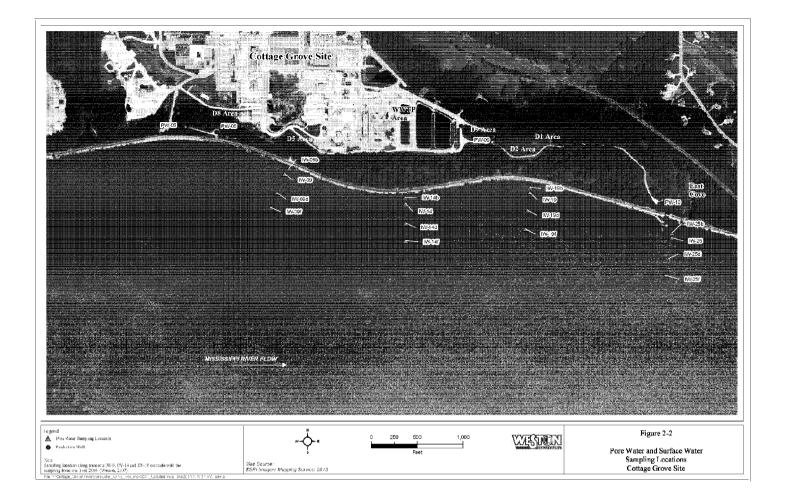
These transects were selected based on their proximity to the following Site areas:

- IW-09 transect located near the D5 Area;
- IW-14 transect near the wastewater treatment plant (WWTP) Area;
- IW-19 transect near the D1/D2/D9 Areas;
- IW-25 transect near the East Cove.

Z:\FOLDERS.0-9\3m-cottage_grove\WESTON-Reports\2014-4Q-Annual-GW/CGMN_2014_Annual_Report.doc


Pore water and surface water sampling protocols and standard operating procedures are contained in the Sampling Plan. Modifications to the pore water and surface water sampling protocols were detailed in a response to MPCA comments dated August 21, 2012. A boat was used to gain access to each of the sampling points. Sampling was performed from downstream to upstream transect locations. A GPS with submeter accuracy was used to establish each sampling location. As agreed with MPCA, surface water samples were collected first. Based on similarities in the 2006 surface water results

3630.0019



from discrete depths corresponding to 20 and 80 percent of the water column, the surface water samples collected during the September/October 2014 sampling event consisted of a single composite sample of equal proportions from these same depths (20 and 80 percent) to represent the average water column concentration.

Following the collection of the surface water sample, a co-located pore water sample was collected. The pore water samples were collected using a decontaminated stainless steel sampling probe with 0.5 ft of 0.01-inch slotted screen and sufficient riser to extend above the surface of the water. The sampling probe was driven approximately one foot into the bottom sediment so that the screen was placed at an approximate depth of 0.5 ft to 1.0 ft below the top of sediment. Groundwater within the probe was purged using a peristaltic pump and disposable polyethylene tubing. Samples were collected from the pore water probes after either 3 well volumes were removed, or after the water level had sufficiently recharged after pumping dry. When possible, the pore water sampling probes were allowed to recover a minimum of 24 hours prior to sampling; however, due to high winds and the forecast for heavy precipitation that would potentially compromise sample integrity, some of the pore water locations were sampled slightly less than 24 hours after purging. Collected samples were analyzed for PFBA, PFOS and PFOA by the 3M Environmental Laboratory in St. Paul, Minnesota. Pore water and surface water sampling field sheets are provided in Attachment B.

Re: MCottage: Gravism Inform Brissing: Samplery Wells: Updated mod, 6/8/2014-9/43/22-946 - Shr

Table 2-1PFCs Groundwater Monitoring Plan3M Cottage Grove SiteCottage Grove, MN

Well ID	October 2012	afte	Rationale for Sampling			
	(Baseline)	1Q	2Q ⁽¹⁾	3Q	4Q	after Baseline
Monitoring Wells		-		-		
MW-01	WL	WL	WL	WL	WL	
MW-02	WL	WL	WL	WL	WL	
MW-03	WL	WL.	WL.	WL	WL	
MW-04	WL	WL	WL	WL	WL	
MW-04R ⁽²⁾		WL	WL	WL	WL	
MW-05	WL	WL	WL	WL	WL	
MW-06 ⁽²⁾						
MW-07	WL, 12 PFCs	WL, 5 PFCs	WL, 12 PFCs	WL, 5 PFCs	WL, 5 PFCs	Upgradient well
MW-08	WL	WL	WL	WL	WL	- FBriterie
MW-09	WL	WL	WL	WL	WL	
MW-10	WL	WL	WL	WL	WL	
MW-11	WL	WL	WL	WL	WL	
MW-12	WL, 12 PFCs	WL, 5 PFCs	WL, 12 PFCs	WL, 5 PFCs	WL, 5 PFCs	D5 Arca (RD/RA)
MW-13	WL, 12 PFCs	WL, 5 PFCs	WL, 12 PFCs	WL, 5 PFCs	WL, 5 PFCs	D9 Area (RD/RA)
MW-14 ⁽²⁾	WL	_	_	-	_	
MW-14R		WL, 5 PFCs	WL, 12 PFCs	WL, 5 PFCs	WL, 5 PFCs	D8 Area, replaced PW-06
MW-15	WL	WL	WL	WL.	WL	
MW-16	WL, 12 PFCs	WL, 5 PFCs	WL, 12 PFCs	WL, 5 PFCs	WL, 5 PFCs	D5 Area
MW-17	WL	WL	WL	WL	WL	
MW-18	WL	WL	WL	WL	WL	
MW-19	WL	WL	WL	WL	WL	
MW-101	WL, 12 PFCs	WL, 5 PFCs	WL, 12 PFCs	WL, 5 PFCs	WL, 5 PFCs	D1 Area (RD/RA)
MW-102	WL, 12 PFCs	WL	WL, 12 PFCs	WL	WL	D1 Area (RD/RA)
MW-103	WL, 12 PFCs	WL	WL, 12 PFCs	WL	WL	D2 Area (RD/RA)
MW-104	WL, 12 PFCs	WL, 5 PFCs	WL, 12 PFCs	WL, 5 PFCs	WL, 5 PFCs	D2 Area (RD/RA)
MW-105	WL, 12 PFCs	WL, 5 PFCs	WL, 12 PFCs	WL, 5 PFCs	WL, 5 PFCs	D9 Area (RD/RA)
MW-108	WL, 12 PFCs	WL, 5 PFCs	WL, 12 PFCs	WL, 5 PFCs	WL, 5 PFCs	WWTP Area (RD/RA)
MW-109	WL	WL	WL	WL	WL	· · · · · · · · · · · · · · · · · · ·
MW-110	WL, 12 PFCs	WL, 5 PFCs	WL, 12 PFCs	WL, 5 PFCs	WL, 5 PFCs	D5 Area (RD/RA)
MW-112	WL	WL	WL	WL	WL	
ECPZ-01	WL	WL	WL	WL	WL	East Cove Area
ECPZ-02R ⁽³⁾	WL	WL	WL	WL	WL	East Cove Area
ECPZ-03R ⁽³⁾	WL	WL	WL	WL	WL	East Cove Area
INF-PZ01 ⁽³⁾	WL	WL	WL	WL	WL	
Piezometer		•			l l	
PZ-14	WL	WL	WL	WL	WL	
roduction Wells						
PW-06 ⁽⁴⁾	WL ⁽⁵⁾ , 12 PFCs	WL ⁽⁵⁾	WL ⁽⁵⁾	$WL^{(5)}$	WL ⁽⁵⁾	D8 Area (RD/RA)
PW-09	WL ⁽⁵⁾ , 12 PFCs	WL ⁽⁵⁾ , 5 PFCs	WL ⁽⁵⁾ , 12 PI/Cs	WL ⁽⁵⁾ , 5 PFCs	WL ⁽⁵⁾ , 5 Pl ⁻ Cs	D9 Area
PW-10	WL ⁽⁵⁾ , 12 PFCs	WL ⁽⁵⁾ , 5 PFCs	WL ⁽⁵⁾ , 12 PFCs	WL ⁽⁵⁾ , 5 PFCs	WL ⁽⁵⁾ , 5 PFCs	East Cove Area

Notes:

WL - Water level measurement.

WWTP - Wastewater Treatment Plant

12 PFCs - PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoA, PFBS, PFHS, and PFOS.

5 PFCs - PFBA, PFBS, PFHS, PFOS, and PFOA.

(1) The annual groundwater sampling event will be performed in 2Q sampling event.

(2) In May 2013, monitoring wells MW-06 and MW-14 were abandoned, and monitoring wells MW-04R, MW-14R, and MW-112 were installed.

(3) Reclassified as monitoring wells since they are registered with the Minnesota Department of Health (MDH) with unique well IDs.

(4) PW-06 is currently not in use; therefore, a sample cannot be collected from this well. Nearby monitoring well MW-14R has been added to the sampling program to replace PW-06.

(5) Water level measurement will be recorded if pump is not operating.

Tab-2-01_GW_Monitor_Plan_PFC.xls

3. WATER MONITORING AND RESULTS

3.1 GROUNDWATER ELEVATIONS

Figure 3-1 shows the locations of the production wells, monitoring wells and piezometer on the Minnesota Geologic Survey (MGS) geologic map for the Site. Beneath the main plant area, the uppermost water-bearing unit is the Oneota Dolomite. Where the Oneota Dolomite is absent, the uppermost water-bearing unit occurs within the unconsolidated glaciofluvial sediments. As shown in Figure 3-1, the Oneota Dolomite (blue) is eroded in a significant area to the south and east of the Main Plant area where a bedrock valley (yellow and green) is present. Site production wells PW-05 and PW-05/PW-06, in addition to new production wells PW-09 and PW-10, are all screened within the unconsolidated sediments within the limits of the bedrock valley.

Depth-to-groundwater measurements were measured on a quarterly basis at the monitoring well and piezometer locations shown in Figure 2-1. Water level measurements recorded in groundwater monitoring wells are presented in Table 3-1. Hydrographs were constructed for select monitoring points, and are included in Attachment C. As discussed previously in Section 2.1, monitoring wells MW-04R, MW-14R and MW-112 were installed in May 2013, while monitoring wells MW-06 and MW-14 were deemed unusable due to well integrity issues and abandoned at the same time in accordance with MDH regulations.

Efforts were also completed in May 2013 to rehabilitate monitoring well MW-12 as the screened interval of this well is clogged. The rehabilitation efforts could not completely clear the screened interval of this well as it continues to pump dry during sampling events; however, the water level in this monitoring well recovers sufficiently within 24 hours to allow the collection of a representative groundwater sample. Therefore, monitoring well MW-12 continues to be included in the quarterly groundwater sampling program for the Site, but the water level recorded in this well is not used to construct groundwater elevation contours.

As shown in Table 3-1, the water levels in monitoring wells more distant from the Mississippi River (e.g. monitoring wells MW-01, MW-02, MW-03, MW-09, MW-17 and

3-1

Z:\FOLDERS.0-9\3m-cottage grove\WESTON-Reports\2014-4Q-Annual-GW/CGMN 2014 Annual Report.doc

MW-18) exhibited greater change in water level than monitoring wells closer to the river. These fluctuations in water levels are also shown in the hydrographs presented in Attachment C. Increases in water levels occur in response to significant precipitation events, and after the spring melt. Groundwater levels subsequently decline in response to lower recharge during the winter months.

The groundwater elevation data collected from the network of wells shown in Table 3-1 were used to prepare groundwater elevation contour maps. Figures 3-2 through 3-5 present groundwater elevation contour maps constructed for January, April, August, and December 2014. As shown in Figures 3-2 through 3-5, the direction of groundwater flow is consistently to the south toward the Mississippi River. A moderate hydraulic gradient of 0.009 (ft/ft) is calculated along the interpreted direction of groundwater flow from monitoring well MW-01 to the Mississippi River.

Areas of depression in the groundwater surface induced by the pumping of production wells PW-02, PW-05, PW-09 and PW-10 are evident in all of the groundwater elevation contour maps. As part of the extended pilot pump test, production well PW-09 was operating at 900 gpm on January 22, 2014. As shown in Figure 3-2, the effect of production well PW-09 operating at this high flow rate creates a larger cone of depression in the groundwater surface compared to the groundwater elevation contour maps for the other dates; however, the effect of continuous pumping of production wells PW-09 and PW-10 is also evident in the groundwater elevation maps constructed for April, August and December 2014.

3.2 EXTENDED PILOT PUMP TEST

The extended pilot pump test was performed at the Site from February 2013 through February 2014. The primary purpose of the pump test was to provide information to complete the design of a groundwater interception system in accordance with the approved RD/RA Plan and the Minnesota Decision Document (MDD) for the Site.

The current groundwater recovery network consists of Site production wells PW-05, PW-09 and PW-10. The extended pilot pump test consisted of continuing to pump production

Z:\FOLDERS.0-%\3m-cottage_grove\WESTON-Reports\2014-4Q-Annual-GW/CGMN_2014_Annual_Report.docx

well PW-05, and varying the flow rates at production wells PW-09 and PW-10 while collecting water level data at nearby monitoring wells. The water level data were used to calculate the area of groundwater capture zones induced by production wells PW-09 and PW-10 at various flow rates. The pump test was conducted in accordance with the approved pump test work plan (WESTON, 2013) and continued until sufficient operational data were collected to allow completion of the final design of the groundwater interception system with respect to the number, spacing and pumping rates for the production (extraction) well network.

The proposed final design of the groundwater interception system was determined using a combination of groundwater elevation data collected during the extended pilot pump test and performing predictive simulations using a groundwater flow model calibrated to Site hydrogeologic conditions. The results of this analysis indicated that the recommended groundwater interception system would consist of production well PW05/PW-06 (or a replacement), PW-09, PW-10 and one additional new well between production wells PW-5/PW-06 and PW-09. Details of this analysis were provided in a separate document that was submitted to the MPCA in March 2015 (WESTON, 2015).

3.3 GROUNDWATER QUALITY

Z:\FOLDERS.0-9\3m-cottage grove\WESTON-Reports\2014-4Q-Annual-GW/CGMN 2014 Annual Report.doc

Quarterly groundwater sampling events were performed in January, July and October 2014. The annual groundwater sampling event was performed in April 2014. Table 3-2 contains a summary of groundwater PFC analytical data for the groundwater sampling performed since the October 2012 baseline sampling event. Laboratory analytical packages and chain-of-custody documentation for the 2014 sampling events are included in Attachment D.

PFBA, PFOA and PFOS concentrations for select wells are plotted on trend graphs and provided in Attachment E. The PFC analytical data were evaluated by applying the Mann-Kendall trend test (at an $\alpha = 0.05$ significance level) to PFBA, PFOA, PFOS and PFHS concentrations for those Site monitoring wells where sufficient historical groundwater analytical data are available (i.e. n>=5). The Mann-Kendall trend test is a non-parametric statistical procedure that is used for analyzing trends in data over time (Gilbert, 1987).

3-3

Nonparametric methods require no assumptions regarding the underlying statistical distribution of the data. The outcome of the procedure depends on the ranking of individual data points and not the overall magnitude of the data points. The Mann-Kendall procedure can be used for data sets that include irregular sampling intervals, data below the detection limit, and trace or missing data. The method may be applied to track data trends for purpose of groundwater compliance monitoring, site assessment, and monitoring of the performance of groundwater corrective actions (USEPA, 2009). Mann-Kendall test outcomes consist of the identification of statistically significant increasing trends, no statistically significant trend or a statistically significant decreasing trend at the specified significance level.

Table 3-3 provides a summary of the results of the Mann-Kendall analysis, and a discussion of the groundwater analytical results is provided in the following subsections. The discussion of groundwater analytical results is organized by the location of wells by Site area and focused primarily on the PFBA, PFOS and PFOA results. However, the analytical results for other PFCs are discussed where pertinent.

3.3.1 Background

Table 3-2 provides a summary of background groundwater analytical results collected from monitoring well MW-07. As shown on Figure 2-1, monitoring well MW-07 is located to the northeast of the Cottage Grove Plant near Highway 61.

The groundwater analytical data for the period October 2012 through October 2014 indicates PFBA, PFOA and PFOS are consistently detected in the samples collected from monitoring well MW-07. PFBS, PFHA, PFHpA, PFHS and PFPeA were also detected. The Mann-Kendall results presented in Table 3-3 indicate a statistically significant increasing trend for PFOS, PFOA, PFBS and PFHS, while no statistically significant trend was identified for PFBA in the period October 2012 through October 2014. Groundwater elevation data for the Site have consistently shown that monitoring well MW-07 is hydraulically upgradient of the plant and the former disposal areas on Site (see Figures 3-2

Z:\FOLDERS.0-9\3m-cottage_grove\VVESTON-Reports\2014-4Q-Annual-GV/NCGMN_2014_Annual_Report.docx

through 3-5). 3M is not aware of the source for PFCs in groundwater at this upgradient location.

3.3.2 D1/D2 Area

Soil excavation activities were performed from December 2009 through May 2010 in the D1/D2 Area that included the removal, and off-site disposal at a permitted facility, of approximately 15,000 cubic yards (yd³) of PFC-containing soil. Wells MW-101, MW-102, MW-103 and MW-104 monitor groundwater conditions near the D1/D2 Area. Monitoring well MW-112 was installed to the east of the D1/D2 Area in May 2013. Although not included in the list of monitoring wells in the long-term sampling program for the Site, a groundwater sample was collected from newly installed monitoring well MW-112 during the July 2013 sampling event to provide baseline PFCs groundwater quality data.

As shown in Table 3-2, PFBA, PFBS, PFOA, PFHA, PFHpA, PFHS, PFNA, PFOA, PFOS and PFPeA are consistently detected in groundwater samples collected from monitoring wells MW-101, MW-102, MW-103 and MW-104. In accordance with the Groundwater Sampling Plan, quarterly groundwater samples are collected from monitoring wells MW-101 and MW-104, while monitoring wells MW-102 and MW-103 are sampled annually. Detected PFC concentrations are generally highest in MW-101. PFBA and PFHS concentrations are higher in MW-101 and MW-102 (D1 Area) compared to the results for monitoring wells MW-103 and MW-104 (D2 Area). PFOA concentrations in the period October 2012 through October 2014 ranged from 35.1 μ g/L (MW-104) to 147 μ g/L (MW-101). PFOS concentrations are consistently lowest in monitoring well MW-103 (1.55 to 7.82 μ g/L), while the PFOS results for monitoring wells MW-101, MW-102 and MW-104 were comparable (107 to 250 μ g/L).

The Mann-Kendall trend test indicated no statistically significant trend for PFOS, PFOA, PFBA or PFHS for monitoring well MW-104 (Table 3-3). A statistically significant decreasing PFOS, PFOA, PFBA and PFHS trend was identified in monitoring well MW-101, while a statistically significant decreasing PFBS trend was determined for monitoring well MW-104. A statistically significant increasing PFBS trend was determined for

Z:/FOLDERS.0-9/3m-cottage grove/WESTON-Reports/2014-4Q-Annual-GW/CGMN 2014 Annual Report.doc:

monitoring well MW-101, although PFBS concentrations have fluctuated in a relatively narrow range of 19.5 to 37.8 μ g/L. Insufficient data is currently available to establish a trend applying the Mann-Kendall test to PFCs detected in monitoring wells MW-102 and MW-103. A cursory review of the results in Table 3-2 for monitoring wells MW-102 and MW-103 indicates that the PFC concentrations fluctuate with no discernible trend.

3.3.3 D9 Area

In the D9 Area, soil excavation activities were performed from May through August 2010 with the removal, and off-site disposal at a permitted facility, of approximately 8,400 yd³ of soil. Wells MW-105 and MW-13 monitor groundwater quality conditions near the D9 Area. The continued pumping of production well PW-09 is remediating PFCs in groundwater in the D9 Area (and a portion of the WWTP and D1/D2 Areas).

A comparison of the PFC analytical data summarized in Table 3-2 for monitoring wells MW-13 and MW-105 indicates higher PFC concentrations in monitoring well MW-105 compared to MW-13. Monitoring well MW-105 is immediately downgradient of the D9 Area while monitoring well MW-13 is slightly to the west of the limits of the D9 Area.

A visual inspection of the PFC results for production well PW-09 in Table 3-2 suggests an increase in PFC concentrations at this pumping center, and the Mann-Kendall trend test identifies a statistically significant increasing trend in PFOS and PFOA concentration for production well PW-09. As shown in Table 3-3, a statistically significant decreasing trend was identified for PFOA and PFBS for monitoring well MW-105. No statistically significant trend was identified for the remaining PFCs for the Mann-Kendall analysis performed for monitoring wells MW-105 and production well PW-09. Further, no statistically significant trend in PFCs was identified for monitoring well MW-13.

3.3.4 WWTP Area

Z:\FOLDERS.0-9\3m-cottage grove\WESTON-Reports\2014-4Q-Annual-GW/CGMN 2014 Annual Report.doc

Monitoring well MW-108 is included in the quarterly groundwater sampling program to provide groundwater quality data downgradient of the Site waste water treatment plant (WWTP) area. As shown in the PFC analytical data provided in Table 3-2 and trend graph presented in Attachment E, PFC concentrations continue to fluctuate in monitoring well

MW-108 with a temporary increase in PFCs in July 2014. Prior to July 2014, PFC concentrations showed a general decline over time. The Mann-Kendall trend analysis for monitoring well MW-108 indicated a statistically significant decreasing trend in PFHS and no statistically significant trend for the remaining PFCs analyzed.

3.3.5 D5 Area

Monitoring wells MW-110, MW-12 and MW-16 provide groundwater quality and elevation data for the D5 Area. Monitoring well MW-12 is located within the limits of the D5 Area, while monitoring wells MW-110 and MW-16 are located immediately south to southeast (downgradient) of the D5 Area (see Figure 2-1). As shown in Table 3-2, prior to 2014, PFBA, PFOS and PFOA concentrations for monitoring well MW-12 are higher compared to monitoring wells MW-110 and MW-16. Comparing the PFC results for 2014 to previous PFC data for D5 area monitoring wells, PFC concentrations have decreased for monitoring well MW-12 while an increase in some PFCs (e.g. PFOA) were apparent in monitoring wells MW-110 and MW-16.

The Mann-Kendall trend test provides the following results:

- Monitoring well MW-12: Statistically significant decreasing trend for PFOS, PFOA, PFBA, PFBS and PFHS.
- Monitoring well MW-110: Statistically significant decreasing trend for PFOS. Statistically significant increasing trend in PFOA, PFBA, PFBS and PFHS.
- Monitoring well MW-16: No statistically significant trend for PFOS or PFBA. A statistically significant increasing trend for PFOA, PFBS and PFHS.

In the final design of the groundwater interception system for the Site, discussed in subsection 3.2, an additional production (recovery) well is recommended to be installed between existing production wells PW-05/PW-06 and PW-09.

3.3.6 D8 Area

As discussed in Section 2.1, quarterly groundwater samples were to be collected from production well PW-05/PW-06. However, due to a declining yield, the use of production well PW-05/PW-06 was scaled back in March 2013 to intermittent use. To compensate for

```
Z:\FOLDERS.0-9\3m-cottage_grove\WESTON-Reports\2014-4Q-Annual-GW/CGMN_2014_Annual_Report.doc>
```

3630.0030

the reduction in flow of production well PW-06, the plant water supply demands were met by pumping nearby production well PW-05 at a higher average flow rate. In 2014, production well PW-05 operated at an average flow rate of 916 gpm, which represents the highest flow rate for all the Site production wells. Monitoring well MW-14R is located between production wells PW-05 and PW-06 to the southwest (hydraulically downgradient) of the D8 Area. Following MPCA approval in January 2014, quarterly groundwater samples were collected from monitoring well MW-14R, as a replacement monitoring point for production well PW-06.

A review of the PFC analytical data provided in Table 3-2, and trend graphs provided in Attachment E, for monitoring well MW-14R visually indicates an increasing trend in PFC concentrations. However, as shown in Table 3-3, the Mann-Kendall analysis identified no statistically significant trend for PFCs except for a statistically significant increasing trend for PFBS.

3.3.7 East Cove Area

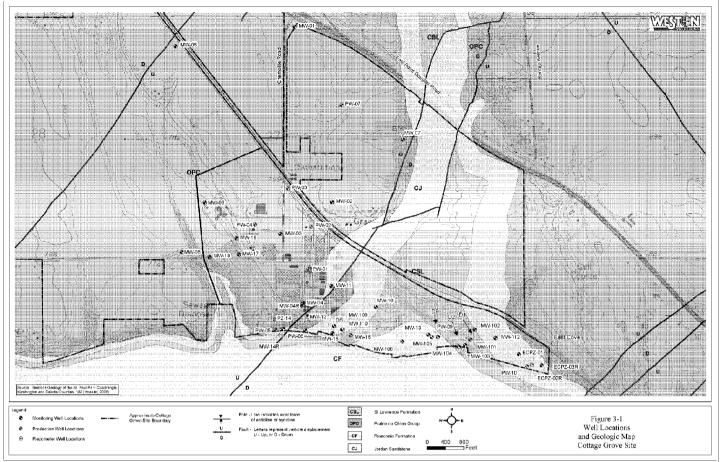
Remedial activities in the East Cove area included the removal, and off-site disposal at a permitted landfill, of approximately 16,500 yd³ of sediment. These activities were performed from August 2011 through January 2012. Production well PW-10 was installed to contain and remove groundwater potentially impacted with PFCs in the East Cove area. Table 3-2, and the trend graphs provided in Attachment E, present the groundwater analytical results through October 2014 for production well PW-10. A cursory review of the PFC analytical results for PW-10 indicates generally stable concentrations. This observation is confirmed by the Mann-Kendall trend test that indicated no statistically significant trends for the PFCs analyzed except for PFHS where a statistically significant decreasing trend was identified.

3.4 PORE WATER/SURFACE WATER QUALITY

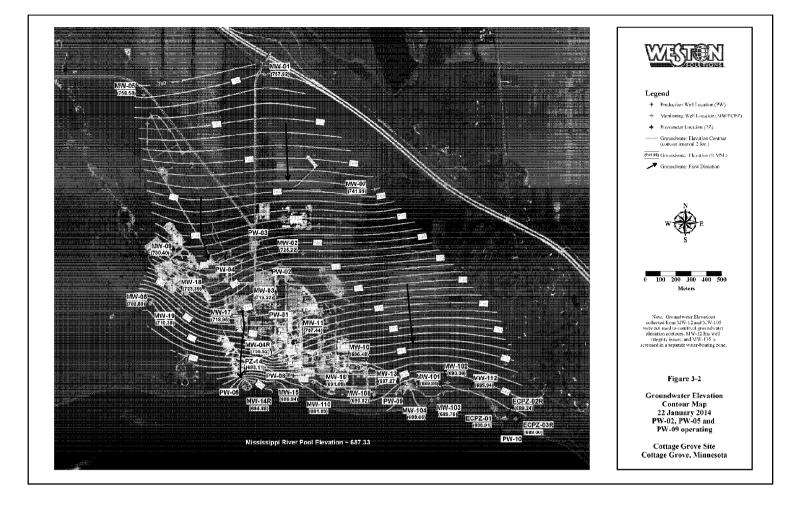
As described in the *Groundwater*, *Pore Water*, *and Surface Water Sampling Plan for Perfluorochemicals (PFCs)* (Sampling Plan) submitted to the MPCA in April 2012, three pore water/surface water sampling events were conducted at the same locations where

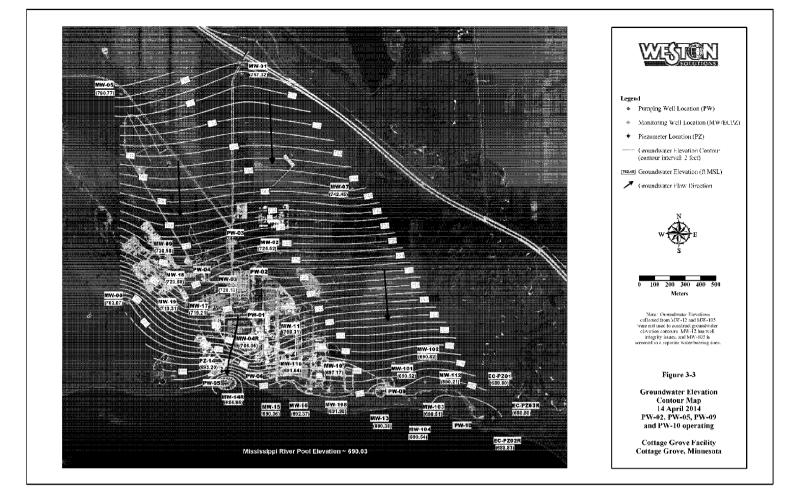
Z:\FOLDERS.0-%3m-cottage_groveWVESTON-Reports\2014-4Q-Annual-GWVCGMN_2014_Annual_Report.docx

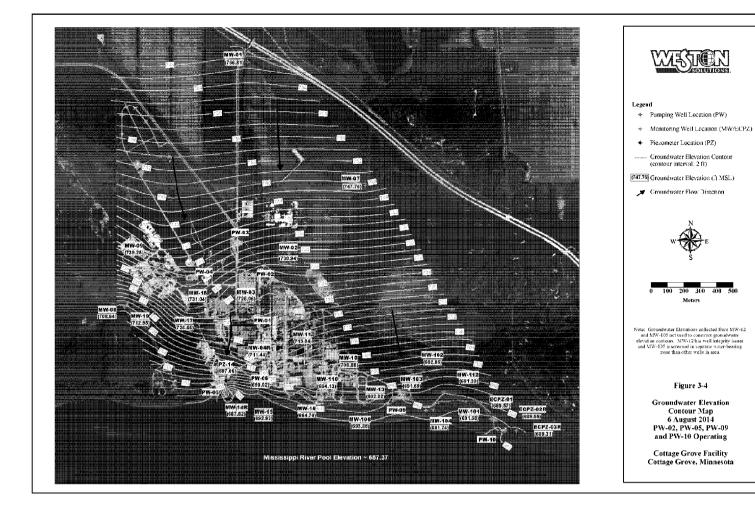
sampling was performed previously in September/October 2006 and June 2011. The additional three sampling events were conducted prior to (October 2012), during (August 2013), and after (September/October 2014) the extended pilot pump test. These pore water sampling events complete the pore water and surface sampling commitment made to MPCA in the Sampling Plan.

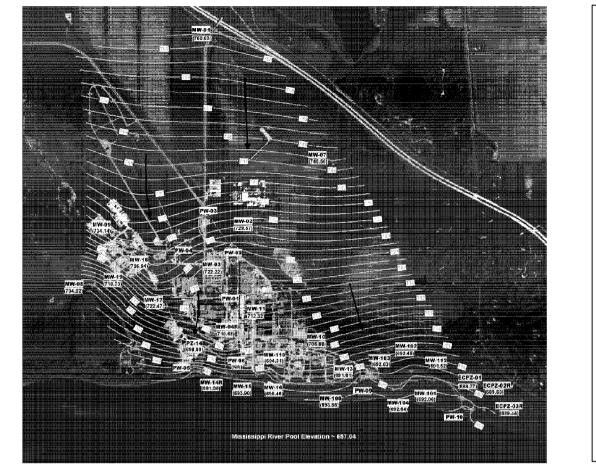

The laboratory PFC analytical data package for the September/October 2014 sampling event is provided in Attachment F. A summary of the pore water and surface water analytical results from the pre-, mid-, and post extended pilot pump test sampling events are provided in Table 3-4. The PFC analytical results for the September/October 2006 and June 2011 sampling events for the same locations are also provided in Table 3-4 for comparison purposes. The pore water and surface water sampling locations are provided in Figure 2-2. As shown in Figure 2-2, the pore water and surface water transects are located downgradient of the following Site areas:

- Transect IW-09: downgradient of the former D5 Area
- Transect IW-14: downgradient of the WWTP Area
- Transect IW-19: downgradient of the former D1/D2 Area
- Transect IW-25: downgradient of the East Cove Area.


The following observations for the pore water and surface water data presented in Table 3-4 are provided:


- PFC concentrations in pore water are higher than surface water PFC concentrations.
- Locations closer to the shoreline generally had higher pore water concentrations than locations more distant from shore.
- Pore water PFC concentrations fluctuate over time with no discernible trend.
- Where detected, PFCs in surface water have fluctuated but have generally declined in the reporting period provided in Table 3-4.


3630.0032



File YsCotinge Grovermedes/Act loss Geolegy zoom Rev1 mid, 5/6/2014/2/07/59 FM, johns

3M_MN01595986

3630.0037

Table 3-1 Depth-to-Groundwater and Groundwater Elevation Data October 2012 - December 2014 Cottage Grove Site, Cottage Grove, Minnesota

		00	xt-12	Fe	b-13	Ap	vr-13	Ju	1-13	Oc	t-13
Well ID	TOC Elevation (ft MSL)	Depth to Groundwater [ft btoc)	Groundwater Elevation (ft MSL)	Depth to Groundwater (ft btoc)	Groundwater Elevation (ft MSL)						
MW-01	822.02	65.12	756.90	67.91	754 11	66.01	756 01	59.82	762 20	62.49	759 53
MW-02	805.92	85.37	720.55	86.08	719 84	83.43	722 49	79.67	726 25	81.41	724 51
MW-03	810.07	100.41	709.66	99.71	710.36	93.09	716 98	89.96	720 11	91.72	718 35
MW-04	806.90	106.59	699.91	105.45	700 45	104.62	702 28	101.42	705 48	101.92	704 98
MW-04R	805.18	NA	NA	NA	NA	NA	NA	99.46	705 72	100.00	705 18
MVV-0E	808.18	50.10	758.08	52.52	756 29	48.35	760 46	45.17	763 64	48.66	760 15
MW-07	794 08	53.91	740.17	55.03	739.05	53.66	740 42	50.55	743 53	52.16	741 92
MW-08	765.97	63.41	702.56	65.32	700 65	63.98	701 99	60.49	705 48	62.18	703 79
MW-00	769.17	53.00	716.17	48.31	720.86	42.65	726 52	35.51	733 66	38.58	730 50
MW-1C	788.28	91.70	696.58	92.03	696 25	91.92	696 36	90.93	697 35	91.56	69672
MW-11	804.34	102.35	701.99	101.22	703 12	98.50	705 84	96.65	707 69	96.98	707 36
MVV-12	781.93	90.75	691.18	99.81	682 12	112.78	66915	93.50	638 43	98.84	683 09
MW-13	783.12	90.76	692.36	91.22	691 90	93.61	689 51	92.67	690 45	94.03	689 09
MW-14R	703.89	NA	NA	NA	NA	NA	NA	19.97	683 92	19.77	68412
MW-15	783.64	93.45	690.19	93.60	690 04	93.35	69D 29	93.21	690 43	93.48	690 16
MVV-16	784.21	91.55	692.66	91.95	692 26	92.03	69218	91.77	692 44	92.16	692 05
MW-17	785 16	77.37	707.79	76.44	708 72	70.13	715 03	65.18	719 98	67.03	71813
MW-16	782.93	73.15	709.78	71.00	71193	63.63	719 30	58.00	724 93	58.41	724 52
MW-19	757.36	51.20	706.16	52.55	704 81	50.62	706 74	47.24	710 12	47.37	709 99
PZ-14	755.96	61.57	694.39	64.31	€91 65	63.41	692 55	62.36	693 60	63.03	692 93
MW-101	785.84	93.92	€91.92	94.35	691 49	95.58	690 26	95.27	690 57	85.82	690.02
MW-102	783.25	90.93	692.32	91.42	691 83	92.65	69D 60	92.36	690 89	92.90	690 35
M/V-103	770.73	78.85	691.88	79.26	691 47	80.52	690 21	80.17	690 56	80.72	690.01
M/V-104	771.94	80.82	€91.12	80.45	€91 4 9	81.74	690 20	81.36	690 58	82.00	689 94
MAV-105	782.06	88.22	693.84	89.00	693.06	89.94	69212	89.67	692 39	90.10	691 96
MAV-108	787.61	94.62	692.99	95.06	692 55	96.01	691 60	95.63	691 98	96.19	691 42
MW-109	782.95	43.22	739.73	43.90	739 05	42.82	74013	42.11	740 84	42.84	740 11
MW-110	783.03	91.49	€91.54	91.87	691 15	91.49	691 54	91.32	691 71	91.70	691 33
MAV-112	783.02	NA	NA	NA	NA	NA	NA	92.77	690 25	93.32	689 70
ECPZ-01	762.92	72.87	690.05	73.05	689 87	74.51	668 41	74.15	688 77	74.76	688 16
ECPZ-02R	693.31	3.00	€90.31	3.20	690 11	4.87	688 44	4.37	688 94	5.18	688 13
ECPZ-03R	690.70	1.17	689.53	1.22	689 48	2.10	688 50	1.89	688 81	2.31	688 39
INF-PZC1	NA	36.03	NC	37.65	NC	37.82	NC	34.77	NC	36.73	NC

Note: Monitoring wells MW-04R, MW-14R, and MW-112 were installed in May 2010. ft MSL - feet above mean sea level. ft bloc - feet below top of osaing. NA - Not available.

3M_MN01595987

.

Table 3-1 (cont'd) Depth-to-Groundwater and Groundwater Elevation Data October 2012 - December 2014 Cottage Grove Site, Cottage Grove, Minnesota

		Jar	n•14	Ap	-14	Aug	g-14	De	c-14		Groundwater	roundwater Elevation Data	
Well ID	TOC Elevation (ft MSL)	Depth to Groundwater (ft bloc)	Groundwater Elevation (ft MSL)	Depth to Groundwater (ft bloc)	Groundwater Elevation (ft MSL)	Depth to Groundwater (ft bloc)	Groundwater Elevation (ft MSL)	Depth io Groundwater (ft btoc)	Groundwater Elevation (ft MSL)	Minimum	Maximum	Range	Standard Deviation
NW-01	822.02	64.40	757.62	64.70	757.32	55.21	763.81	61.39	760.63	754.11	766.81	12.70	3.81
NW-02	805.92	83.70	725.22	80.40	725.52	74.98	733.94	77.35	728.57	719.84	730.94	11.10	3.58
NW-03	810.07	93.85	719.22	89.94	720.13	85.01	725.06	87.85	722.22	709.68	725.06	15.40	5.09
NW-04	806.90	101.61	705.29	101.10	705.80	95.67	711.23	96.47	710.43	699.91	711.23	11.32	3.92
MW-04R	805.18	99.66	705.52	99.13	706.05	93.74	711.44	94 52	710.66	705.18	711.44	6.26	2.83
NW-05	808.18	50.23	758.58	48.04	760.77			47.70	761.11	756.29	763.01	6.72	2.08
₩₩-07	794.08	52.09	741 99	51.63	742.45	45.32	747 76	48 58	745 50	739.05	747.76	8.71	274
NW-08	765.97	63.09	702.89	62.90	703.07	57.33	703.64	61.15	704.82	700.65	708.64	7.99	2.33
N/W-09	769.17	39.77	730.40	38.69	730.58	29.92	733.25	35.03	734.14	716.17	739.25	23.08	7.04
NW-10	788.28	91.8D	696.48	91.11	697.17	87.40	703.88	82.40	705.88	696.25	705.88	9.63	3.22
NW-11	804.34	95.90	707.44	96.03	708.31	91.30	713.04	92.02	712.32	701.99	713.04	11.05	3.66
NW-12	781.93	NA	669.15	691.18	22.03	8.50							
NW-13	783.12	95.25	687.87	92.73	690.39	91.10	692.02	91.31	691.81	687.87	692.36	4.49	1.55
MW-14R	703.89	19.02	684.87	19.04	684.85	16.07	687.83	12.60	691.30	683.92	691.30	7.38	2.89
NW-15	783.64	93.80	689.84	93.28	690.36	90.72	692.92	89.74	693.90	689.84	693.90	4.06	1.45
NW-16	784.21	92.52	691.69	91.84	692.37	89.45	694.76	88.75	695.46	691.69	695.46	3.77	1.31
NW-17	785.16	65.21	718 95	65.95	719.21	59.61	725 55	62 69	722 47	707.79	725.55	17.76	5 90
NW-18	782.93	59.54	723.39	59.35	723.56	51.89	701.04	55.99	726.94	709.73	731.04	21.26	6.92
NW-19	757.36	45.98	710.35	47.05	710.31	44.41	712.95	46.63	710.73	704.81	712.95	8.14	2.62
PZ-14	755.96	62.85	693.11	62.76	693.20	58.90	697.05	57.16	698.80	691.65	698.80	7.15	2.31
MW-101	785.84	95.99	669.85	95.32	690.52	94.16	691.63	93.76	692.06	669.65	692.06	2.21	0.86
MW-102	783.25	93.16	690.09	92.43	690.82	91.20	692.05	90.80	692.45	690.09	692.45	2.36	0.90
MW-103	770.73	83.97	689.75	80.22	690.51	79.04	691.69	78.70	692.03	689.75	692.03	2.27	0.87
MW-104	771,94	82.28	669 65	81.40	690.54	80.20	691 74	79 90	692 04	689.66	692.04	2.38	0.83
MW-105	782.06	90.65	691.41	89.80	692.26	88.26	693.80	87.56	694.50	691.41	694.50	3.09	1.04
MW-108	787.61	95.79	690.82	95.63	691.98	93.76	693.85	93.30	694.31	690.82	694.31	3.49	1.15
MW-109	782.95	43.22	739.73	42.47	740.48	42.21	743.74	43.25	739.70	739.05	740.84	1.79	0.57
MW-110	783.03	92.00	691.03	91.49	691.54	88.90	694.13	88.71	694.32	691.03	694.32	3.29	1.26
MW-112	783.02	93.08	689 94	92.81	690.21	91. 82	691 20	91 50	691 52	689.70	691.52	1.82	073
ECPZ-01	762.92	74.01	668.91	74.12	688.80	73.35	683.57	73.15	689.77	688.15	690.05	1.89	0.68
ECPZ-02R	693.31	4.07	689.24	4.48	658.83	3.76	689.55	3.71	689.60	688.13	690.31	2.18	0.73
ECPZ-03R	690.70	1.70	689.00	1.90	588.80	1.39	689.31	1.26	589.44	688.39	689.53	1.14	0.42
INF-PZ01	NA	35.23	NA	NG	NC	3.26							

.

Note: Monitoring wells MW-04R, M\ ft MSL - feet above mean sea level. ft bloe - feet below top of easing. NA - Not available.

3M_MN01595988

CSIMIL-GYVELPris-Hyt tographis + segre te nie

WISTOR

Well ID	Location	Date					PFC G	roundwater	Results (pp	b,μg/L)				
weii ID	Location	Date	PFBA	PFBS	PFDA	PFDoA	PFHA	PFHpA	PFHS	PFNA	PFOA	PFOS	PFPeA	PFUnA
MW- 07	Background	10/15/2012	2.55	< 0.0250	< 0.0250	< 0.0250	0.076	0.025	< 0.0500	< 0.0500	0.298	0.026	0.165	< 0.0250
		1/29/2013	2.09	< 0.0250	-	-	-	-	< 0.0250	-	0.259	0.044	-	-
		4/22/2013	2.61	0.027	< 0.0250	< 0.0250	0.064	0.265	< 0.0250	< 0.0250	0.240	0.046	0.153	< 0.0250
		7/23/2013	1.71	0.040	-	-	-	-	0.026	-	0.303	0.241	-	-
		10/28/2013	3.07	0.029	-	-	-	-	< 0.0250	-	0.428	0.104	-	-
		1/13/2014	2.88	<0.100	-	-	-	-	0.045	-	0.390	0.104	-	-
		4/23/2014	2.48	0.036	<0.0250	<0.0250	0.078	<0.0250	<0.0250	<0.0250	0.344	0.049	0.153	<0.0250
		7/16/2014	3.05	0.0762	-	-	-	-	0.0416	-	0.602	0.237	-	-
		10/28/2014	3.01	0.070	-	-	-	-	0.050	-	0.581	0.191	-	-
MW-101	D1/D2	10/18/2012	1860	23.9	0.424	< 0.0250	121	101	427	11.6	147	154	98.9	< 0.0250
		1/30/2013	1630	25.2	-	-	-	-	455	-	124	206	-	-
		4/23/2013	1830	19.5	0,365	< 0.0250	85.4	85.6	459	91.1	121	188	96.4	0.046
		7/25/2013	1680	24.0	-	-	-	-	464	-	112	189	-	-
		10/28/2013	1020	25.5	-	-	-	-	314	-	86.7	158	-	-
		1/15/2014	1510	25.4	-	-	-	-	398	-	79.4	159	-	-
		4/25/2014	1330	37.8	0,241	<0.0250	61,1	62.3	364	6,96	76.0	135	72.2	< 0.0250
		7/17/2014	1460	29.3	-	-	-	-	480	-	83.9	193	-	-
		10/29/2014	1410	29.6	-	-	-	-	452	-	74.8	170	-	-
MW-102	D1/D2	10/18/2012	648	5.52	0.262	< 0.0250	14.8	9.52	129	3.2	42.2	107	18.2	< 0.0250
		4/25/2013	621	4.57	0.345	< 0.0250	18.7	13.3	401	12.0	62.0	250	23.2	0.075
		4/25/2014	919	7.12	0.136	<0.0250	28.8	16.0	147	1.87	58.1	67.4	30,7	< 0.0250
MW-103	D1/D2	10/18/2012	226	7.16	0.036	< 0.0250	54.9	29.7	26.2	0.045	115	4.02	25.5	< 0.0250
		4/25/2013	241	7.01	< 0.0250	< 0.0250	49.5	25.6	24.7	8.01	126	1.55	26.7	< 0.0250
		4/25/2014	241	6.51	<0.0250	< 0.0250	57.4	30.9	21.8	0.053	121	7.82	28.2	< 0.0250

CGMN_All_FC_data_Crosstab-thru-2014-07-17(ISO-14).xlsxTpI03-02-Data Tables(ISD14)

3M_MN01595989

Page 1 of 6

- - - -- -- -- -

\mathcal{M}	AN	
	A CONTRACTOR	Ŷ

	T	D (PFC G	roundwater	Results (pp	b,μg/L)				
Well ID	Location	Date	PFBA	PFBS	PFDA	PFDoA	PFHA	PFHpA	PFHS	PFNA	PFOA	PFOS	PFPeA	PFUnA
MW-104	D1/D2	10/18/2012	36.0	12.6	2.78	< 0.0250	3.89	2.51	8.69	2.26	42.0	127	3.10	0.052
		1/30/2013	36.3	11.4	-	-	-	-	9.07	-	44.8	201	-	-
		4/25/2013	74.7	9.75	2,90	< 0.0250	12.1	7.11	13.4	10.8	60.7	185	7.64	0.196
		7/25/2013	54.3	8.16	-	-	-	-	11.8	-	74.7	176	-	-
		10/28/2013	53.6	7.95	-	-	-	-	10.1	-	72.5	165	-	-
		1/15/2014	202	7.50	-	-	-	-	14.2	-	35.1	4.25	-	-
		4/25/2014	107	8,10	3.26	<0.0250	19.7	9,11	12.6	2.59	82.1	234	12.6	0.056
		7/17/2014	47.9	8.68	-	-	_	-	8.95	-	76.5	233	-	-
		10/29/2014	30.9	7.72	-	-	-	-	6.24	-	50.0	177	-	-
MW-112	D1/D2	7/24/2013	4.42	0.166	-	-	-	-	0.367	-	1.18	0.96	-	-
MW-105	D9	10/19/2012	52.7	9.46	0,991	< 0.0250	16,2	14.7	18.9	0.836	98,3	120	6.11	< 0.0250
		1/30/2013	54.4	8.03	-	-	-	-	21.1	-	119	129	-	-
		4/25/2013	57.0	5.72	0,683	< 0.0250	11.4	9.64	16.0	9.22	104	95.0	5.13	0.116
		7/25/2013	71.6	6.49	-	-	-	-	6.35	-	70,6	92.3	-	-
		10/28/2013	38.9	4.98	-	-	-	-	6.01	-	87.2	467	-	-
		1/14/2014	55.6	6.15	-	-	-	-	12.6	-	68.3	152	-	-
		4/25/2014	71.0	7,68	0.334	<0,0250	11.8	8,64	8.59	0.583	44.3	58.7	6.05	<0,0250
		7/17/2014	39.2	4.89	-	-	-	-	6.65	-	27.7	36.2	-	-
		10/29/2014	46.3	4.01	-	-	-	-	18.9	-	92.8	73.5	-	-

Page 2 of 6

CGMN_AII_FC_data_Crosstab-thru-2014-07-17(SO-14).xisx; Tbl03-02-Data Tables(ISO14)

3M_MN01595990

- - - - - - - - - - -

W	ESS	K	R
	- A		BRET

Well ID	T	Dete					PFC G	roundwater	Results (pp	b,μg/L)				
weii ID	Location	Date	PFBA	PFBS	PFDA	PFDoA	PFHA	PFHpA	PFHS	PFNA	PFOA	PFOS	PFPeA	PFUnA
MW-13	D9	10/17/2012	7.10	0.619	0.040	< 0.0250	0.330	0.101	0.487	0.060	3.33	3.85	0.544	< 0.0250
		1/29/2013	5.60	0.560	-	-	-	-	0,396	-	2.56	3.92	-	-
		4/24/2013	9.34	0.972	0,033	< 0.0250	0.227	0.116	0,931	0.050	5.46	4.05	0,569	< 0.0250
		7/23/2013	8.30	1.07	-	-	-	-	1.05	-	6.17	4.02	-	-
		10/28/2013	6.48	0.571	-	-	-	-	0.366	-	4.01	1.40	-	-
		1/14/2014	9.80	1.20	-	-	-	-	0,969	-	9.78	3.08	-	-
		4/24/2014	7.14	0.752	<0.0250	<0.0250	0.257	0.078	0,556	0.045	8.63	2,33	0.465	<0.0250
		7/16/2014	8.08	0.973	-	-	-	-	0.713	-	14.4	4.48	-	-
		10/28/2014	9.64	1.09	-	-	-	-	0.720	-	10.0	4.89	-	-
PW-09	D9	4/25/2013	3.72	< 0.0250	< 0.0250	< 0.0250	0.0627	< 0.0250	< 0.0250	< 0.0250	0.223	0.324	0.191	< 0.0250
		6/19/2013 ⁽¹⁾	-	-	-	-	-	-	-	-	0.462	0.376	-	-
		7/24/2013	2.95	0.058	-	-	-	-	0.040	-	0.624	0.622	-	-
		8/29/2013 ⁽¹⁾	-	-	-	-	-	-	-	-	0,605	0.818	-	-
		9/30/2013 ⁽¹⁾	-	-	-	-	-	-	-	-	0.873	1.38	-	-
		10/28/2013	4.53	0.137	-	-	-	-	0.076	-	1.02	1.52	-	-
		1/15/2014	4.76	0.173	-	-	-	-	0.109	-	1.33	2.13	-	-
		4/25/2014	4.14	0.148	<0.0250	< 0.0250	0.135	0.0471	0.084	0.037	1.05	1.60	0.272	< 0.0250
		7/17/2014	4.32	0.155	-	-	-	-	0.081	-	1.16	1.79	-	-
		10/30/2014	3.87	0.106	-	-	-	-	0.054	-	0.701	0.838	-	-

Page 3 of 6

CGMN_AII_FC_data_Crosstab-thru-2014-07-17(SO-14).xisx; Tbl03-02-Data Tables(ISO14)

3M_MN01595991

W	ES		N
	- A -	TATE PAL	THE PARTY

	T	D.(PFC G	roundwater	Results (pp	b,μg/L)				
Well ID	Location	Date	PFBA	PFBS	PFDA	PFDoA	PFHA	PFHpA	PFHS	PFNA	PFOA	PFOS	PFPeA	PFUnA
MW-108	WWTP	10/10/2010	1.55	20.5	0.415	- 0.0250		25.4				65 Q	05.4	10.0250
IVI VV-108	VV VV IP	10/18/2012	155	30.5	0.615	< 0.0250	31.1	17.6	20.7	2.76	550	55.2	25.4	< 0.0250
		1/30/2013	101	26.5	-	-	-	-	11.1	-	348	45.5	-	-
		4/25/2013	42.5	16.1	0.470	< 0.0250	6,90	4.50	4,95	83.2	201	37.3	7.43	0.049
		7/24/2013	38.0	14.6	-	-	-	-	4,94	-	202	26.8	-	-
		10/28/2013	51.7	21.6	-	-	-	-	4.47	-	218	33.2	-	-
		1/14/2014	51.6	17.0	-	-	-	-	4.13	-	169	33.5	-	-
		4/25/2014	65.4	17.4	0.562	<0.0250	10.2	4.15	3.58	1.26	164	43.3	11.5	<0.0250
		7/17/2014	222	60.7	-	-	-	-	11.3	-	522	58	-	-
		10/29/2014	87.0	22.7	-	-	-	-	8,50	-	268	42.0	-	-
MW-110	D5	10/18/2012	144	39.6	0.062	< 0.0250	22.1	12.2	17.6	0.115	193	21.6	15.7	< 0.0250
		1/30/2013	171	46.6	-	-	-	-	10.3	-	141	28.6	-	-
		4/25/2013	183	74.7	0.085	< 0.0250	26.4	10.5	11.8	8.43	160	26.4	20.7	< 0.0250
		7/24/2013	304	43.8	-	-	-	-	9,41	-	144	17.8	-	-
		10/28/2013	174	94.8	-	-	-	-	15.3	-	190	21.1	-	-
		1/14/2014	179	85.1	-	-	-	-	19.4	-	248	12.1	-	-
		4/24/2014	189	86.1	<0.0250	< 0.0250	32.9	12.7	20.9	0.194	310	12.5	24.0	<0.0250
		7/16/2014	185	82.3	-	-	-	-	24.1	-	390	15.4	-	-
		10/28/2014	294	57.6	-	-	-	-	23.5	-	417	12.9	-	-

Page 4 of 6

CGMN_AII_FC_data_Crosstab-thru-2014-07-17(SO-14).xisx; Tbl03-02-Data Tables(ISO14)

3M_MN01595992

- - - - - - - - - - -

W	ESS	K	R
			TONE

1X-11 ID	Tandan	Dete					PFC G	roundwater	Results (pp	b,μg/L)				
Well ID	Location	Date	PFBA	PFBS	PFDA	PFDoA	PFHA	PFHpA	PFHS	PFNA	PFOA	PFOS	PFPeA	PFUnA
MW-12	D5	10/19/2012	975	94.3	3.38	< 0.0250	93.3	33.3	20.9	3.95	1390	122	84.9	0.105
		1/30/2013	484	91.4	-	-	-	-	13.7	-	946	143	-	-
		4/25/2013	622	105	2,65	< 0.0250	61.1	20.9	16.4	84.0	1020	145	72,7	0.625
		7/24/2013	1110	175	-	-	-	-	23.9	-	2000	204	-	-
		10/28/2013	408	87.7	-	-	-	-	13.0	-	954	131	-	-
		1/16/2014	312	82.1	-	-	-	-	13.1	-	668	121	-	-
		4/25/2014	220	68.9	1.85	0.162	26.8	11.7	9.82	1.76	548	117	24.8	0.424
		7/17/2014	154	50.4	-	-	-	-	8.11	-	402	96.9	-	-
		10/30/2014	127	46.1	-	-	-	-	7.78	-	348	92.5	-	-
MW-16	D5	10/18/2012	33.6	25.7	0.198	< 0.0250	5.02	1.88	2.71	0.283	45.9	23.1	6.43	< 0.0250
		1/29/2013	31.5	28.3	-	-	-	-	2.54	-	42.6	20.2	-	-
		4/24/2013	33.2	27.5	0.173	< 0.0250	4.43	1.83	2.74	8.47	43.8	21.8	6.11	< 0.0250
		7/24/2013	26.3	29.6	-	-	-	-	2.83	-	39.9	20.1	-	-
		10/28/2013	45.0	42.1	-	-	-	-	3.95	-	73.9	38.2	-	-
		1/14/2014	42.9	40.0	-	-	-	-	5.52	-	91.0	53.1	-	-
		4/24/2014	40.7	37.9	0.334	<0.0250	6.50	3.30	4.49	0.535	85.7	51.9	6.72	< 0.0250
		7/16/2014	45.7	37.9	-	-	-	-	5.46	-	98.3	57	-	-
		10/28/2014	38,9	33.9	-	-	-	-	4.58	-	75.8	42.6	-	-
DUL 0.6	D.C.	T			1					1		1	1	
PW-06	D8	10/23/2012	82.2	26.4	0.497	< 0.0250	13.4	4.52	4.90	0.598	172	37.9	12.9	< 0.0250
		2/1/2013	85.0	37.5	-	-	-	-	4.74	-	188	35.5	-	-
		7/26/2013	82.5	42.9	-	-	-	-	4.16	-	217	42.3	-	-

Page 5 of 6

 $\label{eq:cgmn_all_fc_data_crosstab-thru-2014-07-17(SO-14).xisx; Tbl03-02-Data Tables(ISO14) \\$

3M_MN01595993

Well ID	Terretere	Dete					PFC G	roundwater	Results (pp	b,μg/L)				
weii ID	Location	Date	PFBA	PFBS	PFDA	PFDoA	PFHA	PFHpA	PFHS	PFNA	PFOA	PFOS	PFPeA	PFUnA
MW-14R	D8	7/24/2013	219	10.9	-	-	-	-	6.23	-	91.7	13.2	-	-
		1/13/2014	295	17.5	-	-	-	-	12.3	-	139	24.9	-	-
		4/23/2014	650	18.2	2.10	<0.0250	197	26.1	20.0	1.72	543	353	278	<0.0250
		7/16/2014	671	29.6	-	-	-	-	20.1	-	426	158	-	-
		10/29/2014	570	38.1	-	-	-	-	16.6	-	353	82.6	-	-
PW-10	EAST COVE	1/25/2012	4.05	0.504	< 0.0250	< 0.0250	0.152	0.040	0.107	< 0.0250	0.429	0.206	0.200	< 0.0250
F W-10	EAST COVE	4/25/2013	4.25	0.594	< 0.0250	< 0.0250	0.153	0.049	0.197	< 0.0250	0.428	0.396	0.290	< 0.0250
		6/19/2013 ⁽¹⁾	-	-	-	-	-	-	-	-	0.415	0.401	-	-
		7/24/2013	3.37	0.540	-	-	-	-	0.185	-	0.420	0.380	-	-
		8/29/2013(1)	-	-	-	-	-	-	-	-	0.378	0.315	-	-
		9/30/2013(1)	-	-	-	-	-	-	-	-	0.528	0.465	-	-
		10/28/2013	6.09	0.703	-	-	-	-	0.193	-	0.524	0.458	-	-
		1/22/2014	4.40	0.261	-	-	-	-	0.049	-	0.212	0.124	-	-
		4/25/2014	5.07	0.471	<0.0250	<0.0250	0,151	0.047	0.110	<0.0250	0.421	0.437	0.252	<0.0250
		7/17/2014	4.9	0.54	-	-	-	-	0.104	-	0.484	0.503	-	-
		10/30/2014	4.43	0.400	-	-	-	-	0.0777	-	0,376	0.337	-	-
ECPZ-02R	E. COVE	7/24/2013	7.80	1.61	-	-	-	-	0.939	-	1.17	1.46	-	-
ECPZ-03R	E. COVE	7/24/2013	3.58	0.379	-	-	-	-	0,205	-	0.41	0.892	-	-
MW-04R	PLANT	7/25/2013	3.72	0.223	-	-	-	-	0.886	-	0.301	0.200	-	-

Notes:

ppb - parts per billion

µg/L - micrograms per liter

"-" - not analyzed

⁽¹⁾ Sampled as part of extended pumping test program.

Page 6 of 6

CGMN_AII_FC_data_Crosstab-thru-2014-07-17(SO-14).xisx; Tbl03-02-Data Tables(ISO14)

3M_MN01595994

- - - - - - - - - -

Table 3-3 Mann-Kendall Trend Test Summary PFOS, PFOA, PFBA, PFBS and PFHS **Groundwater Analytical Data Cottage Grove Site**

			F	PFOS	PF	OA	F	PFBA	F	PFBS	F	PFHS
Well ID	Location	Trend Analysis Data Range	Number of Data Points	Trend	Number of Data Points	Trend	Number of Data Points	Trend	Number of Data Points	Trend	Number of Data Points	Trend
MW-07	Background	3/2005 - 10/2014	13	Increasing	13	Increasing	9	NS	11	Increasing	13	Increasing
MW-101	D1/D2	3/2005 - 10/2014	13	Decreasing	13	Decreasing	9	Decreasing	12	Increasing	13	Decreasing
MW-104	D1/D2	9/2006 - 10/2014	9	NS	10	NS	9	NS ³	10	Decreasing	10	NS
MW-13	D9	3/2005 - 10/2014	10	NS	10	NS	9	NS	10	NS	10	NS
MW-105	D9	9/2006 - 10/2014	9	NS	9	Decreasing	10	NS	9	Decreasing	9	NS
PW-09	D9	4/2013 - 10/2014	9	Increasing	9	Increasing	7	NS	7	NS	7	NS
MW-108	WWTP	9/2006 - 10/2014	9	NS	9	NS ²	10	NS	9	NS	10	Decreasing
MW-110	D5	9/2006 - 10/2014	10	Decreasing	10	Increasing	9	Increasing ¹	10	Increasing	10	Increasing
MW-12	D5	3/2005 - 10/2014	10	Decreasing ¹	10	Decreasing	9	Decreasing	10	Decreasing	10	Decreasing
MW-16	D5	3/2005 - 10/2014	10	NS	10	Increasing	9	NS	10	Increasing	10	Increasing
MW-14R	D8	7/2013 - 10/2014	5	NS⁴	5	NS ⁴	5	NS ⁴	5	Increasing	5	NS
PW-10	East Cove	4/2013 - 10/2014	9	NS	9	NS	7	NS	7	NS	9	Decreasing

<u>Notes:</u> Trend analysis performed using PFC analytical data for each well from March 2005 through October 2014. Results are for the Mann-Kendall test for trend at a significance level of 0.05

NS = No statistically significant trend identified

¹ Previous trend was not statistically significant ² Previous trend was decreasing

³ Previous trend was increasing

⁴ Previous not applicable

3M_MN01595995

WISTON	

Table 3-4
Summary of Porc Water and Surface Water Sample Results
September/October 2006 through October 2014
3M Cottage Grove Site

	Approximate			POREW	ATER (µg/l	L; ppb)			s	URFACE WA	ATER (µg/L;	ppb)	
LOCATION	distance from	ANALYTE	Sept/Oct 06	Jun-11	Oct-12	Aug-13	Oct-14	Sept/C	Det 06	Jun-11	Oct-12	Aug-13	Oct-14
	shoreline		IW	IW	IW	IW	IW	Shallow	Deep	Composite	Composite	Composite	Composite
		PFBA	1.58	67.6	1.67	30.3	46.0	<0.100	< 0.050	<0.100	0.553	<0.025	<0.0500
FW-09b	50 feet	PFOA	0.585	43.2	2.03	109	8.10	<0.050	0.530	< 0.025	0.187	< 0.024	0.030
		PFOS	0.114	45.6	1.27	2.84	2.95	<0.050	<0.050	< 0.050	0.124	<0.0232	≪0.0232
		PFBA	5.01	2.32	4.65	8.10	6.71	1.24	NR	< 0.100	0.300	< 0.025	<0.0500
IW-09	100 feet	РГОЛ	2.69	1.25	1.41	5.74	1.39	0.192	0.187	<0.025	0.139	<0.024	<0.0240
		PFOS	1.09	0.415	0.958	0.822	0.383	0.162	0.183	< 0.050	0.088	<0.0232	<0.0232
		PFBA	0.112	83.3	11.8	0.057	2.94	NR	< 0.200	<0.100	0.158	<0.025	<0.0500
IW-09d	300 feet	РГОА	<0.050	48.5	0.355	< 0.0240	0.789	0.065	NR	<0.025	0.064	<0.024	<0.0240
		PFOS	<0.050	0.533	0.141	<0.0232	0.027	<0.050	<0.050	<0.050	0.043	<0.0232	⊲0.0232
		PFBA	NR	2.98	<0.0500	30.7	15.4	0.405	0.477	< 0.100	0.204	< 0.025	<0.0500
IW-09f	500 feet	PFOA	0.054	0.158	<0.0240	2.83	0.524	<0.050	0.054	<0.025	0.085	<0.024	<0.0240
		PFOS	<0.050	0.090	< 0.0232	0.061	0.024	<0.050	< 0.050	< 0.050	0.051	<0.0232	<0.0232
		PFBA	695	79.9	24.9	32.1	24.4	NR	0.540	<0.100	0.345	0.0415	<0.0500
IW-14b	50 feet	PFOA	436	467	123	221	102	0.195	0.158	<0.025	1.36	0.061	0.0750
		PFO8	12.2	64.9	40.9	25.5	37.1	0.063	0.058	<0.050	0.780	<0.0232	<0.0232
		PFBA	281	38.8	142	192	2.16	0.414	NR	<:0.100	0.0618	<:0.025	<0.0500
IW-14	100 feet	PFOA	300	205	529	517	4.24	0.053	0.057	<0.025	<0.024	<0.024	<0.0240
		PFOS	12.4	28.3	18.3	4.22	0.251	NR	<0.050	<0.050	<0.0232	<0.0232	≪0.0232
		PFBA	0.282	0.318	0.747	1.14	0.854	0.329	0.318	< 0.100	< 0.050	< 0.025	<0.0500
IW-14d	300 feet	PFOA	<0.050	0.054	0.257	0.115	0.216	<0.100	<0.100	<0.025	<0.024	<0.024	<0.0240
		PFOS	<0.050	0.089	0.947	0.032	0.095	<0.050	< 0.050	< 0.050	<0.0232	< 0.0232	<0.0232
		PFBA	0.178	33.3	78.4	39.1	76.1	<0.050	< 0.050	<0.100	<0.050	< 0.025	<0.0500
IW-14f	500 feet	PFOA	<0.050	0.813	59.3	0.926	4.19	<0.050	<0.050	<0.025	<0.024	<0.024	<0.0240
		PFOS	<0.025	0.086	1.23	0.05	0.048	<0.050	< 0.050	< 0.050	<0.0232	< 0.0232	< 0 .0232

ppb - parts per billion

pto - parts per folion 1 µg/L - micrograms per filter IW - Interstitial Water (Pore water) NR - Not reported due to qualify control issues NS - Not samp ed Note: In September/October 2006 two surface water samples were collected at discrete cepth intervals at each location (i.e., shallow and deep, 0.2 and 0.8 of the total depth of the water column). In June 2011, October 2012, August 2013, and October 2014 one composite sample was collected at each location, composited from the same depth intervals.

Table 3-2 PW SW Results.xisx

Table 3-4 (cont'd) Summary of Pore Water and Surface Water Sample Results September/October 2006 through October 2014 **3M Cottage Grove Site**

	Approximate			POREW	ATER (µg/l	L; ppb)			S	URFACE WA	ATER (µg/L;	ppb)	
LOCATION	distance from	ANALYTE	Sept/Oct 06	Jun-11	Oct-12	Aug-13	Oct-14	Sept/C	Det 06	Jun-11	Oct-12	Aug-13	Oct-14
	shoreline		IW	IW	IW	IW	IW	Shallow	Deep	Composite	Composite	Composite	Composite
		PFBA	NR	198	154	157	69.2	2.81	1.96	<0.100	0.223	0.115	0.068
IW-19b	50 feet	РГОА	118.5	34.4	10.5	6.96	147	0.154	0.129	<0.025	0.557	0.434	0.203
		PFOS	53.1	43.2	95.6	40.4	31.2	0.127	0.089	<0.050	0.100	0.412	0.137
		PFBA	86.6	107	112	18.3	62.6	NR	NR	<0.100	0.089	0.037	≪0.0500
IW-19	100 feet	PFOA	28.9	257	8.43	1.63	9.15	0.119	0.126	<0.025	0.041	0.108	0.091
		PFOS	NR	30.3	81.1	0.691	92.3	0.105	0.097	<0.050	<0.0232	<0.0232	<0.0232
		PFBA	1.40	0.143	4.07	8.00	13.4	0.095	0.117	< 0.100	0.069	<0.025	<0.0500
IW-19d	300 feet	PFOA	0.184	0.097	0.206	0.206	0.114	<0.050	<0.050	<0.025	<0.024	<0.024	< 0.0240
		PFOS	0.081	0.118	0.246	0.207	<0.0232	<0.050	<0.050	<0.050	<0.0232	<0.0232	⊲0.0232
		PFBA	118	0.57	141	47.1	51.5	0.245	0.516	<0.100	0.051	<0.025	<0.0500
IW-19f	500 feet	PFOA	6.84	< 0.0250	15.3	185	231	<0.050	NR	< 0.025	0.028	< 0.024	<0.0240
		PFOS	1.71	<0.0500	1.26	10.9	0.913	<0.050	<0.050	<0.050	<0.0232	<0.0232	≪0.0232
		PFBA	NS	56	1.47	37.2	53.9	NS	NS	12.5	0.686	0.897	0.553
IW-25b	50 feet	PFOA	NS	97.3	1.2	169	374	NS	NS	1.01	0.202	0.328	0.173
		PFOS	NS	595	2.41	86	1300	NS	NS	1.10	0.151	0.122	0.148
		PFBA	23.1	13.6	34.7	35.5	58.9	NR	NR	6.25	0.819	3.64	0.673
IW-25	100 feet	PFOA	129	110	74.7	9.98	23.6	0.163	0.146	0.583	0.575	1.26	0.181
		PFOS	206	82.4	0.916	3.28	16.2	0.095	0.102	0.586	0.422	0.311	0.127
		PFBA	NS	25	15.9	38.6	10.8	NS	NS	<0.100	0.389	0.043	<0.0500
IW-25d	300 feet	PFOA	NS	16.6	2.04	19.5	36.7	NS	NS	<0.025	0.335	<0.024	0.045
		PFOS	NS	0.138	19.1	0.141	0.094	NS	NS	< 0.050	0.236	< 0.0232	<0.0232
		PFBA	NS	2.02	1.23	6.05	16.2	NS	NS	<0.100	0.760	<0.025	<0.0500
IW-25f	500 feet	PFOA	NS	1.25	0.482	5.18	10.0	NS	NS	<0.025	0.163	<0.024	<0.0240
		PFOS	NS	2.64	0.201	2.18	6.65	NS	NS	< 0.050	0.087	< 0.0232	<0.0232

ppb - parts per billion

µg/L - micrograms per liter

IW - Interstitial Water (Pore water) NR - Not reported due to qualify control issues

NS - Not samp ed

Note: In September/October 2006 two surface water samples were collected at discrete cepth intervals at each location (i.e., shallow and deep, 0.2 and 0.8 of the total depth of the water column). In June 2011, October 2012, August 2013, and October 2014 one composite sample was collected at each location, composited from the same depth intervals.

Table 3-2 PW SW Results.xlsx

4. FINDINGS

The Groundwater, Pore Water and Surface Water PFC Sampling Plan (WESTON, 2012) was developed to collect analytical data that could be used to assess long-term groundwater and surface water conditions in the area within, and surrounding, the Cottage Grove Site. Groundwater elevation data are also collected to determine the long-term effect of the continuous pumping of the groundwater remediation system on water levels at the Site. In addition, pore water and surface water samples have been collected in the Mississippi River to determine whether any trends are apparent in PFC concentrations. The baseline groundwater, pore water, and surface water sampling event was performed in October 2012. The results and findings of this sampling were provided to the MPCA by 3M in June 2013 (WESTON, 2013).

The following findings are summarized for groundwater analytical data, surface water and pore water analytical data, and hydrogeologic data collected in 2014 at the Site.

4.1 GROUNDWATER ANALYTICAL DATA

- PFBA, PFOA, PFBS and PFHS are detected at low concentrations in background (upgradient) monitoring well MW-07. 3M is not aware of the source for PFCs in groundwater at this upgradient location.
- PFC concentrations are highest in groundwater samples collected from monitoring wells in the former D1/D2 (MW-101, MW-102, MW-103 and MW-104) and D5 (MW-12) Areas.
- The Mann-Kendall statistical trend results indicated a statistically significant increasing or decreasing trend at the following locations:
 - <u>Decreasing</u>:
 - PFOS in monitoring wells MW-101, MW-110 and MW-12;
 - PFOA in monitoring wells MW-101, MW-105 and MW-12;
 - PFBA in monitoring wells MW-101 and MW-12;
 - PFBS in monitoring wells MW-104, MW-105 and MW-12;

3630.0049

- PFHS in monitoring wells MW-101, MW-108, MW-12 and production wells PW-10.
- <u>Increasing</u>:
 - PFOS in monitoring wells MW-07 and production well PW-09.
 - PFOA production well PW-09 and monitoring wells MW-07, MW-110 and MW-16.
 - PFBA in monitoring well MW-110.
 - PFBS in monitoring wells MW-07, MW-101, MW-110, MW-16 and MW-14R, and production wells PW-09 and PW-10;
 - PFHS in production well PW-10 and monitoring wells MW-07, MW-110 and MW-16.

4.2 SURFACE WATER / PORE WATER ANALYTICAL DATA

- PFC concentrations in pore water are higher than surface water PFC concentrations.
- Pore water PFC concentrations fluctuate with no discernible trend at this time.
- Surface water PFC concentrations were primarily below laboratory quantitation limits except for a few locations close to the shore at transects IW-19 and IW-25.
- At the majority of pore water sampling locations, PFBA was detected at the highest concentration of the PFC compounds.

4.3 SITE HYDROGEOLOGIC CONDITIONS

Z:/FOLDERS.0-9/3m-cottage_grove/WESTON-Reports/2014-4Q-Annual-GW/CGMN_2014_Annual_Report.doc/

- The direction of groundwater flow is from north to south towards the Mississippi River.
- The extended pilot pump test was completed in February 2014. Production wells PW-09 and PW-10 continued to operate at approximately 300 gpm. A report summarizing the results of the extended pilot pump test was provided to MPCA in March 2015 under separate cover.
- Groundwater levels in monitoring wells closest to the Mississippi River showed less fluctuation in response to recharge from the spring melt than those monitoring wells more distant from the river.

3630.0050

5. FUTURE COURSE OF ACTION

The analytical and hydraulic data resulting from the monitoring of Site groundwater conditions will continue to be used to establish normal concentration variations and historic ranges, assess possible trends in the concentrations of certain PFCs in groundwater, and to assess the impact of long-term pumping of the Site production wells on groundwater levels. After the groundwater interception system is expanded described in Section 3.2, confirmation that groundwater capture is being maintained over the required areas will be provided in the annual reports. In accordance with the Sampling Plan, the following activities will be performed in the approximate time-frames noted:

Groundwater Monitoring

- Quarterly groundwater sampling was completed in January 2015. The annual sampling event is scheduled for April 2015 and additional quarterly sampling events will be performed in August and November 2015.
- Groundwater elevation data will be collected on a quarterly basis at a minimum.

Future Submittals to MPCA

• The 2015 annual groundwater monitoring report will be submitted to MPCA presenting a summary of the groundwater analytical data collected at the Site in the first quarter of 2016.

6. REFERENCES

Gilbert, R.O., 1987. *Statistical Methods for Environmental Pollution Monitoring*. New York, van Nostrand Reinhold.

USEPA, 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities Unified Guidance. U.S. Environmental Protection Agency, EPA/530/R/09-007. Washington, D.C., March 2009.

WESTON (Weston Solutions, Inc.). 2008. *Feasibility Study*. Prepared by Weston Solutions, Inc., for the 3M Company. March 2008.

WESTON (Weston Solutions, Inc.). 2009. *Remedial Design/Response Action (RD/RA) Plan.* Prepared by Weston Solutions, Inc., for the 3M Company. March 2008.

WESTON (Weston Solutions, Inc.). 2012. Groundwater, Pore Water, and Surface Water Sampling Plan for Perfluorochemicals (PFCs), 3M Cottage Grove Site. Prepared by Weston Solutions, Inc., for the 3M Company. April 2012.

WESTON (Weston Solutions, Inc.). 2013. Groundwater Extraction Well Extended Pump Test Conceptual Work Plan, 3M Cottage Grove Site. Prepared by Weston Solutions, Inc., for the 3M Company. January 2013.

WESTON (Weston Solutions, Inc.). 2013. Baseline Monitoring Report for Perfluorochemicals (PFCs) in Groundwater, Pore Water, and Surface Water, 3M Cottage Grove Site. Prepared by Weston Solutions, Inc., for the 3M Company. June 2013.

WESTON (Weston Solutions, Inc.). 2015. Extended Groundwater Pilot Pump Test and Design of Groundwater Recovery System, 3M Cottage Grove Site. Prepared by Weston Solutions, Inc., for the 3M Company. March 2015.

Z:\FOLDERS.0-9\3m-cottage_grove\WESTON-Reports\2014-4Q-Annual-GW/CGMN_2014_Annual_Report.docx

ATTACHMENT A SUMMARY OF WELL CONSTRUCTION INFORMATION

WESTEN

Summary of Well Information Cottage Grove Site, Cottage Grove, MN

		MDH Unique	TOC Elevation	Depth to Top of Screen/ Open Hole*	Depth to Bottom of Screen/ Bottom of Hole*	Total Boring Depth*	Well		Northing	Easting
Well ID	Well Type	Well Number	(ft MSL)	(ft BGS)	(ft BGS)	(ft BGS)	Diameter*	Unit Monitored		(UTM meters)
Production/Ext	raction Wells									
PW-01	Production	231867	804.35	NA	205	205	14	NA	4959573	506968
PW-02	Production	231868	805.50	NA	202	202	20	Cj / Csl	4959856	506985
PW-03	Production	231869	NA	120	224	224	16	Cj / Csl	4960110	506830
PW-04	Production	231870	808.02	142	275	275	16	Cj / Csl / Cf	4959810	506610
PW-05	Production	231871	700.71	85	110	110	24	Glaciofluvial sediments	4959167	506747
PW-06	Production	229117	705.77	92	117	143	24	Glaciofluvial sediments	4959164	506947.8
PW-07 (ABD)	Production	233576	823.22	NA	200	200	NA	NA	4960664	507187
PW-08	Production	NA	806.93	NA	NA	NA	NA	NA	4960087	506742
PW-09 (EW01)	Extraction	767283	781.23	164	224	225	12	Glaciofluvial sediments	4959117	507776
PW-10 (EW02)	Extraction	767284	711.11	90	150	150	12	Glaciofluvial sediments	4958932	508411
Monitor Wells										
IVIIV-01	Monitoring	233567	822.32	NA	200	200	6	Cj / Csl	4961188	506875
IV I VV-02	Monitoring	233568	805.92	NA	192	192	6	Cj / Csl	4960019	507126
MW-03	Monitoring	233569	810.07	NA	210	210	6	Cj / Csl	4959807	506782
MW-04	Monitoring	233570	806.90	NA	200	200	6	Cj / Csl	4959350	506931
MW-04R	Monitoring	797615	805.18	187	197	200	2	Cj	4959338	506928
MW-05	Monitoring	233571	808.18	NA	210	210	6	Cj / Csl	4961057	506085
MW-06 (ABD)	Monitoring	233572	814.93	84	219	219	6	Opo / Cj / Csl	4960161	506433
MW-07	Monitoring	233573	794.38	NA	146	146	6	Cj	4960436	507595
MW-08	Monitoring	233574	765.97	NA	173	173	6	Cj / Csl	4959687	506125
MW-09	Monitoring	233575	769.17	NA	104	104	4	Cj	4960016	506278
MW-10	Monitoring	233554	788.28	198	237	237	8	Cj / Csl	4959320	507415
MW-11	Monitoring	233950	804.34	NA	200	200	4	Cj	4959460	507120
MW-12	Monitoring	233951	781.93	122	141	141	5	Glaciofluvial sediments	4959193	507137
MW-13	Monitoring	NA	783.12	114	134	134	5	Glaciofluvial sediments	4959136	507763.2
MW-14 (ABD)	Monitoring	421705	710.64	43	64	64	4	Glaciofluvial sediments	4959179	506945
MW-14R	Monitoring	797616	703.90	59.1	69.1	70	2	Glaciofluvial sediments	4959174	506801
MW-15	Monitoring	431237	783.54	166	186	186	4	Glaciofluvial sediments	4959145	507128
MW-16	Monitoring	431238	784.21	120	140	140	4	Glaciofluvial sediments	4959133	507247
MW-17	Monitoring	570322	785.16	92	112	112	4	Cj	4959671	506505
MW-18	Monitoring	570323	782.93	72	92	92	4	Opo / Cj	4959779	506489
MW-19	Monitoring	NA	757.36	NA	120	120	4	NA	4959655	506309
PZ-14	Piezometer	NA	755.96	NA	NA	187	2	NA	4959241	506744
MW-101	Monitoring	680685	785.84	90	100	100	2	Glaciofluvial sediments	4959104	508044
MW-102	Monitoring	680686	783.25	86	96	96	2	Glaciofluvial sediments	4959171	508072
MW-103	Monitoring	727759	770.73	78	88	88	2	Glaciofluvial sediments	4959065	508009
MW-104	Monitoring	727770	771.94	78	88	90	2	Glaciofluvial sediments	4959056	507966
MW-105	Monitoring	727763	782.38	86.5	96.5	98.5	2	Glaciofluvial sediments	4959122	507827
MW-106 (ABD)	Monitoring	NA	781.53	85	95	95	2	Glaciofluvial sediments	4959164	507823
MW-107 (ABD)	Monitoring	NA	778.74	81.5	91.5	92	2	Glaciofluvial sediments	4959194	507843
MW-108	Monitoring	727764	787.51	93.5	103.5	103.5	2	Glaciofluvial sediments	4959091	507590
MW-109	Monitoring	727765	782.95	36.5	46.5	46.5	2	Glaciofluvial sediments	4959171	507192
MW-110	Monitoring	727766	783.03	100	110	113.5	2	Glaciofluvial sediments	4959170	507195
MW-111	Monitoring	NA	783.26	NA	NA	NA	NA	NA	4959170	507274
MW-112	Monitoring	797614	783.06	130	140	140	2	Glaciofluvial sediments	4959114	508210
ECPZ-01	Monitoring	747072	762.92	102	112	112	2	Glaciofluvial sediments	4959007	508365
ECPZ-02 (ABD)	·	747073	691.75	33	43	46.5	2	Glaciofluvial sediments	4958935	508452
ECPZ-02R	Monitoring	780910	693.31	35	45	47	2	Glaciofluvial sediments	4958934	508452
ECPZ-03 (ABD)		747074	689.22	29.4	39.4	41	2	Glaciofluvial sediments	4958936	508518
ECPZ-03R	Monitoring	780911	690.70	30.2	40.2	42	2	Glaciofluvial sediments	4958932	508517
INF-PZ01	Monitoring	768546	NA	44.7	54.75	55	2	Glaciofluvial sediments	4959896	507541

Notes:

* - Information obtained from well completion reports.

(ABD) - Well Abandoned.

ft BGS - Feet below ground surface.

ft MSL - Feet above mean sea level.

NA - Not Available

Opo - Oneota Dolomite Cj - Jordan Sandstone Csl - St. Lawrence Formation Cf - Franconia Formation

2014-02-CGMN-Well-Info.xlsx; CGMN-Wellinfo (RPT)

ATTACHMENT B PORE WATER AND SURFACE WATER SAMPLING SHEETS SEPTEMBER/OCTOBER 2014 SAMPLING EVENT

PORE SAMPLE DATA SHEET

Project No.: 02181-002-179

Drainage System: Mississippi River County: Washington Sta GPS Latitude: 44.7846805 GPS Longitude: -92.903316 Location Description: (1) Low Turbidity (X) Moderate Turbidity () High Turbidity Water Conditions: (1) Low Turbidity (X) Moderate Turbidity () High Turbidity Water Conditions: 1-Oct Temp. 50 °F () Partly Sunny (X) Cloudy (X) Rain (X) Windy SURFACE WATER		10/1/2014	DATE: 10/ [*]			IW-09		SAMPLE LOCATION
Location Description: W-09 transect line Water Conditions: () Low Turbidity (X) Moderate Turbidity () High Turbidity Water Conditions: 1-Oct Temp. 50 %F () Partly Sunny (X) Cloudy (X) Rain (X) Windy SURFACE WATER	e: <u>MN</u>	gtonState:	County: Washington	County	River	Mississippi Rive	:	Drainage System
Water Conditions: () Low Turbidity (X) Moderate Turbidity () High Turbidity Water Conditions: 1-Oct Temp. 50 %F () Partly Sunny (X) Cloudy (X) Rain (X) Windy SURFACE WATER			ngitude: <u>-92.909316</u>	GPS Longitude:			44.784585	GPS Latitude:
Water Conditions: 1-Oct Temp. 50 %F () Partly Sunny (X) Cloudy (X) Rain (X) Windy SURFACE WATER						ine	IW-09 transect li	Location Description:
Weather Conditions: 1-Oct Temp. 50 °F () Partly Sunny (X) Cloudy (X) Rain (X) Windy SURFACE WATER		y	ty () High Turbidity	Turbidity ()H	bidity (X) Moderate	() Low Turbidit		Water Conditions:
SURFACE WATER Depth to Sediment: 13.7 ftbws Sediment Bottom: () Firm (X) Soft Water Sample Method: (X) Peristatic Pump Water Sample Data Image: Sample Data Image: Sample Data Sample Depth (ftbws) Composite (2.74' and 9.96') Image: Sample Data Image: Sample Data Sample Date 0.1 gpm Image: Sample Data Image: Sample Data Sample Time 14.10 Image: Sample Data Image: Sample Data pH / SC / T (°C) / DO (mg/L)/ ORP 8.33 349 16.03 6.78 28 Sample ID CGMN-SW-MRIW09-0-141001 Image: Sample Data Image: Sample Dat		ent	opy () Visible Current	() Choppy ()	tions: () Calm ()	Water Condition:		
Depth to Sediment: 13.7 ftbws Sediment Bottom: () Firm (X) Soft Water Sample Method: (X) Peristaltic Pump Water Sample Data		Rain (X)Windy	(X) Cloudy (X) Rain	/Sunny (X) Clo	°F ()Partly	: Temp. 50	1-Oct	Weather Conditions:
Depth to Sediment: 13.7 ftbws Sediment Bottom: () Firm (X) Soft Water Sample Method: (X) Peristaltic Pump Water Sample Data Sample Data Sample Depth (ftbws) Composite (2.74' and 9.96') Sample Data Flow Rate (gallons per minute) 0.1 gpm Sample Data Sample Date 10/01/2014 Sample Data Sample Date 10/01/2014 Sample Data Sample Time 14:10 Sample Data PH / SC / T (°C) / DO (mg/L) ORP 8.33 349 16.03 6.78 28 Sample Date CGMN-SW-MRIW09-0-141001 Duplicate ID CGMN-SW-MRIW09-0-141001 COMMENTS: Rinse Blank CGMN-SW-MRIW09-RB-01-141001 PORE WATER 11.7 PORE WATER 11.7 Well Diameter (in) 1 1 Depth to Sediment (ftbws) 14.7 Water column 14.0' 14.7 Water column 14.2 Perge Start (time) 14.29 Purge Stop (time) 14:37								SURFACE WATER
Water Sample Method: (X) Peristaltic Pump Water Sample Data Sample Depth (ftbws) Composite (2.74' and 9.96') Flow Rate (gallons per minute) 0.1 gpm Sample Data 0.1 gpm Sample Data 10/01/2014 Sample Time 14:10 pH / SC / T (°C) / DO (mg/L)' ORP 8.33 349 16.03 6.78 28 Sample ID CGMN-SW-MRIW09-0141001 Duplicate ID CGMN-SW-MRIW09-0141001 Pome Field matrix spike (1.0 ng/mL) - - - - PORE WATER Rines Blank CGMN-SW-MRIW09-RB-01-141001 - - - Well Diameter (in) 1 - - - - Depth to Sediment (ftbws) 13.7 - - - - - Water column 14.0' - - - - - - Well Volume (gal) 1.26' - - - - - - Purge Start (time) 14:37 - - <		() Firm (X) Soft	Sediment Bottom: ()	Sedimen	ftbws	13.7'	1	
Water Sample Data Sample Depth (ftbws) Composite (2.74' and 9.96') Flow Rate (gallons per minute) 0.1 gpm Sample Date 10/01/2014 Sample Date 10/01/2014 Sample Date 10/01/2014 Sample Time 14:10 PH / SC / T (°C) / DO (mg/L)' ORP 8.33 349 16.03 6.78 28 Sample ID CGMN-SW-MRIW09-0-141001 Duplicate ID CGMN-SW-MRIW09-0-141001 Poppe - Field matrix spike (1.0 ng/mL) - - COMMENTS: Rinse Blank CGMN-SW-MRIW09-RB-01-141001 PORE WATER Vell Diameter (in) 1 - - - Well Diameter (in) 1 - - - - Depth to Sediment (ftbws) 13.7 - - - Water column 14.2 - - - - Well Volume (gal) 1.26' - - - - - Purge Start (time) 14:37 - - - - - <td></td> <td></td> <td></td> <td>ocumen</td> <td></td> <td></td> <td>(X) Peristaltic</td> <td></td>				ocumen			(X) Peristaltic	
Sample Depth (ftbws) Composite (2.74' and 9.96') Flow Rate (gallons per minute) 0.1 gpm Sample Date 10/01/2014 Sample Time 14:10 pH / SC / T (°C) / DO (mg/L) ORP 8.33 349 16.03 6.78 28 Sample ID CGMN-SW-MRIW09-0-141001 0 0 28 28 Sample ID CGMN-SW-MRIW09-0-141001 0 0 28 28 Sample ID CGMN-SW-MRIW09-0-141001 0 <td>٦</td> <td></td> <td>Sample Data</td> <td>Water Sample Da</td> <td></td> <td></td> <td>(,</td> <td></td>	٦		Sample Data	Water Sample Da			(,	
Flow Rate (gallons per minute) 0.1 gpm Sample Date 10/01/2014 Sample Time 14:10 pH / SC / T (°C) / D0 (mg/L) / ORP 8.33 349 16.03 6.78 28 Sample ID CGMIN-SW-MRIW09-0-141001 0	-				Co		nle Denth (fthws)	Sam
Sample Date 10/01/2014 Sample Time 14:10 pH / SC / T (°C) / DO (mg/L)/ ORP 8.33 349 16.03 6.78 28 Sample ID CGMN-SW-MRIW09-0-141001 Duplicate ID CGMN-SW-MRIW09-DE-141001 Field matrix spike (1.0 ng/mL) - COMMENTS: Rinse Blank CGMN-SW-MRIW09-RB-01-141001 PORE WATER - Well Diameter (in) 1 Depth to Sediment (ftbws) 14.2 Depth to Top of Screen (ftbws) 14.2 Water column 14.2 Well Volume (gal) 1.26' Purge Start (time) 14:29 Purge Stop (time) 14:37	-							-
Sample Time pH / SC / T (°C) / DO (mg/L)' ORP 8.33 349 16.03 6.78 28 Sample ID Duplicate ID CGMN-SW-MRIW09-0-141001 CGMN-SW-MRIW09-0-141001 Field matrix spike (1.0 ng/mL) - - COMMENTS: Rinse Blank CGMN-SW-MRIW09-RB-01-141001 - - PORE WATER Insee Blank CGMN-SW-MRIW09-RB-01-141001 - - Well Diameter (In) 1 - - - Depth to Sediment (ftbws) 13.7 - - - Depth to Top of Screen (ftbws) 14.2 - - - Well Volume (gal) 14.2 - - - - Purge Start (time) 14:29 - - - - Purge Stop (time) 14:37 - - - -	-							now Nate (ga
pH / SC / T (°C) / DO (mg/L)/ ORP 8.33 349 16.03 6.78 28 Sample ID CGMN-SW-MRIW09-0-141001 28	-							
Sample ID CGMN-SW-MRIW09-0-141001 Duplicate ID CGMN-SW-MRIW09-DB-141001 Field matrix spike (1.0 ng/mL) - COMMENTS: Rinse Blank CGMN-SW-MRIW09-RB-01-141001 PORE WATER Well Diameter (in) 1 Depth to Sediment (ftbws) 13.7 Depth to Top of Screen (ftbws) 14.2 Depth to Bottom of Screen (ftbws) 14.7 Well Volume (gal) 1.26' Purge Start (time) 14:37	-	78 28			349		-	
Duplicate ID CGMN-SW-MRIW09-DB-141001 Field matrix spike (1.0 ng/mL) - COMMENTS: Rinse Blank CGMN-SW-MRIW09-RB-01-141001 PORE WATER	-	.70 20	•					ph/30/1(0)/
Field matrix spike (1.0 ng/mL) - COMMENTS: Rinse Blank CGMN-SW-MRIW09-RB-01-141001 PORE WATER Well Diameter (in) 1 Depth to Sediment (ftbws) 13.7 Depth to Top of Screen (ftbws) 14.2 Depth to Bottom of Screen (ftbws) 14.7 Water column 14.0' Well Volume (gal) 1.26' Purge Start (time) 14:37	-							
COMMENTS: Rinse Blank CGMN-SW-MRIW09-RB-01-141001 PORE WATER 1 Well Diameter (in) 1 Depth to Sediment (ftbws) 13.7 Depth to Top of Screen (ftbws) 14.2 Depth to Bottom of Screen (ftbws) 14.7 Water column 14.0' Well Volume (gal) 1.26' Purge Start (time) 14:37	-		-	-	CGN			Field matrix s
PORE WATER Well Diameter (in) 1 Depth to Sediment (ftbws) 13.7 Depth to Top of Screen (ftbws) 14.2 Depth to Bottom of Screen (ftbws) 14.7 Water column 14.0' Well Volume (gal) 1.26' Purge Start (time) 14:37			-		/09_BB_01_1/1001			
Well Diameter (in) 1 Depth to Sediment (ftbws) 13.7 Depth to Top of Screen (ftbws) 14.2 Depth to Bottom of Screen (ftbws) 14.7 Water column 14.0' Well Volume (gal) 1.26' Purge Start (time) 14:29 Purge Stop (time) 14:37					03110-01-141001	WIN-5W-WIN177003-1	Kinse Blank CO	COMMENTO:
Well Diameter (in)1Depth to Sediment (ftbws)13.7Depth to Top of Screen (ftbws)14.2Depth to Bottom of Screen (ftbws)14.7Water column14.0'Well Volume (gal)1.26'Purge Start (time)14:29Purge Stop (time)14:37								
Depth to Sediment (ftbws)13.7Depth to Top of Screen (ftbws)14.2Depth to Bottom of Screen (ftbws)14.7Water column14.0'Well Volume (gal)1.26'Purge Start (time)14:29Purge Stop (time)14:37							I	PORE WATER
Depth to Top of Screen (ftbws)14.2Depth to Bottom of Screen (ftbws)14.7Water column14.0'Well Volume (gal)1.26'Purge Start (time)14:29Purge Stop (time)14:37								Well Diameter (in)
Depth to Bottom of Screen (ftbws)14.7Water column14.0°Well Volume (gal)1.26°Purge Start (time)14:29Purge Stop (time)14:37						13.7		Depth to Sediment (ftbws)
Water column14.0'Well Volume (gal)1.26'Purge Start (time)14:29Purge Stop (time)14:37						14.2	5) .	Depth to Top of Screen (ftbws
Well Volume (gal)1.26'Purge Start (time)14:29Purge Stop (time)14:37						14.7	bws)	Depth to Bottom of Screen (ft
Purge Start (time) 14:29 Purge Stop (time) 14:37						4.0'	1/	Water column
Purge Stop (time) 14:37						.26'	1.	Well Volume (gal)
						4:29	14	Purge Start (time)
Volume Purged (gal) 1.2 gallons						4:37	14	Purge Stop (time)
						gallons	1.2 g	Volume Purged (gal)
Well Purged Dry? (X) Yes () No							s ()No	Well Purged Dry? (X) Yes
Sample Method: (X) Peristaltic Pump	_						altic Pump	Sample Method: (X) Perista
Water Sample Data	_		Sample Data	Water Sample Da				
Sample Depth Interval (ftbws) 14.20' to 14.70'	_		' to 14.70'	14.20' to 14.70'			h Interval (ftbws)	Sample Dept
Sample Date 10/02/2014			02/2014	10/02/2014			Sample Date	
Sample Time09:05	_		09:05	09:05			Sample Time	
pH / SC / T (°C) / DO (mg/L)/ ORP 8.32 299 15.92 6.73 51.5		.73 51.5	15.92 6.73	15.92	299	8.32	DO (mg/L)/ ORP	рН / SC / T (°C) /
Sample ID CGMN-IW-MRIW09-0-141002			IRIW09-0-141002	VIN-IW-MRIW09-0-1	CGI		Sample ID	
Duplicate ID CGMN-IW-MRIW09-DB-141002			RIW09-DB-141002	IN-IW-MRIW09-DB-	CGM		Duplicate ID	
Field matrix spike (10 or 100 ng/mL) CGMN-IW-MRIW09-FMS-141002			IW09-FMS-141002	N-IW-MRIW09-FMS	CGM		10 or 100 ng/mL)	Field matrix spike (
COMMENTS: Sampling- DTR: 1.10', DTW: 13:20; Not much water in point; Gray clay		oint; Gray clay	ot much water in point;	:20; Not much	DTR: 1.10', DTW: 13	Sampling- DTF		COMMENTS:

PORE SAMPLE DATA SHEET

Project No.: 02181-002-179

SAMPLE LOCATION		IW-09d			DATE:	10/1/201	4	
Drainage System		Mississippi River			County: Was	hington	State:	MN
GPS Latitude:	44.784018		(GPS Lon	gitude: <u>-92.90963</u>	3		
Location Description:	IW-09 transect lii	ne						
Water Conditions:		() Low Turbidity	y (X) Moderate	Turbidity	() High Turk	oidity		
		Water Conditions	:: () Calm (X)	Choppy	y () Visible C	urrent		
Weather Conditions:	1-Oct	Temp. <u>50</u>	_⁰F ()Partiy	Sunny	(X) Cloudy	(X) Rain (X	() Windy	
SURFACE WATER	1							
Depth to Sediment:		11.7	ftbws	:	Sediment Bottom	: ()Firm	(X) Soft	
Water Sample Method:	(X) Peristaltic					. ()	(,	
	. ,		1	Water Sa	mple Data			٦
Sam	ple Depth (ftbws)				2.34 and 9.36)			
	llons per minute)				gpm			1
	Sample Date				1/2014			
	Sample Time				3:25			
pH / SC / T (°C).	/ DO (mg/L)/ ORP	8.35	328		15.6	7.16	57	
	Sample ID				W09d-0-141001			
	Duplicate ID				W09d-DB-141001			
Field matrix s	pike (1.0 ng/mL)		CGMN-	SW-MRIV	V09d-FMS-141001	1		1
R	insate Sample ID				-			1
COMMENTS:	DTR: 2.40'; DTW:	: 2.42'; Gray silty s	sand					
PORE WATER	1							
Well Diameter (in)	4	1						
Depth to Sediment (ftbws)		11.7'	-					
Depth to Top of Screen (ftbw:	5)	13.5'	-					
Depth to Bottom of Screen (fi		14.0'	-					
Well Volume (gal)		gallons	-					
Purge Start (time)		3:40	-					
Purge Stop (time)		3:52	-					
Volume Purged (gal)		gallons	-					
	(X) No		-					
Sample Method: (X) Perist								
,			1	Water Sa	mple Data			٦
Sample Depl	h Interval (ftbws)				'-14.0'			1
	Sample Date				1/2014			
	Sample Time				3:55			1
pH / SC / T (°C)	/ DO (mg/L)/ ORP	7.5	377		15.63	2.07	-112	1
. (-)	Sample ID				W09d-0-141001			1
	Duplicate ID				N09d-DB-141001			1
Field matrix spike					plicable			
-	insate Sample ID				plicable			
COMMENTS:	Gray silty s	sand						

Project No.: 02181-002-179

Ρ	ORE	SA	MΡ	LE	DA	TA	SHEET	
---	-----	----	----	----	----	----	-------	--

SAMPLE LOCATION		IW-09b		DAT	E: 10/1/2	014	
Drainage System	•	Mississippi River		County:	Nashington	State:	MN
GPS Latitude:	44.784765		(PS Longitude: -92.90	9144		
Location Description:	IW-09 transect li	ne					
Water Conditions:		() Low Turbidity	(X) Moderate	urbidity () High 1	furbidity		
		Water Conditions	: ()Calm (X)	Choppy () Visib	le Current		
Weather Conditions:	1-Oct	Temp. 50	°F ()Partly	Sunny (X) Cloud	y (X) Rain	(X) Windy	
SURFACE WATER	1						
Depth to Sediment:		8.5'	ftbws	Sediment Bot	tom: () Firi	n (X)Soft	
Water Sample Method:	(X) Peristaltic					ζ,	
·	. ,		1	Nater Sample Data			
Sam	ple Depth (ftbws)			posite (1.70 and 6.80)		
	llons per minute)			0.1 gpm	1		
	Sample Date			10/01/2014			
	Sample Time			14:50			
pH / SC / T (°C) /	DO (mg/L)/ ORP	8.35	346	16	6.9	6.1	
	Sample ID			-SW-MRIW09b-0-1410			
	Duplicate ID			SW-MRIW09b-DB-141			
Field matrix s	pike (1.0 ng/mL)			-			
COMMENTS:							
PORE WATER							
Well Diameter (in)	-	1					
Depth to Sediment (ftbws)		8.50'	-				
Depth to Top of Screen (ftbws	5)	11.0'	-				
Depth to Bottom of Screen (ft		11.5'	-				
Well Volume (gal)		gallons	-				
Purge Start (time)		:02					
Purge Stop (time)	15	:09	•				
Volume Purged (gal)	1.05 g	gallons	-				
	s () No						
Sample Method: (X) Perista							
,			1	Nater Sample Data			
Sample Dept	h Interval (ftbws)			11.0'-11.5'			
	Sample Date			10/01/2014			
	Sample Time			09:25			
pH / SC / T (°C) /	DO (mg/L)/ ORP	7.9	329	15.88	6.36	-30	
	Sample ID			I-IW-MRIW09b-0-1410		•	1
	Duplicate ID			-IW-MRIW09b-DB-1410			1
Field matrix spike (0.0011	-			1
	insate Sample ID			-			1
COMMENTS:		av. soft: DTP: 4	4.55'; DTW: 4.20'				-

PORE SAMPLE DATA SHEET

Project No.: 02181-002-179

SAMPLE LOCATION	IW-09f	DATE:	10/01/20	14-10/02/20 ⁻	14
Drainage System:	Mississippi River	County: Washi	ngton	State:	MN
GPS Latitude: 44.783586	GPS Lo	ngitude: <u>-92.909899</u>			
Location Description: IW-09 transect I	ine				
Water Conditions:	() Low Turbidity (X) Moderate Turbidit	ty () High Turbid	ity		
	Water Conditions: () Calm (X) Chop	py () Visible Cur	rent		
Weather Conditions:	Temp. <u>50</u> °F () Partly Sunny	(X)Cloudy (X) Rain ()	() Windy	
SURFACE WATER					
Depth to Sediment:	4.90' ftbws	Sediment Bottom:	() Firm	(X) Soft	
Water Sample Method: (X) Peristaltic	Pump				
	Water S	ample Data			
Sample Depth (ftbws	Composite	(0.98 and 3.92)			
Flow Rate (gallons per minute	0.	1 gpm			
Sample Date	10/	01/2014			
Sample Time		12:55			
pH / SC / T ([°] C) / DO (mg/L)/ ORF	8.34 359	15.65	5.3	-25	
Sample ID	CGMN-SW-M	IRIW09f-0-141001			
Duplicate ID	CGMN-SW-MF	RIW09f-DB-141001			
Field matrix spike (1.0 ng/mL		-			
COMMENTS:					
PORE WATER					
Well Diameter (in) Depth to Sediment (ftbws) Depth to Top of Screen (ftbws) Depth to Bottom of Screen (ft <u>bws)</u>	1 4.90' 5.35' 6.35'				
Well Diameter (in) Depth to Sediment (ftbws) Depth to Top of Screen (ftbws) Depth to Bottom of Screen (ft <u>bws)</u>	4.90' 5.85'				
Well Diameter (in) Depth to Sediment (ftbws) Depth to Top of Screen (ftbws) Depth to Bottom of Screen (ft <u>bws)</u> Well Volume (gal) 0	4.90' 5.85' 6.35'				
Well Diameter (in) Depth to Sediment (ftbws) Depth to Top of Screen (ftbws) Depth to Bottom of Screen (ft <u>bws) Well Volume (gal) 0 Purge Start (time) 1 </u>	4.90' 5.85' 6.35' 405				
Well Diameter (in) Depth to Sediment (ftbws) Depth to Top of Screen (ftbws) Depth to Bottom of Screen (ft <u>bws) Well Volume (gal) Purge Start (time) 1 Purge Stop (time) </u>	4.90' 5.85' 6.35' 405 3:07				
Well Diameter (in) Depth to Sediment (ftbws) Depth to Top of Screen (ftbws) Depth to Bottom of Screen (ft <u>bws) Well Volume (gal) Purge Start (time) 1 Purge Stop (time) </u>	4.90' 5.85' 6.35' 405 3:07 3:11				
Well Diameter (in) Depth to Sediment (ftbws) Depth to Top of Screen (ftbws) Depth to Bottom of Screen (ft <u>bws) Well Volume (gal) 0 Purge Start (time) 1 Purge Stop (time) 1 Volume Purged (gal) 1 </u>	4.90' 5.85' 6.35' 405 3:07 3:11				
Well Diameter (in) Depth to Sediment (ftbws) Depth to Top of Screen (ftbws) Depth to Bottom of Screen (ft <u>bws)</u> Well Volume (gal) 0 Purge Start (time) 1 Purge Stop (time) 1 Volume Purged (gal) 0 Well Purged Dry? (X) Yes	4.90' 5.85' 6.35' 405 3:07 3:11 0.6	Sample Data			
Well Diameter (in) Depth to Sediment (ftbws) Depth to Top of Screen (ftbws) Depth to Bottom of Screen (ft <u>bws)</u> Well Volume (gal) 0 Purge Start (time) 1 Purge Stop (time) 1 Volume Purged (gal) 0 Well Purged Dry? (X) Yes	4.90' 5.85' 6.35' 405 3:07 3:11 0.6 Water S	sample Data 5'-6.35'			
Well Diameter (in) Depth to Sediment (ftbws) Depth to Top of Screen (ftbws) Depth to Bottom of Screen (ft <u>bws) Well Volume (gal) 0 Purge Start (time) 1 Purge Stop (time) 1 Volume Purged (gal) 0 Well Purged Dry? (X) Yes () No Sample Method: (X) Peristaltic Pump </u>	4.90' 5.85' 6.35' 405 3:07 3:11 0.6 Water S				
Well Diameter (in) Depth to Sediment (ftbws) Depth to Top of Screen (ftbws) Depth to Bottom of Screen (ft <u>bws) Well Volume (gal) 0 Purge Start (time) 1 Purge Stop (time) 1 Volume Purged (gal) 0 Well Purged Dry? (X) Yes () No Sample Method: (X) Peristaltic Pump Sample Depth Interval (ftbws Sample Date Sample Time </u>	4.90' 5.85' 6.35' 405 3:07 3:11 0.6 Water S 5.8 10/	5'-6.35'			
Well Diameter (in) Depth to Sediment (ftbws) Depth to Top of Screen (ftbws) Depth to Bottom of Screen (ft <u>bws)</u> Well Volume (gal) 0 Purge Start (time) 1 Purge Stop (time) 1 Volume Purged (gal) 0 Well Purged Dry? (X) Yes () No Sample Method: (X) Peristaltic Pump Sample Depth Interval (ftbws Sample Date	4.90' 5.85' 6.35' 405 3:07 3:11 0.6 Water S 5.8 10/	5'- 6 .35' 02/2014	8.5	37	
Well Diameter (in) Depth to Sediment (ftbws) Depth to Top of Screen (ftbws) Depth to Bottom of Screen (ft <u>bws) Well Volume (gal) 0 Purge Start (time) 1 Purge Stop (time) 1 Volume Purged (gal) 0 Well Purged Dry? (X) Yes () No Sample Method: (X) Peristaltic Pump Sample Depth Interval (ftbws Sample Date Sample Time </u>	4.90' 5.85' 6.35' .405 3:07 3:11 0.6 Water \$ 5.8 10/ 8.38 277	5'-6.35' 02/2014 08:55	8.5	37	
Well Diameter (in) Depth to Sediment (ftbws) Depth to Top of Screen (ftbws) Depth to Bottom of Screen (ft <u>bws) Well Volume (gal) Purge Start (time) 1 Purge Stop (time) 1 Volume Purged (gal) Well Purged Dry? (X) Yes () No Sample Method: (X) Peristaltic Pump Sample Depth Interval (ftbws Sample Date Sample Time pH / SC / T (°C) / DO (mg/L)/ ORP</u>	4.90' 5.85' 6.35' 405 3:07 3:11 0.6 Water S 5.8 10/ 5.8 10/ 8.38 277 CGMN-IW-M	5'-6.35' 02/2014 08:55 14.69	8.5	37	
Well Diameter (in) Depth to Sediment (ftbws) Depth to Top of Screen (ftbws) Depth to Bottom of Screen (ftbws) Well Volume (gal) 0 Purge Start (time) 1 Purge Stop (time) 1 Volume Purged (gal) 0 Well Purged Dry? (X) Yes () No Sample Method: (X) Peristaltic Pump Sample Depth Interval (ftbws Sample Difference PH / SC / T (°C) / DO (mg/L)/ ORF Sample ID	4.90' 5.85' 6.35' 405 3:07 3:11 0.6 Water S 6.35' 405 3:07 3:11 0.6 5.8 10/ 6.38 277 CGMN-IW-MF CGMN-IW-MF	5'-6.35' 02/2014 08:55 14.69 RIW09f-0-141002	8.5	37	

PORE SAMPLE DATA SHEET

Project No.: 02181-002-179

SAMPLE LOCATION		IW-14			DATE:	9/ 30/201	14	
Drainage System	:	Mississippi River			County: Was	hington	State:	MN
GPS Latitude:	44.783699		G	PS Lon	ngitude: <u>-92.90423</u>	6		
Location Description:	IW-14 transect li	ne						
Water Conditions:		() Low Turbidity	(X) Moderate T	urbidity	y () High Turk	oidity		
		Water Conditions:	: ()Calm (X)C	hoppy	/ () Visible Cu	rrent		
Weather Conditions:		Temp. 50	°F ()Sunny	(X))Cloudy ()F	Rain (X)Wi	ndy	
SURFACE WATER								
Depth to Sediment:		17.5	ftbws		Sediment Bottom	: () Firm	() Soft	
Water Sample Method:	(X) Peristaltic	Pump						_
			w	/ater Sa	ample Data			
Sam	ple Depth (ftbws)		Con	nposite	e (3.5' and 14')			1
Flow Rate (ga	llons per minute)			0.1	gpm			
	Sample Date			09/3	60/2014			
	Sample Time			1	6:10			
pH / SC / T (°C) /	DO (mg/L)/ ORP	8.44	353		17.65	7.59	95	
	Sample ID		CGMN-	SW-MF	RIW014-0-140930			
	Duplicate ID		CGMN-	SW-MR	RIW14-DB-140930			
Field matrix s	pike (1.0 ng/mL)		CGMN-S	W-MR	IW14-FMS-140930			
COMMENTS:								
PORE WATER Well Diameter (In) Depth to Sediment (ftbws) Depth to Top of Screen (ftbws Depth to Bottom of Screen (ft Water column Well Volume (gal) Purge Start (time) Purge Stop (time) Volume Purged (gal)	bws) 1 1 1 1	1 17.5 19.3' 5.46 3.39 2:06 2:19 .95						
	(X) No							
Sample Method: (X) Perista	anic Pump			1-4				Г
			N		ample Data			-
Sample Dept	h Interval (ftbws)				3'-19.8'			-
	Sample Date				01/2014			-
	Sample Time DO (mg/L)/ ORP		000		2:20	7.0		-
pn/30/1(0)/	Sample ID		633 CGMN		14.86	7.2	-27	1
	Duplicate ID				IW14-0-141001			1
Field matrix spike (CGMN-	100-1011	-			1
COMMENTS:	i vor roo ng/mL)	۱ د م	ndy sediment; D1	R· 1 ·	- 16: DT\M: 2.04			1
comilitio.								

PORE SAMPLE DATA SHEET

Project No.: 02181-002-179

Drainage System: Mississippi River County: Washington State: Mississippi River GPS Latitude: 42738975 GPS Latitude: 42304248 Location Description: () Low Turbidity (X) Ohoppy () High Turbidity Water Conditions: () Calm (X) Ohoppy () Visible Current Water Conditions: Temp. 50 % () Somy (X) Ohoppy SurFACE WATER Depth to Sediment: 5.8 ntbws Sediment Botton: (X) Windy SurFACE WATER Depth to Sediment: 5.8 ntbws Sediment Botton: (X) Prim () Soft Water Sample Method: (X) Paristalite Pump Water Sample Data 0.1 gpm 0.3 gampie Data 0.4 gpm Sample Date 0.93002014 0.4 gpm 0.4 gpm 0.4 gpm 0.4 gpm Duplicate ID CosMN-SW-MRIN14b-D0-140930 Objecter ID CosMN-SW-MRIN14b-D0-140930 0.0 gpm COMMENTS: 0.6 % 0.6 % 0.0 ///////////////////////////////////	SAMPLE LOCATION	IW-14b		DATI	E: 9/30/2	014	
Location Description: Mi-14 transect line Water Conditions: () Low Turbidity (X) Moderate Turbidity () High Turbidity Water Conditions: () Calm (X) Choopy () Visible Current Weather Conditions: () Soft SURFACE WATER Depth to Sediment: <u>5.9</u> thows Sediment Bottom: (X) Firm () Soft Water Sample Method: (X) Perietallic Pump Water Sample Method: (X) Perietallic Pump Flow Rate (galions per minute) Sample Depth (fitows) Flow Rate (galions per minute) Sample Depth (fitows) Fleid matrix spike (1.9 rg/mL) Fleid matrix spike (1.9 rg/mL) Mater Sample Depth O CGMN-SW-MRIW014-b-0140930 Duplicate ID CGMMENTS: PORE WATER Mell Pound DD; Depth to Sediment (thows) Sample DE Sample Deth Interval (flows) Sample	Drainage System:	Mississippi River		County: N	Washington	State:	MN
Water Conditions: () Low Turbidity (X) Moderate Turbidity () High Turbidity Water Conditions: () Colm (X) Chopey () Visible Current Weather Conditions: Temp. <u>50 °F</u> () Sunny (X) Cloudy () Rain (X) Windy SURFACE WATER	GPS Latitude: 44.783879		G	PS Longitude: -92.90	4248		
Water Conditions: Temp. 60 % () Sumy. (X) Cloudy. () Rain. (X) Windy SURFACE WATER 8.5 thws Sediment Bottom: (X) Periatalic Pump Water Sample Data Composite (132 and 5.28') Flow Rate (gallons per minute 0.1 gpm Sample Depth (flows) Composite (132 and 5.28') Flow Rate (gallons per minute 0.1 gpm Sample Data Sample Data 0.1 gpm Sample Data 0.05 GMNSW-MRIVN04b-0-140930 Upuicate ID CGMN-SW-MRIVN04b-0-140930 Upuicate ID CGMN-SW-MRIVN14b-0-14002 Upuicate ID CGMN-SW MRIVN14b-0-14002 Upuicate ID CGMN	Location Description: IW-14 transect I	ine					
Weather Conditions: Temp. 60 °F () Sumy (X) Cloudy () Rain (X) Windy SURFACE WATER 5.8 tbws Sediment (X) Windy Sediment Botton: (X) Print () Soft Water Sample Method: (X) Peristaltic Pump Water Sample Data Composite (132' and 5.26') Somple Data Sample Depth (fbws) Composite (132' and 5.26') Somple 5.10 Somple 10 CGMN-SW-ARRW014b-0-40930 Somple 10	Water Conditions:	() Low Turbidity	(X) Moderate T	urbidity () High 1	Furbidity		
SURFACE WATER Sediment (X) Peristalic Pump Water Sample Method: (X) Peristalic Pump Water Sample Data Sample Depth (Itwes) Composite (132' and 5.28') Flow Rate (galions per minute) 0.1 gpm Sample Date 09/30/2014 5.3 T.7 103 Sample Date 09/30/2014 5.3 T.7 103 Duplicate ID CGMN-SW-MR(W)14b-0-140930 Duplicate ID CGMN-SW-MR(W)14b-0-140930 Field matrix spike (1.0' grimL) - - - COMMENTS: - - - PORE WATER - - - Well Diameter (In) 1 - - Depth to Sediment (Itbws) 5.6' - - Vell Volume (gal) 0.67' - - Vell Volume (gal) 0.67' - - Yeige Stop (Itme) 12:35 - - Volume Purged Gal) 0.75 - - Sample Depth Interval (Itbws) 7.5' to 3.05' - Sample Date		Water Conditions	: ()Calm (X)	Choppy () Visibl	e Current		
Depth to Sediment: 6.5 rtbws Sediment Bottom: (X) Firm () Soft Water Sample Method: (X) Peristalitic Pump Water Sample Data	Weather Conditions:	Temp. 50	°F ()Sunny	(X) Cloudy ()Rain (X)W	/indy	
Depth to Sediment: 6.5 rtbws Sediment Bottom: (X) Firm () Soft Water Sample Method: (X) Peristalitic Pump Water Sample Data	SURFACE WATER						
Water Sample Method: (X) Peristalite Pump Water Sample Data Composite (1.32 and 6.28') Flow Rate (gallons per minute) 0.1 gpm Sample Data 0.1 gpm Sample Time 16:35 PI/ SC /T (°C) / DO (mg/L)' ORP 8.46 Sample Did CGMN+SW-MRIW014b-0-140930 Duplicate ID CGMN+SW-MRIW014b-0-140930 Field matrix spike (1.9 ng/mL) - COMMENTS: - PORE WATER - Well Diameter (In) 1 Depth to Top of Screen (ftbws) 6.6'' Depth to Bottom of Screen (ftbws) 6.6'' Depth to Bottom of Screen (ftbws) 6.05'' Well Volume (gal) 0.67' Purge Stop (time) 12:35 Volume Purged (gal) 0.75 Vater Sample Data 5.5' to 8.0'' Sample Deptin Top (C') / Do (mg/L) ORP 7.5' to 8.0'' Sample Deptin Top (Trive) 6.5' Purge Stop (time) 12:35 Volume Purged (gal) 0.75 Vater Sample Data 5.6' to 8.0'' Sample		6.6	ftbws	Sediment Bot	tom: (X) Fi	rm () Soft	
Water Sample Data Sample Depth (ftbws) Composite (1.32" and 5.28") Flow Rate (gallons per minute) Sample Dete Ogg/07/214 Sample Dete Ogg/07/214 Sample D COMMENTS: PORE WATER Vell matrix spike (1.0 ng/mL) FORE WATER Vell Diameter (In) 1 COMMENTS: PORE WATER Vell Diameter (In) 1 T.55 Depth to Bottom of Screen (ftbws) 6.5" Vell Volume (gal) 0.67 Purge Start (time) 12:31 Purge Start (time) 12:33 Vell Volume (gal) 0.75 Veller Sample Data Sample Depth Interval (ftbws) 7.55' to 8.05' Sample Depth (S C) Y Yes () No Sample Depth (S			10005	ocument Bot			
Sample Depth (fibws) Composite (1.32 and 5.28') Flow Rate (gallons per minute) 0.1 gpm Sample Date 0930/2014 Sample Date 0930/2014 Sample Date 16.35 pH / SC / T (°C) / D0 (mg/L) ORP 8.46 344 17.8 7.7 103 Duplicate ID CGMN-SW-MRIW014b-0-140930 - - - COMMENTS: - - - - Porter Marter 6.5' - - - Vell Diameter (In) 1 - - - Depth to Sectiment (ftbws) 6.5' - - - Vell Diameter (In) 1 - - - User column 7.55 - - - - Purge Start (time) 12:31 - - - - Purge Start (time) 12:36 - - - - Volume Purged (gal) 0.75 - - - - - Sa			١٨	/ater Sample Data			٦
Flow Rate (gallons per minute) 0.1 gpn Sample Date 09/30/2014 Sample Time 16:35 pH / SC / T (² C) / D0 (mg/L/) ORP 8.46 344 17.8 7.7 103 Duplicate ID CGMN-SW-MRIN014b-0-140930	Sample Depth (fthwa				"\		1
Sample Date 09/30/2014 Sample Time 16:35 PH / Sc / T (°C) / DO (mg/L)/ ORP 8.46 344 17.8 7.7 103 Sample ID CGMN-SW-MRIN014b-0-140930 Duplicate ID CGMN-SW-MRIN014b-0-140930			Com		1		1
Sample Time 16:36 pH/SC/T (°C) / D0 (mg/L)' ORP 8.46 344 17.8 7.7 103 Sample ID CGMN-SW-MRIW014b-0140930							1
pH / SC / T (°C) / D0 (mg/L) ORP 8.46 344 17.8 7.7 103 Sample ID CGMN-SW-MRIW014b-0-140930	-						1
Sample ID CGMN-SW-MRIW014b-0-140930 Duplicate ID CGMN-SW-MRIW14b-DB-140930 Field matrix spike (1.0 ng/mL) - COMMENTS: PORE WATER Well Diameter (in) 1 Depth to Sediment (flbws) 6.6' Depth to Top of Screen (flbws) 7.55' Depth to Bottom of Screen (flbws) 8.05' Vater column 7.3' Well Volume (gal) 0.57 Purge Start (time) 12:31 Purge Start (time) 12:36 Volume Purged (gal) 0.75 Well Purged Dry? (X) Peristatic Pump Sample Depth Interval (flbws) 7.56' to 8.05' Sample Dift Interval (flbws) 7.74 405 pH / SC / T (^o C) / DO (mg/L) / ORP 7.74 405 pH / SC / T (^o C) / DO (mg/L) / ORP CGMN-IW-MRIW14b-DB-141002 Duplicate ID CGMN-IW-MRIW14b-DB-141002 Duplicate ID CGMN-IW-MRIW14b-DB-14	-		244		77	102	1
Duplicate ID CGMN-SW-MRIW14b-DB-140930 Field matrix spike (1.0 ng/mL) - COMMENTS: -						105	1
Field matrix spike (1.0 ng/mL) - COMMENTS: - PORE WATER - Well Diameter (in) 1 Depth to Sediment (ftbws) 6.8" Depth to Top of Screen (ftbws) 7.55" Depth to Bottom of Screen (ftbws) 8.05" Water column 7.3" Well Volume (gal) 0.67 Purge Start (time) 12:36 Volume Purged (gal) 0.75 Well Purged top? (X) Yes () No Sample Depth Interval (ftbws) 7.55" to 8.05" Sample Depth Interval (ftbws) 7.54" 405 PH / SC / T (⁰ C) / Do (mg/L) / ORP 7.74 405 PH / SC / T (⁰ C) / Do (mg/L) / ORP CGMN-IW-MRIW14b-0-1411002 Duplicate ID CGMN-IW-MRIW14b-DB-1411002 Field matrix spike (10 or 100 ng/mL) -							1
COMMENTS:			COMING	-	550		1
PORE WATER Well Diameter (in) 1 Depth to Sediment (ftbws) 6.6' Depth to Top of Screen (ftbws) 7.55' Depth to Bottom of Screen (ftbws) 8.05' Water column 7.3' Well Volume (gal) 0.67 Purge Start (time) 12:31 Purge Stop (time) 12:36 Volume Purged (gal) 0.75 Well Purged Dry? (X) Yes Vell Purged Dry? (X) Yes Sample Deth Interval (ftbws) 7.55' to 8.05' Sample Deth 10/02/2014 Sample Deth 08:40 pH / SC / T (°C) / DO (mg/L) ORP 7.74 405 pH / SC / T (°C) / DO (mg/L) VORP 7.74 405 Sample D CGMNI-IW-MRIW14b-0-141002 Duplicate ID CGMNI-IW-MRIW14b-DE-141002 Field matrix spike (10 or 100 ng/mL) -		1					_
Well Diameter (in) 1 Depth to Sediment (ftbws) 6.6' Depth to Top of Screen (ftbws) 7.55' Depth to Bottom of Screen (ftbws) 8.05' Water column 7.3' Well Volume (gal) 0.67 Purge Start (time) 12:31 Purge Stop (time) 12:36 Volume Purged (gal) 0.75 Well Purged Dry? (X) Yes () No Sample Method: (X) Peristaltic Pump Water Sample Data Sample Depth Interval (ftbws) Sample Date Oli/002/2014 Sample Time OB:40 pH / SC / T (°C) / DO (mg/L)' ORP Purge Signe ID CGMN-IW-MRIW14b-0-141002 Duplicate ID CGMN-IW-MRIW14b-DB-141002 Field matrix spike (10 or 100 ng/mL)							
Well Diameter (in) 1 Depth to Sediment (ftbws) 6.6' Depth to Top of Screen (ftbws) 7.55' Depth to Bottom of Screen (ftbws) 8.05' Water column 7.3' Well Volume (gal) 0.67 Purge Start (time) 12:31 Purge Stop (time) 12:36 Volume Purged (gal) 0.75 Well Purged Dry? (X) Yes () No Sample Method: (X) Peristaltic Pump Water Sample Data Sample Depth Interval (ftbws) Sample Date Oli/002/2014 Sample Time OB:40 pH / SC / T (°C) / DO (mg/L)' ORP Purge Signe ID CGMN-IW-MRIW14b-0-141002 Duplicate ID CGMN-IW-MRIW14b-DB-141002 Field matrix spike (10 or 100 ng/mL)							
Depth to Sediment (ftbws) 6.6' Depth to Top of Screen (ftbws) 7.55' Depth to Bottom of Screen (ftbws) 8.05' Water column 7.3' Well Volume (gal) 0.67 Purge Start (time) 12:31 Purge Stop (time) 12:36 Volume Purged (gal) 0.75 Well Purged Dry? (X) Yes () No Sample Depth Interval (ftbws) 7.55' to 8.05' Sample Depth Interval (ftbws) 7.55' to 8.05' Sample Depth Interval (ftbws) 7.55' to 8.05' Sample Date 10/02/2014 Sample Time 08:40 pH / SC / T (°C) / Do (mg/L)' ORP 7.74 405 15.36 7.74 OCGMN-IW-MRIW14b-0-141002 Duplicate ID Duplicate ID CGMN-IW-MRIW14b-D-141002 Field matrix spike (10 or 100 ng/mL) -							
Depth to Top of Screen (ftbws) 7.55' Depth to Bottom of Screen (ftbws) 8.05' Water column 7.3' Well Volume (gal) 0.67 Purge Start (time) 12:31 Purge Stop (time) 12:36 Volume Purged (gal) 0.75 Well Purged Dry? (X) Yes () No Sample Method: (X) Peristaltic Pump Water Sample Data Sample Depth Interval (ftbws) Sample Depth Interval (ftbws) 7.55' to 8.05' Sample Depth Interval (ftbws) Purge Stop (Time) 08:40 pH / SC / T (°C) / DO (mg/L) ORP 7.74 405 15.36 7.74 -65 Sample ID CGMN-IW-MRIW14b-0-141002 Duplicate ID CGMN-IW-MRIW14b-DB-141002 Duplicate ID CGMN-IW-MRIW14b-DB-141002 Eield matrix spike (10 or 100 ng/mL) -							
Depth to Bottom of Screen (ftbws) 8.05' Water column 7.3' Well Volume (gal) 0.67 Purge Start (time) 12:31 Purge Stop (time) 12:36 Volume Purged (gal) 0.75 Well Purged Dry? (X) Yes () No Sample Method: (X) Peristaltic Pump Vater Sample Data Sample Depth Interval (ftbws) 7.55' to 8.05' Sample Data Sample Data Mater Sample Data 08:40 pH / SC / T (°C) / DO (mg/L)' ORP 7.74 405 15.36 7.74 -65 Sample ID CGMN-IW-MRIW14b-0-141002 Duplicate ID CGMN-IW-MRIW14b-0-141002 Field matrix spike (10 or 100 ng/mL) -			-				
Water column 7.3' Well Volume (gal) 0.67 Purge Start (time) 12:31 Purge Stop (time) 12:36 Volume Purged (gal) 0.75 Well Purged Dry? (X) Yes Well Purged Dry? (X) Yes Sample Method: (X) Peristaltic Pump Water Sample Data Sample Depth Interval (ftbws) Sample Data O8:40 pH / SC / T (°C) / DO (mg/L) / ORP 7.74 GGMN-IW-MRIW14b-0-141002 Duplicate ID CGMN-IW-MRIW14b-DE-141002 Field matrix spike (10 or 100 ng/mL)							
Well Volume (gal) 0.67 Purge Start (time) 12:31 Purge Stop (time) 12:36 Volume Purged (gal) 0.75 Well Purged Dry? (X) Yes Well Purged Dry? (X) Yes Sample Method: (X) Peristaltic Pump Water Sample Data Sample Depth Interval (ftbws) Sample Date 10/02/2014 Sample Time 08:40 0 pH / SC / T (°C) / DO (mg/L)/ ORP 7.74 405 15.36 7.74 -65 Sample ID CGMN-IW-MRIW14b-0141002 Duplicate ID CGMN-IW-MRIW14b-DB-141002 -							
Purge Start (time) 12:31 Purge Stop (time) 12:36 Volume Purged (gal) 0.75 Well Purged Dry? (X) Yes () No Sample Method: (X) Peristaltic Pump Water Sample Data 7.55' to 8.05' Sample Depth Interval (ftbws) 7.55' to 8.05' Sample Date 10/02/2014 Sample Time 08:40 pH / SC / T (°C) / DO (mg/L) / ORP 7.74 405 15.36 7.74 -65 Sample ID CGMN-IW-IMRIW14b-0-141002 Duplicate ID CGMN-IW-IMRIW14b-DB-141002 Example Time -	Water column	7.3'	-				
Purge Stop (time) 12:36 Volume Purged (gal) 0.75 Well Purged Dry? (X) Yes () No Sample Method: (X) Peristaltic Pump Water Sample Data Sample Depth Interval (ftbws) 7.55' to 8.05' Sample Date 10/02/2014 Sample Date 08:40 pH / SC / T (°C) / DO (mg/L) / ORP 7.74 405 15.36 7.74 -65 Sample ID CGMN-IW-MRIW14b-0-141002 Duplicate ID CGMN-IW-MRIW14b-DB-141002 Field matrix spike (10 or 100 ng/mL) -							
Volume Purged (gal) 0.75 Well Purged Dry? (X) Yes () No Sample Method: (X) Peristaltic Pump Water Sample Data 08:40 Sample Time 08:40 pH / SC / T (°C) / DO (mg/L) / ORP 7.74 405 15.36 7.74 -65 Sample ID CGMN-IW-MRIW14b-0-141002 Duplicate ID CGMN-IW-MRIW14b-DB-141002 -	Purge Start (time) 1	2:31					
Well Purged Dry? (X) Yes () No Sample Method: (X) Peristaltic Pump Water Sample Data Sample Depth Interval (ftbws) Sample Date 10/02/2014 Sample Date 08:40 pH / SC / T (°C) / DO (mg/L) / ORP 7.74 405 15.36 7.74 -65 Sample ID CGMN-IW-MRIW14b-0-141002 Duplicate ID CGMN-IW-MRIW14b-DB-141002 Field matrix spike (10 or 100 ng/mL) -	Purge Stop (time) 1	2:36					
Sample Method: (X) Peristaltic Pump Water Sample Data Sample Depth Interval (ftbws) 7.55' to 8.05' Sample Date Sample Date Sample Time O8:40 pH / SC / T (°C) / DO (mg/L) / ORP 7.74 405 15.36 7.74 -65 Sample ID CGMN-IW-MRIW14b-0-141002 Duplicate ID CGMN-IW-MRIW14b-DB-141002 Field matrix spike (10 or 100 ng/mL) -	Volume Purged (gal)	0.75					
Water Sample Data Sample Depth Interval (ftbws) 7.55' to 8.05' Sample Date Sample Date Sample Time Sample Time DBH / SC / T (°C) / DO (mg/L) / ORP CGMN-IW-MRIW14b-0-141002 Sample ID CGMN-IW-MRIW14b-DB-141002 Field matrix spike (10 or 100 ng/mL)							
Sample Depth Interval (ftbws) 7.55' to 8.05' Sample Date 10/02/2014 Sample Time 08:40 pH / SC / T (°C) / DO (mg/L)' ORP 7.74 405 15.36 7.74 -65 Sample ID CGMN-IW-MRIW14b-0-141002 Duplicate ID Field matrix spike (10 or 100 ng/mL) -	Sample Method: (X) Peristaltic Pump						٦
Sample Date 10/02/2014 Sample Time 08:40 pH / SC / T (°C) / DO (mg/L)/ ORP 7.74 405 15.36 7.74 -65 Sample ID CGMN-IW-MRIW14b-0-141002			v	/ater Sample Data			-
Sample Time 08:40 pH / SC / T (°C) / DO (mg/L)/ ORP 7.74 405 15.36 7.74 -65 Sample ID CGMN-IW-MRIW14b-0-141002	Sample Depth Interval (ftbws			7.55' to 8.05'			-
pH / SC / T (°C) / DO (mg/L)/ ORP 7.74 405 15.36 7.74 -65 Sample ID CGMN-IW-MRIW14b-0-141002 Duplicate ID CGMN-IW-MRIW14b-DB-141002 - Field matrix spike (10 or 100 ng/mL) - - - -	Sample Date	-		10/02/2014			-
Sample ID CGMN-IW-MRIW14b-0-141002 Duplicate ID CGMN-IW-MRIW14b-DB-141002 Field matrix spike (10 or 100 ng/mL) -	Sample Time		I T	08:40			4
Duplicate ID CGMN-IW-MRIW14b-DB-141002 Field matrix spike (10 or 100 ng/mL) -	pH / SC / T (^o C) / DO (mg/L)/ ORF	7.74	405	15.36	7.74	-65	4
Field matrix spike (10 or 100 ng/mL)	Sample ID		CGMN	-IW-MRIW14b-0-1410	02		4
	Duplicate ID	·	CGMN-	W-MRIW14b-DB-1410	002		4
COMMENTS: Gray/ brown sand; DTR: 4.45'; DTW: 4.70'	Field matrix spike (10 or 100 ng/mL			-			
	COMMENTS:	Gra	y/ brown sand; D	TR: 4.45'; DTW: 4	.70'		

Project No.: 02181-002-179

P	О	R	Ε	S,	А	N	۱P	LE	DA	TΑ	SHE	ET
---	---	---	---	----	---	---	----	----	----	----	-----	----

SAMPLE LOCATION	IW-14d		E: 9/30/2	014	
Drainage System:	Mississippi River	County: V	Washington	State:	M
GPS Latitude: 44.783114	GPS Lo	ongitude: -92.90	4237		
Location Description: <u>IW-14 transect I</u>	ine				
Water Conditions:	() Low Turbidity (X) Moderate Turbid	ity () High T	urbidity		
	Water Conditions: (X) Calm () Chor	opy ()Visibl	le Current		
Weather Conditions:	Temp. <u>50</u> °F () Sunny ()	() Cloudy ()Rain (X)V	Vindy	
SURFACE WATER					
Depth to Sediment:	7.90'ftbws	Sediment Bott	tom: () Fin	m ()Soft	
Water Sample Method: (X) Peristaltic	Pump				
	Water	Sample Data			
Sample Depth (ftbws)	Composite	e (1.58' and 6.32')		
Flow Rate (gallons per minute		0.1 gpm			
Sample Date	09	/30/2014			
Sample Time		15:35			
pH / SC / T (°C) / DO (mg/L)/ ORF	8.43 373	17.8	7.47	84	
Sample ID	CGMN-SW-M	IRIW014d-0-1409	930		
Duplicate ID	CGMN-SW-M	RIW14d-DB-1409	930		
Field matrix spike (1.0 ng/mL	×	-			
COMMENTO.					
PORE WATER	1				
PORE WATER Well Diameter (In) Depth to Sediment (ftbws) Depth to Top of Screen (ftbws) Depth to Bottom of Screen (ftbws) Water column	1 7.90' 8.80' 9.3 7.95 0.7 5:45				
PORE WATER Well Diameter (in) Depth to Sediment (ftbws) Depth to Top of Screen (ftbws) Depth to Bottom of Screen (ftbws) Water column Well Volume (gal) Purge Start (time)	7.90' 8.80' 9.3 7.95 0.7				
PORE WATER Well Diameter (in) Depth to Sediment (ftbws) Depth to Top of Screen (ftbws) Water column Well Volume (gal) Purge Start (time) 1 Purge Stop (time)	7.90' 8.80' 9.3 7.95 0.7 5:45				
PORE WATER Well Diameter (in) Depth to Sediment (ftbws) Depth to Top of Screen (ftbws) Depth to Bottom of Screen (ftbws) Water column Well Volume (gal) Purge Start (time) 1 Purge Stop (time) 1 /olume Purged (gal)	7.90' 8.80' 9.3 7.95 0.7 5:45 5:50				
PORE WATER Well Diameter (in) Depth to Sediment (ftbws) Depth to Top of Screen (ftbws) Depth to Bottom of Screen (ftbws) Water column 7 Well Volume (gal) 1 Purge Start (time) 1 Purge Stop (time) 1 Wolume Purged (gal) 1 Well Purged Dry? (X) Yes No	7.90' 8.80' 9.3 7.95 0.7 5:45 5:50				
PORE WATER Well Diameter (in) Depth to Sediment (ftbws) Depth to Top of Screen (ftbws) Water column Well Volume (gal) Purge Start (time) 1 Volume Purged (gal) Well Purged Dry? (X) Yes () No	7.90' 8.80' 9.3 7.95 0.7 5:45 5:50 0.8	Sample Data			
Well Volume (gal)	7.90' 8.80' 9.3 7.95 0.7 5:45 5:50 0.8 Water	Sample Data			
PORE WATER Well Diameter (in) Depth to Sediment (ftbws) Depth to Top of Screen (ftbws) Depth to Bottom of Screen (ftbws) Nater column Well Volume (gal) Purge Start (time) 1 Volume Purged (gal) Well Purged Dry? (X) Yes Sample Method:	7.90' 8.80' 9.3 7.95 0.7 5:45 5:50 0.8				
PORE WATER Well Diameter (in) Depth to Sediment (ftbws) Depth to Top of Screen (ftbws) Depth to Bottom of Screen (ftbws) Water column Well Volume (gal) Purge Start (time) Purge Stop (time) Volume Purged (gal) Well Purged Dry? Well Purged Dry? Sample Depth Interval (ftbws)	7.90' 8.80' 9.3 7.95 0.7 5:45 5:50 0.8 Water 7 10	7.9'-8.3'			
PORE WATER Well Diameter (In) Depth to Sediment (ftbws) Depth to Top of Screen (ftbws) Depth to Bottom of Screen (ftbws) Water column Well Volume (gal) Purge Start (time) Purge Stop (time) Purge Stop (time) Purge Stop (time) Purge Stop (time) Purge Stop (time) Purge Stop (time) Sample Depth Interval (ftbws Sample Depth Interval (ftbws	7.90' 8.80' 9.3 7.95 0.7 5:45 5:50 0.8 Water 10	7.9'-8.3' //01/2014	7.46	90	
PORE WATER Well Diameter (in) Depth to Sediment (ftbws) Depth to Top of Screen (ftbws) Depth to Bottom of Screen (ftbws) Water column 7 Well Volume (gal) 1 Purge Start (time) 1 Volume Purged (gal) 1 Volume Purged Dry? (X) Yes () No Sample Method: (X) Peristaltic Pump Sample Depth Interval (ftbws Sample Date Sample Date	7.90' 8.80' 9.3 7.95 0.7 5:45 5:50 0.8 Water 7 8.42 380	7.9'-8.3' //01/2014 10:00		90	
PORE WATER Well Diameter (in) Depth to Sediment (ftbws) Depth to Top of Screen (ftbws) Depth to Bottom of Screen (ftbws) Water column	7.90' 8.80' 9.3 7.95 0.7 5:45 5:50 0.8 Water 7 10 8.42 380 CGMN-IW-N	7.9'-8.3' //01/2014 10:00 17.52	01	90	
PORE WATER Well Diameter (in) Depth to Sediment (ftbws) Depth to Top of Screen (ftbws) Depth to Bottom of Screen (ftbws) Water column	7.90' 8.80' 9.3 7.95 0.7 5:45 5:50 0.8 Water 0 7 10 8.42 380 CGMN-IW-M	7.9'-8.3' /01/2014 10:00 17.52 IRIW14d-0-14100	01 001	90	

PORE SAMPLE DATA SHEET

Project No.: 02181-002-179

SAMPLE LOCATION		IW-14f			DATE:	9/30/2014	Ļ	
Drainage System:		Mississippi River			County: Was	hington	State:	MN
GPS Latitude: 44.	.782583			GPS Lon	gitude: <u>-92.90423</u>	8		
Location Description: IW	-14 transect li	ne						
Water Conditions:		() Low Turbidity	(X) Moderat	e Turbidity	/ () High Turk	oidity		
		Water Conditions	: ()Calm (X	() Choppy	y () Visible C	urrent		
Weather Conditions:		Temp. <u>50</u>	°F ()Sur	nny (X)	Cloudy ()F	lain (X)Wind	у	
SURFACE WATER								
Depth to Sediment:		7.35	ftbws		Sediment Bottom	:: ()Firm	() Soft	
Water Sample Method: ()	X) Peristaltic	Pump						-
				Water Sa	ample Data			
Sample	Depth (ftbws)		Co	omposite (1.47' and 5.88')			
Flow Rate (gallon	ns per minute)			0.1	gpm			
	Sample Date			09/3	0/2014			
	Sample Time			1-	4:45			
pH / SC / T (°C) / DC	O (mg/L)/ ORP	8.44	329		17.6	7.36	77	
	Sample ID		CGN	/IN-SW-MR	IW014f-0-140930			
	Duplicate ID		CGM	IN-SW-MR	IW14f-DB-140930			_
Field matrix spik	æ (1.0 ng/mL)				-			_
Rinsa	ate Sample ID				-			
COMMENTS:								
PORE WATER								
Well Diameter (in)		1						
Depth to Sediment (ftbws)		7.35'						
Depth to Top of Screen (ftbws)		8.20'						
Depth to Bottom of Screen (ftbws	s)	8.70'						
Water column	7	.40'						
Well Volume (gal)	0	.66						
Purge Start (time)	18	5:05						
Purge Stop (time)	18	5:09						
Volume Purged (gal)	(D.6						
Well Purged Dry? (X) Yes	() No							
Sample Method: (X) Peristaltic	c Pump							-
				Water Sa	ample Data			
Sample Depth In	nterval (ftbws)			8.20'	to 8.70'			
	Sample Date			10/0	2/2014			
	Sample Time			0	8:25			
pH / SC / T (ºC) / DC	O (mg/L)/ ORP	8.45	349		16.91	7.1	88	4
	Sample ID		CG	MN-IW-MR	RIW14f-0-141002			4
	Duplicate ID		CGN	/IN-IW-MRI	W14f-DB-141002			4
Field matrix spike (10	or 100 ng/mL)				-			4
Rinsa	ate Sample ID				-			
COMMENTS:			Gray Clay; DTI	R: 2.30';	DTW: 3.60'			

PORE SAMPLE DATA SHEET

Project No.: 02181-002-179

SAMPLE LOCATION		IW-19			DATE:	9/30/2014		
Drainage System:		Mississippi River		 Co	unty: Washir		State:	MN
GPS Latitude: 44.	784036				le: -92.899015			
Location Description: IW-		ne		5				
Water Conditions:		() Low Turbidity	y (X) Moderate 1	urbidity () High Turbidi	tv		
Water Conditions.		Water Conditions) Visible Curre			
Weather Conditions:					udy ()Rair			
		Temp		, (x) o lo				
SURFACE WATER								
Depth to Sediment:		4.4	ftbws	Sedin	ment Bottom:	() Firm	(X) Soft	
Water Sample Method: (X	() Peristaltic	Pump						٦
				Vater Sample				-
-	Depth (ftbws)		Com	posite (0.88' a	and 3.52")			-
Flow Rate (gallon	s per minute)			0.1 gpm				-
	Sample Date			09/30/201	4			-
	Sample Time			12:55				-
pH / SC / T (°C) / DO	(mg/L)/ ORP	8.4	347	17.33		6.91	85	-
	Sample ID		CGMN	-SW-MRIW01	9-0-140930			-
	Duplicate ID		CGMN	-SW-MRIW19	-DB-140930			-
Field matrix spike	e (1.0 ng/mL)			-]
COMMENTS:								
PORE WATER								10000000000000000
Well Diameter (in)		1						
Depth to Sediment (ftbws)		4.4'						
Depth to Top of Screen (ftbws)		6.6'						
Depth to Bottom of Screen (ftbws	5)	7.1'						
Water column	4.	.75						
Well Volume (gal)	0.	.42						
Purge Start (time)	13	:17	_					
Purge Stop (time)	13	:19	-					
Volume Purged (gal)	0).4	_					
Well Purged Dry? (X) Yes	() No		•					
Sample Method: (X) Peristaltic	Pump							
			١	Vater Sample	Data			1
Sample Depth In	terval (ftbws)			6.6' to 7.1	l .			1
	Sample Date			10/01/201	4			1
	Sample Time			09:15				1
pH / SC / T (⁰C) / DO	-	7.94	409	17.43		5.69	-39	1
,	Sample ID		1	N-IW-MRIW19		I		1
	Duplicate ID			-IW-MRIW19-				1
Field matrix spike (10 d	-		001	-				1
COMMENTS:		sediment in e	ample/ turbid; Gr	av sandv o	lav: DTR: 3.0	י א יאידם ייחר	25'	1
	00/11			_y aanay u				

PORE SAMPLE DATA SHEET

Project No.: 02181-002-179

SAMPLE LOCATION		IW-19b			DATE:	9/30/2014	l	
Drainage System:		Mississippi River			County: Washi	ngton	State:	MN
GPS Latitude:	44.784180		G	SPS Lon	gitude: <u>-92.899002</u>			
Location Description:	IW-19 transect li	ne						
Water Conditions:		() Low Turbidity	y (X) Moderate T	urbidity	/ () High Turbid	ity		
		Water Conditions	: ()Calm (X)C	Choppy	() Visible Curre	nt		
Weather Conditions:		Temp. 50	°F () Sunny	y (X)	Cloudy () Rai	n (X)Wind	y	
SURFACE WATER								
Depth to Sediment:		5.6	ftbws	:	Sediment Bottom:	() Firm	(X) Soft	
Water Sample Method:	(X) Peristaltic	Pump					. ,	
			v	Vater Sa	ample Data			1
Sam	ole Depth (ftbws)				1.12' and 4.50")			1
	lons per minute)		•		gpm			1
	Sample Date				0/2014			1
	Sample Time				3:40			1
pH / SC / T (°C) /	-		349		17.81	7.32	52	1
	Sample ID		CGMN-	-SW-MRI	W019b-0-140930	•		1
	Duplicate ID		CGMN⊀	SW-MRI	W19b-DB-140930			1
Field matrix s	pike (1.0 ng/mL)				-			1
COMMENTS:								-
PORE WATER								
Probe Diameter (in)		4						
Depth to Sediment (ftbws)		<u> </u>						
Depth to Top of Screen (ftbws)	-1	7.6						
Depth to Bottom of Screen (ft)	-	8.1						
Water column		.75						
Well Volume (gal)		0.6	-					
Purge Start (time)		3:59						
Purge Stop (time)		1:02						
Volume Purged (gal)		0.6	-					
Well Purged Dry? (X) Yes			•					
Sample Method: (X) Perista								
,			v	Nater Sa	ample Data			٦
Sample Depti	h Interval (ftbws)				to 8.1'			1
	Sample Date				1/2014			1
	Sample Time				9:30			1
рН / SC / T (⁰C) /	-		386		7.67	6.01	61	1
,	Sample ID				IW19b-0-141001	i		1
	Duplicate ID				W19b-DB-141001			1
Field matrix spike (-				-			1
COMMENTS:			Gray clay; DTR:	2.5': D)TW: 4.25'			-
				, –				

PORE SAMPLE DATA SHEET

Project No.: 02181-002-179

SAMPLE LOCATION		IW-19d			DATE:	9/30/2014		
Drainage System	:	Mississippi River			County: Washii	ngton	State:	MN
GPS Latitude:	44.783496			GPS Long	gitude: <u>-92.899104</u>			
Location Description:	IW-19 transect li	ne						
Water Conditions:		() Low Turbidity	(X) Moderate T	Furbidity	() High Turbid	ity		
		Water Conditions	: ()Calm (X)C	hoppy	() Visible Currer	nt		
Weather Conditions:		Temp. 50	°F () Sunny	y (X)	Cloudy () Raii	n (X)Windg	y	
SURFACE WATER								
Depth to Sediment:	-	6.4	ftbws	:	Sediment Bottom:	() Firm	(X) Soft	
Water Sample Method:	(X) Peristaltic	Pump						_
			٧	Nater Sa	Imple Data			
Sam	ple Depth (ftbws)	4	Com	posite (*	1.28' and 5.12')			
Flow Rate (ga	llons per minute)			0.1	gpm			
	Sample Date			09/30	0/2014			
	Sample Time			12	2:05			
pH / SC / T (°C) /	DO (mg/L)/ ORP	8.38	326		17.2	6.8	79	
	Sample ID		CGMN-	-SW-MRI	W019d-0-140930			
	Duplicate ID		CGMN-	SW-MRI	W19d-DB-140930			
Field matrix s	pike (1.0 ng/mL)				-			
COMMENTS:								_
PORE WATER Well Diameter (in) Depth to Sediment (ftbws)]	<u>1</u> <u>6.4</u> 8.0	-					
Depth to Top of Screen (ftbws								
Depth to Bottom of Screen (ft		8.5						
Water column		3.55	-					
Well Volume (gal) Purge Start (time)		0.77 2:28						
Purge Stop (time)		2:32						
Volume Purged (gal)		0.8						
	s () No							
Sample Method: (X) Perista								
	•		Ň	Nater Sa	Imple Data			٦
Sample Dept	h Interval (ftbws)				to 8.5'			1
	Sample Date				1/2014			-
	Sample Time				9:05			1
pH / SC / T (⁰C) /	/ DO (mg/L)/ ORP		356			6.83	93	1
,	Sample ID				IW19d-0-141001	I		1
	Duplicate ID				W19d-DB-141001			1
Field matrix spike (19d-FMS-141001			7
COMMENTS:		-	Soft Gray Clay; DT					-

PORE SAMPLE DATA SHEET

Project No.: 02181-002-179

SAMPLE LOCATION		IW-19f			DATE:	9/30/2014	
Drainage System	:	Mississippi River			County: Washin	gton	State: MN
GPS Latitude:	44.782929		G	PS Lon	ngitude: -92.899194		
Location Description:	IW-19 transect li	ne					
Water Conditions:		() Low Turbidity	(X) Moderate T	urbidity	y () High Turbidit	у	
		Water Conditions:	()Calm (X)	Choppy	y ()Visible Curre	nt	
Weather Conditions:		Temp. <u>45</u>	°F ()Sunny	' (X)	Cloudy () Rain	(X) Windy	
SURFACE WATER							
Depth to Sediment:		12.1	ftbws		Sediment Bottom:	() Firm () Soft
Water Sample Method:	(X) Peristaltic	Pump					
			Ŵ	/ater Sa	ample Data		
Samj	ole Depth (ftbws)		Com	oosite (2.42' and 9.68')		
Flow Rate (ga	llons per minute)			0.1	gpm		
	Sample Date			09/3	0/2014		
	Sample Time			1'	1:15		
pH / SC / T (°C) /	DO (mg/L)/ ORP	8.34	338		16.02 6	5.77	13
	Sample ID		CGMN-	SW-MR	RIW019f-0-140930		
	Duplicate ID		CGMN-S	SW-MR	IW19f-DB-140930		
Field matrix s	pike (1.0 ng/mL)				-		
R	insate Sample ID		Note Ap	plicabl	e		
COMMENTS:							
PORE WATER							
Well Diameter (in)		1					
Depth to Sediment (ftbws)	,	12.1					
Depth to Top of Screen (ftbws	5)	13.6					
Depth to Bottom of Screen (ft	bws)	14.1					
Total Probe Depth (ftbws)		14.1					
Water column	1:	3.05					
Well Volume (gal)	1	.2					
Purge Start (time)	8	:45					
Purge Stop (time)	8	:54					
Volume Purged (gal)		.35					
Well Purged Dry? (X) Yes							
Sample Method: (X) Perista	altic Pump	-					
			N		ample Data		
Sample Dept	h Interval (ftbws)				to 14.1'		
	Sample Date				2/2014		
	Sample Time				8:05		
pH / SC / T (°C) /	DO (mg/L)/ ORP	7.67	498			4.1	-48
	Sample ID				RIW19f-0-141002		———————————————————————————————————————
	Duplicate ID		CGMN-	IW-MRI	W19f-DB-141002		———————————————————————————————————————
Field matrix spike (• •				-		I
	insate Sample ID		Not App				
COMMENTS:			Gray Clay; DTR: -	4.11;	D1 W. 0.05		

PORE SAMPLE DATA SHEET

Project No.: 02181-002-179

SAMPLE LOCATION		IW-25		D/	ATE:	9/30/2014	
Drainage System:		Mississippi River		County:	Washington	State:	MN
GPS Latitude:		44.78267	0	PS Longitude:	-92.	89306	
Location Description:			I	V-25 line			
Water Conditions:		() Low Turbidity	(X) Moderate 1	urbidity () Hig	gh Turbidity		
		Water Conditions	: ()Calm (X)	Choppy () Vi	sible Current		
Weather Conditions:		Temp. <u>45</u>	°F () Sunn	(X)Cloudy	() Rain (X) N	Windy	
SURFACE WATER							
Depth to Sediment: <u>2.</u>	3		ftbws	Sediment I	Bottom: (X)F	irm () Soft	
Water Sample Method: (X) Peristaltic	Pump					_
			١	Vater Sample Data	l		
Sample	e Depth (ftbws)		Com	posite (0.46' and 1	.84')		
Flow Rate (gallo	ons per minute)			0.1 gpm			
	Sample Date			09/30/2014			
	Sample Time			9:30			
pH / SC / T (°C) / D	O (mg/L)/ ORP	8.36	396	16.33	6.57	194	
	Sample ID		CGMI	I-SW-MRIW25-0-14	0930		
	Duplicate ID		CGMN	-SW-MRIW25-DB-1	40930		
Field matrix spil	ke (1.0 ng/mL)			-			
Rins	sate Sample ID						
COMMENTS:							
PORE WATER							
Well Diameter (in)		1					
Depth to Sediment (ftbws)		2.3					
Depth to Top of Screen (ftbws)		0.5					
Depth to Bottom of Screen (ftbw	vs)	3.05					
Total Probe Depth (ftbws)		3.55					
Water column		9.51					
Well Volume (gal)		0.855					
Purge Start (time)		9:50					
Purge Stop (time)		10:05					
Volume Purged (gal)		1					
Well Purged Dry? () Yes	() No						
Sample Method: (X) Peristalti	ic Pump						٦
				Vater Sample Data	l		-
Sample Depth I	Interval (ftbws)			3.05' to 3.55'			-
	Sample Date			09/30/2014			-
	Sample Time			10:10		T	-
pH / SC / T (°C) / D		6.95	692	15.78	0.38	-122	-
	Sample ID			N-IW-MRIW25-0-14			-
	Duplicate ID		CGMN	-IW-MRIW25-DB-14	40930		-
Field matrix spike (10				-			
	sate Sample ID			plicable			
COMMENTS:		Loose gray sa	nd (f-m), litle silt	and clay; DTR:	5.46'; DTW: 5.46	5	

PORE SAMPLE DATA SHEET

Project No.: 02181-002-179

SAMPLE LOCATION	IW-25b	DATE:	9/30/2014	
Drainage System:	Mississippi River	County: Wash	ington State:	MN
GPS Latitude: 44.78281	GP:	S Longitude: <u>-92.89304</u>		
Location Description: IW-25 transect	ine			
Water Conditions:	() Low Turbidity (X) Moderate Tur	bidity () High Turbio	dity	
	Water Conditions: () Calm (X) C	hoppy () Visible Cu	rrent	
Weather Conditions: SURFACE WATER	Temp. <u>45</u> °F () Sunny	(X) Cloudy () Ra	in (X)Windy	
Depth to Sediment:	1.05 ftbws	Sediment Bottom:	(X)Firm ()Soft	
Water Sample Method: (X) Peristaltic	Pump			
	Wa	ter Sample Data		
Sample Depth (ftbws		0.75		7
Flow Rate (gallons per minute		0.1 gpm		
Sample Date		09/30/2014		
Sample Time		10:25		
pH / SC / T (°C) / DO (mg/L)/ ORF	8.24 335	16.14	6.56 20	
Sample II	CGMN-S	W-MRIW25b-0-140930		
Duplicate I	CGMN-SV	V-MRIW25b-DB-140930		
Field matrix spike (1.0 ng/mL	>	-		
COMMENTS:				
PORE WATER	RENAN ANANAN MERINARAN MENINARA KANANAN KENINAN KANANAN KANAN			
Well Diameter (in)	1''			
Depth to Sediment (ftbws)	1.05			
Depth to Top of Screen (ftbws)	1.55			
Depth to Bottom of Screen (ft <u>bws)</u>	2.05			
Well Volume (gal)	0.2			
	0:28			
•	0:40			
Volume Purged (gal)	11			
Well Purged Dry? () Yes (X) No				
Sample Method: (X) Peristaltic Pump				٦
	Wa	ter Sample Data		-
Sample Depth Interval (ftbws	2	1.05' to 1.55'		-
Sample Date		09/30/2014		-
Sample Time		10:45	• • •	-
pH / SC / T (°C) / DO (mg/L)/ ORF			0.43 -110	-
Sample I		W-MRIW25b-0-140930		-
Duplicate IE		/-MRIW25b-DB-140930		-
Field matrix spike (10 or 100 ng/mL	시 porly sorted light gray sand (f-cs), t	-	7. הדאו: ז זיי	
COMMENTS: Po	ony Joned light gray salu (1-05), 1	auve mies, DTR.3.2	., 2144. 0.22	

PORE SAMPLE DATA SHEET

SAMPLE LOCATION IW-25d DATE: 10/24/2012 Drainage System: Mississippi River County: Washington State: MN GPS Latitude: 44.78204 GPS Longitude: -92.89319 Location Description: IW-25 transect line Water Conditions: () Low Turbidity (X) Moderate Turbidity () High Turbidity Water Conditions: () Calm (X) Choppy () Visible Current Weather Conditions: Temp. 45 °F () Sunny (X) Cloudy () Rain (X) Windy SURFACE WATER Depth to Sediment: 5.5 ftbws Sediment Bottom: ()Firm ()Soft Water Sample Method: (X) Peristaltic Pump Water Sample Data Sample Depth (ftbws) Composite (1.1' and 4.4') Flow Rate (gallons per minute) 0.1 gpm Sample Date 09/30/2014 Sample Time 8:25 pH / SC / T (°C) / DO (mg/L)/ ORP 8.37 350 16.72 200.3 6.5 Sample ID CGMN-SW-MRIW25d-0-140929 CGMN-SW-MRIW25d-DB-140929 Duplicate ID Field matrix spike (1.0 ng/mL Rinsate Sample ID Not Applicable COMMENTS: PORE WATER Well Diameter (in) Depth to Sediment (ftbws) 5.5 Depth to Top of Screen (ftbws) 6 Depth to Bottom of Screen (ftbws) 6.5 Water column 6.1 Well Volume (gal) 0.55 Purge Start (time) 8:53 Purge Stop (time) 8:57 Volume Purged (gal) 0.6 Well Purged Dry? (X) Yes () No Sample Method: (X) Peristaltic Pump Water Sample Data Sample Depth Interval (ftbws 6.0' to 6.5' Sample Date 10/01/2014 Sample Time 08:1**0** pH / SC / T (°C) / DO (mg/L)/ ORP 8.3 328 15.2 6.67 nm Sample ID CGMN-IW-MRIW25d-0-141001

 Sample Date
 10/01/2014

 Sample Time
 08:10

 pH / SC / T (°C) / DO (mg/L) / ORP
 8.3
 328
 15.2
 6.67
 nm

 Sample ID
 CGMN-IW-MRIW25d-0-141001
 Duplicate ID
 CGMN-IW-MRIW25d-DB-141001

 Field matrix spike (10 or 100 ng/mL)

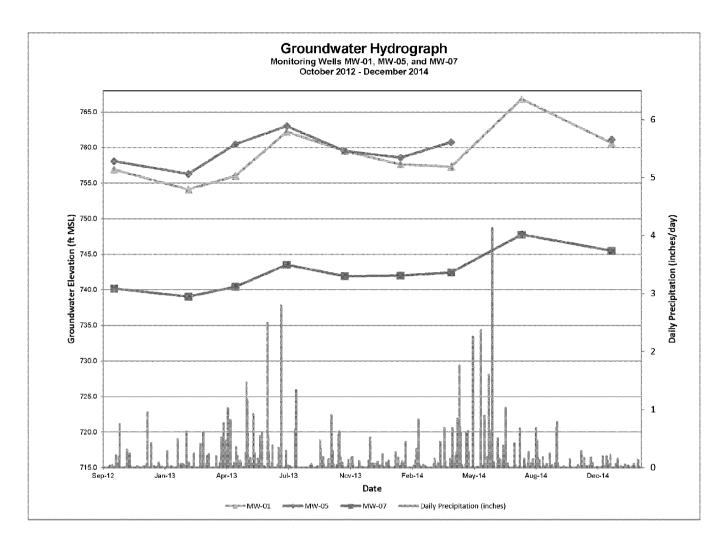
 Rinsate Sample ID
 Not Applicable
 COMMENTS:
 Gray sandy (v. fine- fine) silt/ clay; DTW: 5.9'; DTR: 4.35'

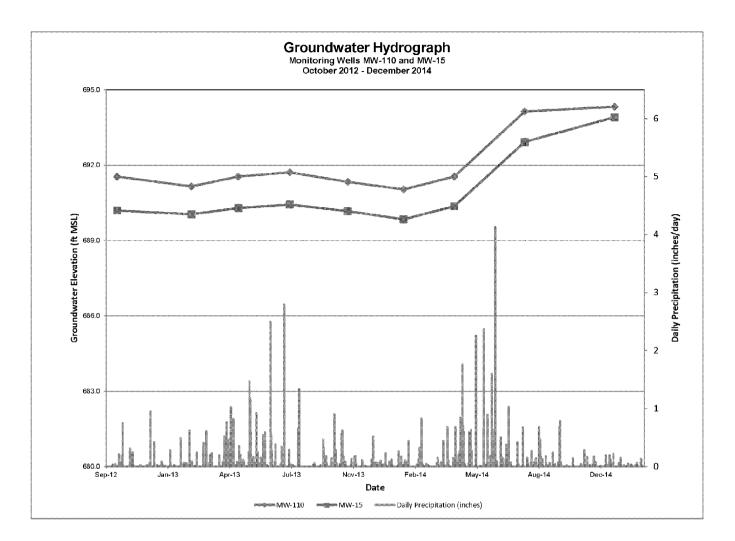
3M_MN01596019

Project No.: 02181-002-179

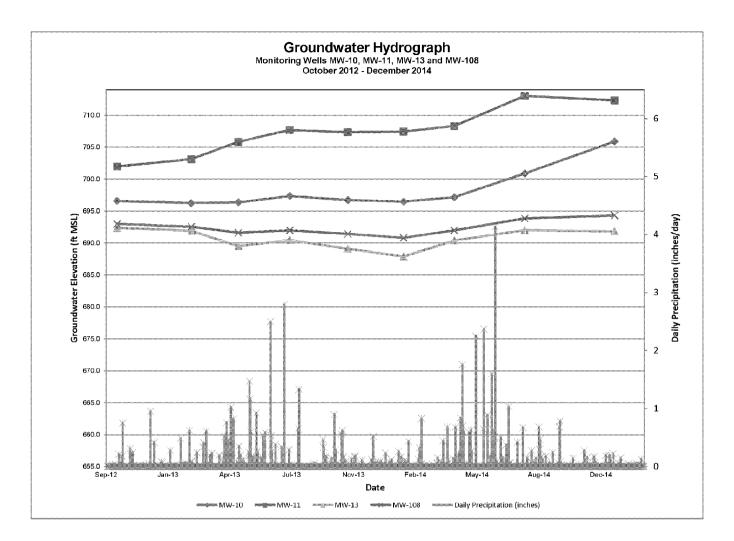
PORE SAMPLE DATA SHEET

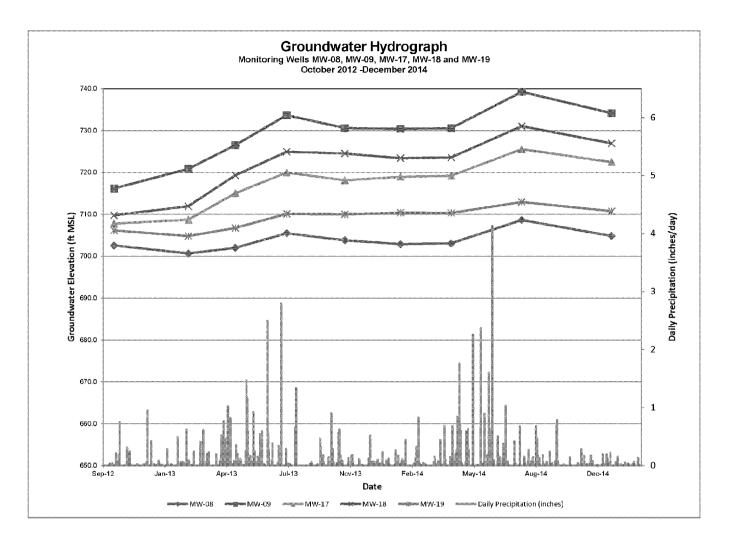
Project No.: 02181-002-179

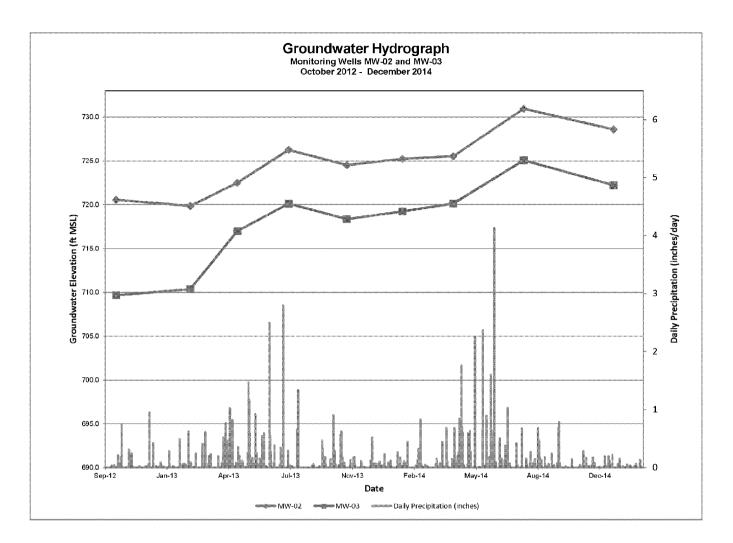

SAMPLE LOCATION	IW-25f		DATE:	9/29/2014		
Drainage System:	Mississippi River		County: Wash	ington	_State:	MN
GPS Latitude: 44.78153		GPS	Longitude: -92.89331			
Location Description: IW-25 transect I	ine					
Water Conditions:	() Low Turbidity	(X) Moderate Turk	idity () High Turbi	dity		
	Water Conditions	: ()Calm (X)Ch	oppy () Visible Cu	rent		
Weather Conditions:	Temp. 59	°F ()Sunny	(X)Cloudy (X)R	ain ()Windy		
SURFACE WATER						
Depth to Sediment:	7.7	ftbws	Sediment Bottom:	()Firm ()S	oft	
Water Sample Method: (X) Peristaltic	Pump					
		Wate	er Sample Data]
Sample Depths (ftbws)	Compos	ite (1. 54' and 6.16')			
Flow Rate (gallons per minute)		0.1 gpm			
Sample Date	<u>}</u>		09/29/2014			
Sample Time			16:40			
pH / SC / T ([°] C) / DO (mg/L)/ ORF	8.23	378	19.36	7.13 19	95	
Sample IE		CGMN-SV	V-MRIW25f-0-140929			
Duplicate IE		CGMN-SW	-MRIW25f-DB-140929			
Field matrix spike (1.0 ng/mL)	CGMN-SW-	MRIW25f-FMS-140929			
COMMENTS:						
PORE WATER						
Well Diameter (in)	1					
Depth to Sediment (ftbws)	7.7					
Depth to Top of Screen (ftbws)	nm					
Depth to Bottom of Screen (ft <u>bws)</u>	nm					
1 Probe Volume (gal)	0.68					
Purge Start (time)	nm					
Purge Stop (time)	nm					
	nm					
Well Purged Dry? (X) Yes () No						
Sample Method: (X) Peristaltic Pump						٦
		Wate	er Sample Data			-
Sample Depth Interval (ftbws	/		7.9'			-
Sample Date			10/01/2014			-
Sample Time		045	08:25	7.00		-
pH / SC / T (°C) / DO (mg/L)/ ORF		345	18.98	7.26 n	m	-
Sample ID			/-MRIW25f-0-141001			-
Duplicate IE			-MRIW25f-DB-141001			-
Field matrix spike (10 or 100 ng/mL COMMENTS:		Gray Clay; DTR: 1.0	WRIW25f-FMS-141001			J
		oray oray, DTR. 1.4				

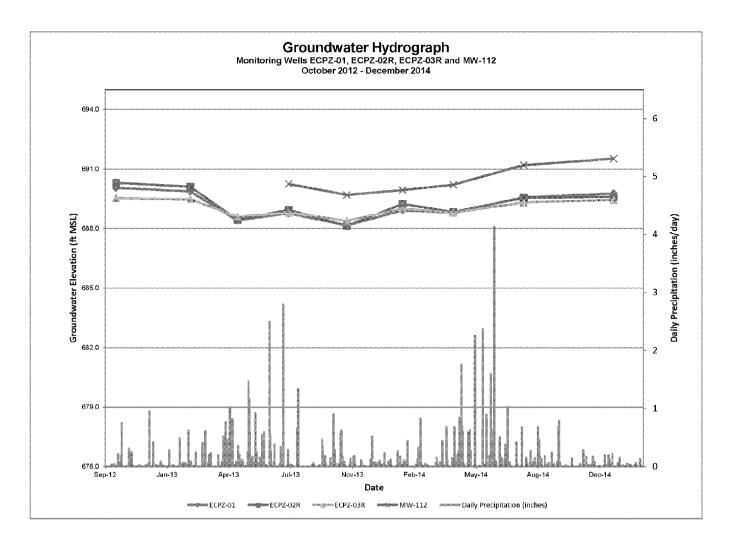

ATTACHMENT C HYDROGRAPHS FOR SITE MONITORING WELLS

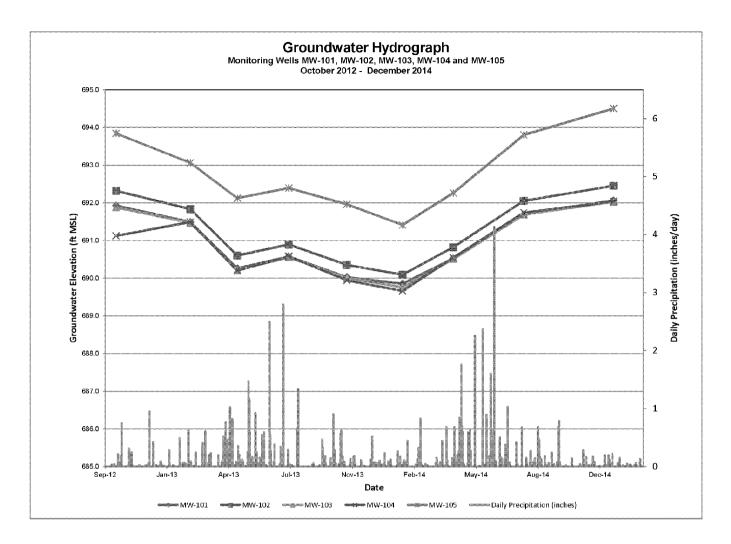
3M_MN01596021

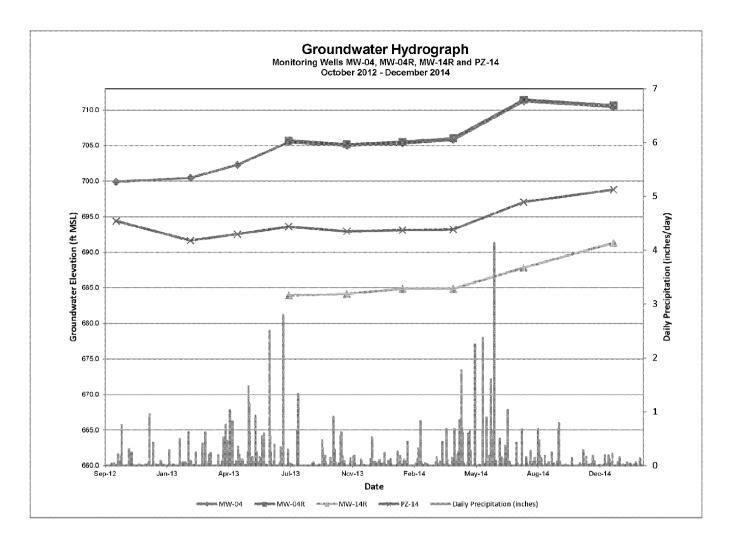

3630.0072


CGMN-CWELEVs-Hydrographs.xlsxMW-1,-5,-7 CHT


CGMN-GWELEVs-Hydrographs.xlsxMW-110, -15, -12 CHT


CGMN-GWELEVs-Hydrographs.xisxMW-10, -11, -13, -108 CHT


CGMN-GWELEVs-Hydrographs.xlsxNW-8, -9, -17, -18, -19 CHT


CGMN-GWELEVs-Hydrographs.xlsxMW-2, -3 CHT

CGMN-GWE_EVs-Hydrographs.xlsxECPZ-01, -02R, -03R, MW-112 CHT

CGM N-GWELEVs-Hydrographs.xlsxMW-101, -102, -103, -104, -105

CGMN-GWELEVs-Hydrographs.xlsxNW-4, -4R, 14R, PZ-14 CHT

ATTACHMENT D LABORATORY ANALYTICAL PACKAGES AND CHAIN-OF-CUSTODY DOCUMENTATION FOR GROUNDWATER SAMPLING EVENTS

JANUARY 2014

Final Report

Analysis of PFBA, PFOA, PFBS, PFHS, and PFOS in Aqueous Samples, Cottage Grove Groundwater Sampling 1st Quarter 2014

Laboratory Request Number: ISO11-01-03-13

Report Date - Date of Last Signature

Testing Laboratory

3M EHS&S Operations 3M Environmental Laboratory Building 260-5N-17 Maplewood, MN 55144-1000

Requester

Gary Hohenstein 3M EHS&S Operations 3M Building 224-5W-03 Saint Paul, MN 55144-1000 Phone: (651) 737-3570

The testing reported herein meet the requirements of ANSI/ISO/IEC 17025:2005 "General Requirements for the Competence of Testing and Calibration Laboratories", in accordance with A2LA Certificate # 2052.01. Additionally, the laboratory's quality system has been audited and was determined to be in conformance with the EPA GLPs (40 CFR 792) by an independent A2LA assessment.

PAGE 1 OF 39

3M_MN01596032

3M Environmental Laboratory

3M Environmental Laboratory Technical Director: William K. Reagen, Ph.D. 3M Principal Analytical Investigator: Susan Wolf Report Author: Kevin Eich

Analytical Report ISO11-01-03-13

Analysis of PFBA, PFOA, PFBS, PFHS, and PFOS in Aqueous Samples, Cottage Grove Groundwater Sampling – 1st Quarter 2014

Report Date: Date of Last Signature

1 Introduction/Summary

The 3M Environmental Laboratory prepared and analyzed groundwater samples collected by Weston Solutions personnel at the 3M Cottage Grove facility. Samples were collected on January 13, 14, 15, 16, and 22, 2014. Samples were returned to the 3M Environmental Laboratory on January 17, 2014 on ice and January 23, 2014 at room temperature for the analysis of Perfluorobutanoic acid (PFBA), Perfluorooctanoic acid (PFOA), Perfluorobutane sulfonate (PFBS), Perfluorohexane sulfonate (PFHS) and Perfluorooctane sulfonate (PFOS) under laboratory project number ISO11-01-03-13.

The 3M Environmental Laboratory prepared sample containers for twelve sampling locations. Each sample set consisted of a field sample, field sample duplicate, and a target analyte field matrix spike. Each empty container was marked with a "fill to here" line that corresponded to a final volume of 200 mL. Containers reserved for field matrix spikes were fortified with an appropriate matrix spike solution containing the target analytes prior to being sent to the field for sample collection. All sample bottles were fortified with internal standards and surrogate recovery standards prior to being sent to the field for sample collection.

Samples were prepared and analyzed for PFBA, PFOA, PFBS, PFHS, and PFOS using method ETS-8-044.1 "Method of Analysis for the Determination of Perfluorinated Compounds in Water by LC/MS/MS; Direct Injection Analysis". Internal standards were used to aid in the data quality objectives for the analysis of select samples, were applicable.

Table 1 summarizes the sample results using the analytical method identified above. All results for quality control samples prepared and analyzed with the samples will be reported and discussed elsewhere in this report.

The testing reported herein meet the requirements of ANSI/ISO/IEC 17025:2005 "General Requirements for the Competence of Testing and Calibration Laboratories", in accordance with A2LA Certificate # 2052.01. Additionally, the laboratory's quality system has been audited and was determined to be in conformance with the EPA GLPs (40 CFR 792) by an independent A2LA assessment.

PAGE 2 OF 39

3M_MN01596033

Table 1. Sample Results Summary ⁽¹⁾

			Conc	entration (ng	/mL)	
3M LIMS ID	Sample Description	PFBA	PFOA	PFBS	PFHS	PFOS
ISO11-01-03-13-001	CGMN-MW07-0-140113	3.01	0.407	<0.100	0.0508	0.104
ISO11-01-03-13-002	CGMN-MW07-DB-140113	2.75	0.373	<0.100	0.0386	0.104
	Average	2.88 ⁽²⁾	0.390(2)	<0.100 ⁽²⁾	0.0447 ⁽²⁾	0.104 ⁽²⁾
	%RPD Sample/Sample Dup	9.0	8.7	NA	27 ⁽³⁾	0.0
ISO11-01-03-13-004	CGMN-MW12-0-140116	327	682	85.4	14.1	129
ISO11-01-03-13-005	CGMN-MW12-DB-140116	297	653	78.8	12.1	113
	Average	312	668	82.1	13.1	121
	%RPD Sample/Sample Dup	9.6	4.3	8.0	15	13
ISO11-01-03-13-007	CGMN-MW13-0-140114	9.69	9.65	1.12	0.857	3.02
ISO11-01-03-13-008	CGMN-MW13-DB-140114	9.90	9.90	1.27	1.08	3.14
	9.80 ⁽²⁾	9.78 ⁽²⁾	1.20 ⁽²⁾	0.969 ⁽²⁾	3.08 ⁽²⁾	
	%RPD Sample/Sample Dup	2.1	2.6	13	23 ⁽³⁾	3.9
ISO11-01-03-13-010	CGMN-MW16-0-140114	43.4	93.1	41.1	5.51	51.0
ISO11-01-03-13-011	CGMN-MW16-DB-140114	42.3	88.9	38.8	5.52	55.2
	Average	42.9 ⁽²⁾	91.0 ⁽²⁾	40.0 ⁽²⁾	5.52 ⁽²⁾	53.1 ⁽²⁾
	%RPD Sample/Sample Dup	2.6	4.6	5.8	0.18	7.9
ISO11-01-03-13-013	CGMN-MW101-0-140115	1590	80.0	25.7	383	160
ISO11-01-03-13-014	CGMN-MW101-DB-140115	1430	78.7	25.1	413	158
	Average	1510	79.4	25.4	398	159
	%RPD Sample/Sample Dup	11	1.6	2.4	7.5	1.3
ISO11-01-03-13-016	CGMN-MW104-0-140115	194	35.1	7.34	14.4	4.22
ISO11-01-03-13-017	CGMN-MW104-DB-140115	210	35.0	7.65	13.9	4.27
	Average	202	35.1	7.50	14.2	4.25
	%RPD Sample/Sample Dup	7.9	0.29	4.1	3.5	1.2
ISO11-01-03-13-019	CGMN-MW105-0-140114	56.0	68.5	6.48	12.4	152
ISO11-01-03-13-020	CGMN-MW105-DB-140114	55.1	68.0	5.81	12.8	152
	Average	55.6	68.3	6.15	12.6	152
	%RPD Sample/Sample Dup	1.6	0.73	11	3.2	0.0
ISO11-01-03-13-022	CGMN-MW108-0-140114	48.9	171	18.1	4.19	33.2
ISO11-01-03-13-023	CGMN-MW108-DB-140114	54.2	166	15.9	4.06	33.7
	Average	51.6	169	17.0	4.13	33.5
	%RPD Sample/Sample Dup	10	3.0	13	3.2	1.5
ISO11-01-03-13-025	CGMN-MW110-0-140114	177	247	88.4	20.2	12.0
ISO11-01-03-13-026	CGMN-MW110-DB-140114	181	248	81.7	18.6	12.2
	Average	179	248	85.1	19.4	12.1
	%RPD Sample/Sample Dup	2.2	0.40	7.9	8.2	1.7

NA = Not Applicable

(1) Samples were reported by external standard calibration, except where noted. The analytical method uncertainties associated with the reported results by external standard calibration are as follows: PFBA ± 19%, PFOA ± 16%, PFBS ± 14%, PFHS ± 16%, and PFOS ± 20%.

(2) Samples were reported by internal standard calibration. The analytical method uncertainties associated with the reported results by internal standard calibration are as follows: PFBA ± 14%, PFOA ± 16%, PFBS ± 18%, PFHS ± 28%, and PFOS ± 16%.

(3) The sample/sample dup %RPD did not meet the method criteria of <20%.

PAGE 3 OF 39

3M_MN01596034

		Concentration (ng/mL)					
3M LIMS ID	Sample Description	PFBA	PFOA	PFBS	PFHS	PFOS	
ISO11-01-03-13-031	CGMN-PW09-0-140115	5.00	1.40	0.167	0.117	2.29	
ISO11-01-03-13-032	CGMN-PW09-DB-140115	4.52	1.26	0.178	0.101	1.97	
	Average		1.33 ⁽²⁾	0.173 ⁽²⁾	0.109 ⁽²⁾	2.13 ⁽²⁾	
	%RPD Sample/Sample Dup	10	11	6.4	15	15	
ISO11-01-03-13-034	CGMN-PW10-0-140122	4.03	0.223	0.254	0.0426	0.121	
ISO11-01-03-13-035	CGMN-PW10-DB-140122	4.77	0.200	0.268	0.0543	0.126	
	Average	4.40 ⁽²⁾	0.212 ⁽²⁾	0.261 ⁽²⁾	0.0485 ⁽²⁾	0.124	
	%RPD Sample/Sample Dup	17	11	5.4	24 ⁽³⁾	4.0	
ISO11-01-03-13-037	CGMN-MW14R-0-140113	300	137	17.3	12.1	25.0	
ISO11-01-03-13-038	CGMN-MW14R-DB-140113	289	141	17.7	12.4	24.8	
	Average	295	139	17.5	12.3	24.9	
	%RPD Sample/Sample Dup			2.3	2.4	0.80	

Table 1 continued. Sample Results Summary (1)

NA = Not Applicable

(1) Samples were reported by external standard calibration, except where noted. The analytical method uncertainties associated with the reported results by external standard calibration are as follows: PFBA ± 19%, PFOA ± 16%, PFBS ± 14%, PFHS ± 16%, and PFOS ± 20%.

(2) Samples were reported by internal standard calibration. The analytical method uncertainties associated with the reported results by internal standard calibration are as follows: PFBA ± 14%, PFOA ± 16%, PFBS ± 18%, PFHS ± 28%, and PFOS ± 16%.

(3) The sample/sample dup %RSD did not meet the method criteria of <20%.

2 Methods - Analytical and Preparatory

2.1 Methods

Analysis was completed following 3M Environmental Laboratory method ETS-8-044.1 "Method of Analysis for the Determination of Perfluorinated Compounds in Water by LC/MS/MS; Direct Injection Analysis".

	-	_ /		
lable	2.	larget	Analytes	

Target Analytes	Acronym	Reference Material Structure
Perfluorobutanoic Acid (C4 Acid)	PFBA	Linear
Perfluorooctanoic Acid (C8 Acid)	PFOA	Linear + Branched
Perfluorobutanesulfonate (C4 Sulfonate)	PFBS	Linear
Perfluorohexanesulfonate (C6 Sulfonate)	PFHS	Linear
Perfluorooctanesulfonate (C8 Sulfonate)	PFOS	Linear + Branched

2.2 Sample Collection

Samples were collected on January 13, 14, 15, 16, and 22, 2014 in Nalgene[™] (high-density polyethylene) bottles prepared at the 3M Environmental Laboratory. Prior to sample collection, bottles designated for field matrix spikes were spiked in the laboratory with a known volume of an appropriate matrix spiking solution containing the analytes of interest. Collected sample bottles were returned to the laboratory on ice on January 17, 2014 and at room temperature on January 23, 2014.

PAGE 4 OF 39

3M_MN01596035

2.3 Sample Preparation

Sample concentrations were expected to range from <0.025 ng/mL to >1000 ng/mL. Sampling locations that were expected to have concentration <100 ng/mL were analyzed by internal standard calibration analysis. Sampling locations that were expected to have concentration >100 ng/mL were analyzed by external standard calibration analysis. The following sample preparation procedures were followed for each type of analysis.

Internal standard calibration analysis: Samples analyzed by internal standard calibration were prepared by removing a 0.4 mL aliquot of the well mixed sample and diluting it with 0.4 mL of methanol (dilution factor of 2).

During the preparation of the laboratory control samples, an aliquot of a separate internal standard spiking solution was added to the laboratory control samples (nominal concentration of 1 ng/mL). The sample bottles were spiked with an internal standard mix at a nominal concentration of 1 ng/mL prior to being sent to the field for sample collection. The laboratory control samples were then diluted with methanol in the same manner as the samples.

External standard calibration analysis: Samples analyzed by external standard calibration required dilution prior to analysis. Samples requiring a 1:10 dilution were prepared by diluting 1 mL of a well-mixed sample with 9 mL of methanol. Samples requiring a 1:50 dilution were prepared by diluting 0.2 mL of a well-mixed sample with 9.8 mL of methanol.

2.4 Analysis

All samples and quality control samples were analyzed for five target analytes using high performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS). Pertinent instrument parameters, the liquid chromatography gradient program, and the specific mass transitions analyzed are described in the tables below.

Due to the nature of the sample, the wide range of concentrations found in the sample, and the environmental occurrence of multiple isomers of the laboratory's analytes of interest, the software used for processing the analytical results is not able to consistently integrate the analytical peak, manual integration of the analytical peak is necessary. All manual integrations are performed following the procedures outlined in method ETS-12-010. The consistency of the laboratory's integration is ensured through the training of laboratory personnel, the peer review process required for all manual integrations, the review of manual integrations by the QAU, and where necessary the review of manual integrations by laboratory management.

The following analytical runs were used to generate the reported results:

1/24/14 - Internal standard calibration; **MW07, MW13, MW16, PW09, Rinseate** and **Trip Blanks** (sample and low spike) for PFBA, PFOA, PFBS, PFHS, PFOS and surrogates.

1/28/14 - External standard calibration; **MW12, MW101, MW104, MW105, MW108, MW110, and Trip Blank high spike** for PFBA, PFOA, PFBS, PFHS, and PFOS; **MW14R** for PFOA, PFBS, PFHS, and PFOS.

1/30/14 - Internal standard calibration; PW10 for PFBA, PFOA, PFBS, PFHS, PFOS and surrogates.

1/31/14 - External standard calibration; MW14R for PFBA.

PAGE 5 OF 39

3M_MN01596036

Table 3. Instrument Parameters.

Instrument Name	ETS Buster			
Liquid Chromatograph	Agilent 1100			
Analysis Method	ETS-8-044.1			
Analysis Date	1/24/14, 1/28/14, 1/30/14, 1/31/14			
Guard column	Betasil C18 (4.6 mm X 100 mm), 5 μ			
Analytical column	Betasil C18 (4.6 mm X 100 mm), 5 μ			
Injection Volume	10, 30, 40 μL			
Mass Spectrometer	Applied Biosystems API 4000			
Ion Source	Turbo Spray			
Polarity	Negative			
Software	Analyst 1.6.1			

Table 4. Liquid Chromatography Gradient Program.

	ETS-8-044.1 Analysis							
Step Number	Step Iotai Iime Flow Rate		Percent A (2 mM ammonium acetate)	Percent B (Methanol)				
0	0.00	750	97.0	3.0				
1	0.50	750	97.0	3.0				
2	4.00	750	70.0	30.0				
3	6.00	750	70.0	30.0				
4	11.0	750	20.0	80.0				
5	13.0	750	20.0	80.0				
6	13.5	750	10.0	90.0				
7	16.0	750	10.0	90.0				
8	16.5	750	97.0	3.0				
9	19.0	750	97.0	3.0				

PAGE 6 OF 39

3M_MN01596037

Analyte	Mass Transition Q1/Q3	Internal Standard ⁽¹⁾	Mass Transition Q1/Q3	
PFBA	213/169	[¹³ C ₄]-PFBA	217/172	
PFOA	413/369			
	413/219	[¹³ C ₈]-PFOA	421/376	
	413/169			
	299/80	180 J DEDO	000/04	
PFBS	299/99	[¹⁸ O ₂]-PFBS	303/84	
PFHS	399/99		402/99	
	399/80	[¹³ C ₃]-PFHS		
	499/99			
PFOS	499/80	[¹³ C ₈]PFOS	507/80	
	499/130			
[¹³ C ₃]-PFBA	216/172	[¹³ C ₄]-PFBA	217/172	
[¹³ C ₄]-PFOA	417/372	[¹³ C ₈]-PFOA	421/376	
[¹³ C ₄]-PFOS	503/80	[¹³ C ₈]-PFOS	507/80	
	or 100 msec for each trans togram" (TIC), which was	sition. The individual transitions used for quantitation.	were summed to produ	

Table 5. Mass Transitions

(1) Internal standard was not used for the samples analyzed by solvent dilution external standard calibration.

3 Data Analysis

3.1 Calibration

Solvent dilution analysis using internal standard calibration: Samples were analyzed for all analytes against a matrix-matched stable isotope internal standard calibration curve. Calibration standards were prepared by spiking known amounts of stock solutions into 50 mL of 50:50 methanol:laboratory reagent water. The calibration standards contained an internal standard mix at a nominal concentration of 0.5 ng/mL. Calibration standards ranging from 0.0125 ng/mL to 50 ng/mL (nominal) were analyzed (0.0125 ng/mL to 10 ng/mL (nominal) for the SRSs). Low or high points may have been disabled to meet method criteria. A quadratic, 1/x weighted, calibration curve of the ratio of the standard peak area counts over the internal standard peak area counts was used to fit the data for each analyte. The data were not forced through zero during the fitting process. Calculating the standard concentrations using the peak area ratios and the resultant calibration curve confirmed accuracy of each curve point.

Solvent dilution analysis using external standard calibration: Samples were analyzed against an external standard calibration curve. Calibration standards were prepared by spiking known amounts of the stock solution into 50 mL of 90:10 methanol: laboratory Milli-Q[™] water. Calibration standards ranging from 0.1 ng/mL to 100 ng/mL (nominal) were analyzed. A quadratic, 1/x weighted, calibration curve of the standard peak area counts was used to fit the data for each analyte. Low or high points were disabled to meet method criteria. The data were not forced through zero during the fitting process. Calculating the standard concentrations using the peak area counts and the resultant calibration curve confirmed accuracy of each curve point.

For both method of analysis, each curve point was quantitated using the overall calibration curve and reviewed for accuracy. Method calibration accuracy requirements of $100\pm25\%$ ($100\pm30\%$ for the lowest curve point) were met for all analytes. The correlation coefficient (r) was greater than 0.995 for all analytes.

PAGE 7 OF 39

3M_MN01596038

3.2 System Suitability

A calibration standard was analyzed four times at the beginning of the analytical sequence to demonstrate overall system suitability. The acceptance criteria for system suitability samples of less than or equal to 5% relative standard deviation (RSD) for peak are counts or peak area ratio and retention time criteria of less than or equal to 2% RSD were met for all analytes with the following exceptions:

1/24/14 Analysis: The system suitability area counts exceeded 5% for PFBA (7.7%), PFBS (6.5%), and PFHS (6.3%).

1/30/14 Analysis: The system suitability area counts exceeded 5% PFBA (7.3%), PFBS (5.6%), and ${}^{13}C_4$ -PFOA (7.1%).

A method deviation is included with the raw data.

3.3 Limit of Quantitation (LOQ)

The LOQ as defined in method ETS-8-044.1 is the lowest non-zero calibration standard in the curve that meets linearity and accuracy requirements and for which the area counts are at least twice those of the appropriate blanks. The LOQs associated with the sample analysis are listed in the Table 6 below.

Analyte	LOQ, ng/mL ⁽¹⁾ 1/24/14 Analysis	LOQ, ng/mL ⁽²⁾ 1/28/14 Analysis		
PFBA	0.200	0.250	0.0500	0.250
PFOA	0.0480	0.0958	0.0240	NA
PFBS	0.100	0.100	0.0500	NA
PFHS	0.0250	0.100	0.0250	NA
PFOS	0.0232	0.0927	0.0232	NA

Table 6. LOQ

NA = Not Applicable

(1) A dilution factor of 2 was applied to the LOQ.

(2) A dilution factor was not applied to the LOQ.

3.4 Continuing Calibration

During the course of the analytical sequence, several continuing calibration verification samples (CCVs) were analyzed to confirm that the instrument response and the initial calibration curve were still in control. All reported results were bracketed by CCVs that met method acceptance criteria of 100%±25%.

3.5 Blanks

Three types of blanks were prepared and analyzed with the samples: method/solvent blanks, field/trip blanks, and sampling equipment blanks. Each blank result was reviewed and used to evaluate method performance. The method/solvent blanks were used to determine the LOQ for each analyte.

3.6 Lab Control Spikes (LCSs)

Low, mid, and high lab control spikes were prepared for the target analytes and analyzed in triplicate. LCSs prepared for internal standard calibration analysis were prepared by spiking known amounts of the analytes into 10 mL of laboratory reagent water to produce the desired concentration. The LCSs were then diluted in the same manner as the samples. LCSs prepared for external standard calibration analysis were prepared by spiking known amounts of the analytes into 1.0 mL of laboratory reagent water and 9.0 mL of methanol to produce the desired concentration. Method ETS-8-044.1 states that the average recovery of LCSs at each spiking level must be within 80%-120% with a RSD <20%. All LCS samples met criteria with the following exceptions:

- 1/24/14 internal standard analysis: The average recovery of the mid set of LCS for PFHS was 128%.
- 1/30/14 internal standard analysis: The average recovery of the low set of LCS for ¹³C₃-PFBA was 128%.

PAGE 8 OF 39

3M_MN01596039

A method deviation is included with the raw data for those LCSs that did not meet method acceptance criteria. All LCS samples were used in the determination of the analytical method uncertainty in section 3.7 of the report.

The following calculations were used to generate data in Table 7.

LCS Percent Recovery = $\frac{\text{Calculated Concentration}}{\text{Spike Concentration}} * 100\%$

 $LCS\% RSD = \frac{\text{standard deviation LCS replicates}}{\text{average LCS recovery}} * 100\%$

Table 7. Laboratory Control Spike Results.

ETS-8-044.1 Internal standard calibration							
Analyzed 1/24/14		PFBA		PFO	A (Linear + Branched)		
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	
LCS-140122-1	0.198	<0.200	NA	0.190	0.211	111	
LCS-140122-2	0.198	<0.200	NA	0.190	0.181	95 .1	
LCS-140122-3	0.198	<0.200	NA	0.190	0.178	93.4	
Average ± %RSD		NA		99.8% ± 9.7%			
LCS-140122-4	9.92	11.7	118	9.50	11.4	120	
LCS-140122-5	9.92	10.9	110	9.50	10.7	112	
LCS-140122-6	9.92	12.1	122	9.50	11.8	124	
Average ± %RSD		117% ± 5.2%			119% ± 5.1%		
LCS-140122-7	39.6	43.4	110	38.0	40.0	105	
LCS-140122-8	39.6	40.5	102	38.0	37.3	98.3	
LCS-140122-9	39.6	44.2	112	38.0	40.6	107	
Average ± %RSD		108% ± 4.9%			103% ± 4.4%		

NA = Not Applicable

(1) LCSs average recovery did not meet acceptance criteria of $100 \pm 20\%$.

PAGE 9 OF 39

3M_MN01596040

ETS-8-044.1 Internal standard calibration						
Analyzed 1/24/14	PFBS				PFHS	
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-140122-1	0.198	0.174	87.7	0.198	0.254	128
LCS-140122-2	0.198	0.200	101	0.198	0.237	120
LCS-140122-3	0.198	0.144	72.9	0.198	0.205	103
Average ± %RSD		87.2% ± 16%		117% ± 11%		
LCS-140122-4	9.92	11.8	118	9.92	13.7	138
LCS-140122-5	9.92	9.76	98.4	9.92	12.2	123
LCS-140122-6	9.92	10.5	106	9.92	12.1	122
Average ± %RSD		107% ± 9.2%			1 28% ± 7.0%⁽¹⁾	
LCS-140122-7	39.6	44.6	113	39.6	42.3	107
LCS-140122-8	39.6	39.3	99.2	39.6	46.3	117
LCS-140122-9	39.6	41.4	105	39.6	48.2	122
Average ± %RSD		106% ± 6.6%			115% ± 6.6%	

ETS-8-044.1 Internal standard calibration Analyzed 1/24/14	PFOS) (Linear + Branch	ed)
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-140122-1	0.184	0.188	102
LCS-140122-2	0.184	0.212	115
LCS-140122-3	0.184	0.208	113
Average ± %RSD		110% ± 6.4%	
LCS-140122-4	9.20	10.7	117
LCS-140122-5	9.20	9.45	103
LCS-140122-6	9.20	10.2	111
Average ± %RSD		110% ± 6.4%	
LCS-140122-7	36.7	40.9	111
LCS-140122-8	36.7	39.0	106
LCS-140122-9	36.7	39.3	107
Average ± %RSD		108% ± 2.4%	

NA = Not Applicable (1) LCSs average recovery did not meet acceptance criteria of $100 \pm 20\%$.

PAGE 10 OF 39

3M_MN01596041

ETS-8-044.1 Internal standard						
calibration Analvzed 1/24/14		¹³ C₃-PFBA			¹³ C₄-PFOA	
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-140122-1	0.197	0.231	117	0.198	0.252	127
LCS-140122-2	0.197	0.221	112	0.198	0.214	108
LCS-140122-3	0.197	0.231	117	0.198	0.214	108
Average ± %RSD		115% ± 2.5%		114% ± 9.6%		
LCS-140122-4	1.97	2.34	119	1.98	2.29	116
LCS-140122-5	1.97	2.11	107	1.98	2.43	123
LCS-140122-6	1.97	2.14	108	1.98	2.39	121
Average ± %RSD	111% ± 6.0%				120% ± 3.0%	

ETS-8-044.1 Internal standard calibration Analyzed 1/24/14		¹³ C₄-PFOS	
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-140122-1	0.189	0.222	117
LCS-140122-2	0.189	0.225	119
LCS-140122-3	0.189	0.235	125
Average ± %RSD		120% ± 3.5%	
LCS-140122-4	1.90	2.27	120
LCS-140122-5	1.90	2.13	112
LCS-140122-6	1.90	2.25	118
Average ± %RSD		117% ± 3.6%	

NA = Not Applicable (1) LCSs average recovery did not meet acceptance criteria of $100 \pm 20\%$.

PAGE 11 OF 39

3M_MN01596042

ETS-8-044.1						
External standard calibration						
Analyzed 1/28/14		PFBA		PFO	A (Linear + Branched)	
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-140128-1	1.00	0.980	98.0	0.958	0.923	96.3
LCS-140128-2	1.00	0.954	95 .4	0.958	0.890	92.9
LCS-140128-3	1.00	0.837	83.7	0.958	0.832	86.9
Average ± %RSD		92.4% ± 8.2%			92.0% ± 5.2%	
LCS-140128-4	10.0	10.6	106	9.58	9.52	99.3
LCS-140128-5	10.0	10.3	103	9.58	9.32	97.3
LCS-140128-6	10.0	9.87	98.7	9.58	9.42	98.3
Average ± %RSD		103% ± 3.6%			98.3% ± 1.0%	
LCS-140128-7	39.8	35.4	89.1	38.2	33.4	87.4
LCS-140128-8	39.8	37.6	94.5	38.2	33.9	88.8
LCS-140128-9	39.8	38.6	97.0	38.2	36.6	95.7
Average ± %RSD		93.5% ± 4.3%			90.6% ± 4.9%	

ETS-8-044.1						
External standard calibration						
Analyzed 1/28/14		PFBS			PFHS	
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-140128-1	1.00	0.986	98.6	1.00	1.05	105
LCS-140128-2	1.00	1.01	101	1.00	0.905	90.5
LCS-140128-3	1.00	0.929	92.9	1.00	0.925	92.5
Average \pm %RSD		97.5% ± 4.3%		96.0% ± 8.2%		
LCS-140128-4	10.0	10.1	101	10.0	10.7	107
LCS-140128-5	10.0	10.1	101	10.0	10.1	101
LCS-140128-6	10.0	10.2	102	10.0	10.0	100
Average ± %RSD	101% ± 0.57%			103% ± 3.7%		
LCS-140128-7	39.8	34.9	87.6	39.8	36.2	91.0
LCS-140128-8	39.8	36.9	92.7	39.8	37.9	95.3
LCS-140128-9	39.8	39.2	98.5	39.8	38.7	97 .1
Average \pm %RSD		92.9% ± 5.9%			94.5% ± 3.3%	

NA = Not Applicable (1) LCSs average recovery did not meet acceptance criteria of $100 \pm 20\%$.

PAGE 12 OF 39

3M_MN01596043

ETS-8-044.1 External standard calibration			
Analyzed 1/28/14	PFOS	(Linear + Branch	ed)
	Spiked	Calculated	
Lab ID	Concentration (ng/mL)	Concentration (ng/mL)	%Recovery
LCS-140128-1	0.927	0.880	94.9
LCS-140128-2	0.927	0.842	90.9
LCS-140128-3	0.927	0.808	87 .1
Average ± %RSD		91.0% ± 4.3%	
LCS-140128-4	9.27	8.85	95 .4
LCS-140128-5	9.27	8.84	9 5.4
LCS-140128-6	9.27	8.98	96.8
Average ± %RSD		95.9% ± 0.84%	
LCS-140128-7	36.9	32.8	88.8
LCS-140128-8	36.9	34.0	92.1
LCS-140128-9	36.9	36.1	97.9
Average ± %RSD		92.9% ± 5.0%	

ETS-8-044.1						
Internal standard calibration						
Analyzed 1/30/14		PFBA		PFO	A (Linear + Branched)	I
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-140130-1	0.198	0.242	122	0.190	0.188	98.9
LCS-140130-2	0.198	0.213	108	0.190	0.200	105
LCS-140130-3	0.198	0.233	118	0.190	0.218	115
Average ± %RSD		116% ± 6.2%		106% ± 7.6%		
LCS-140130-4	9.92	11.8	119	9.50	11.0	115
LCS-140130-5	9.92	11.1	112	9.50	9.87	104
LCS-140130-6	9.92	11.0	111	9.50	10.9	115
Average ± %RSD		114% ± 3.8%			111% ± 5.7%	
LCS-140130-7	39.6	42.9	108	38.0	41.0	108
LCS-140130-8	39.6	41.6	105	38.0	39.0	103
LCS-140130-9	39.6	45.7	116	38.0	38.9	102
Average ± %RSD		110% ± 5.2%			104% ± 3.1%	

NA = Not Applicable (1) LCSs average recovery did not meet acceptance criteria of $100 \pm 20\%$.

PAGE 13 OF 39

3M_MN01596044

ETS-8-044.1 Internal standard calibration						
Analyzed 1/30/14		PFBS			PFHS	
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-140130-1	0.198	0.228	115	0.198	0.182	92.2
LCS-140130-2	0.198	0.182	91.7	0.198	0.261	132
LCS-140130-3	0.198	0.176	88.7	0.198	0.238	120
Average ± %RSD		98.5% ± 15%		115% ± 18%		
LCS-140130-4	9.92	11.0	111	9.92	11.3	114
LCS-140130-5	9.92	11.0	111	9.92	10.4	105
LCS-140130-6	9.92	11.1	112	9.92	10.5	106
Average ± %RSD		111% ± 0.52%			108% ± 4.6%	
LCS-140130-7	39.6	38.4	97 .1	39.6	39.9	101
LCS-140130-8	39.6	37.9	95.6	39.6	44.0	111
LCS-140130-9	39.6	40.0	101	39.6	40.7	103
Average ± %RSD		97.9% ± 2.8%			105% ± 5.0%	

ETS-8-044.1 Internal standard calibration Analyzed 1/30/14	PFOS) (Linear + Branch)	ed)		
Lab ID	Spiked Calculated Concentration (ng/mL) %Recover				
LCS-140130-1	0.184	0.192	105		
LCS-140130-2	0.184	0.207	113		
LCS-140130-3	0.184	0.211	115		
Average ± %RSD		111% ± 4.8%			
LCS-140130-4	9.20	11.0	120		
LCS-140130-5	9.20	10.9	118		
LCS-140130-6	9.20	10.8	11 7		
Average ± %RSD		118% ± 1.3%			
LCS-140130-7	36.7	41.3	112		
LCS-140130-8	36.7	40.7	111		
LCS-140130-9	36.7	39.5	108		
Average ± %RSD		110% ± 1.9%			

NA = Not Applicable (1) LCSs average recovery did not meet acceptance criteria of $100 \pm 20\%$.

PAGE 14 OF 39

3M_MN01596045

ETS-8-044.1 Internal standard calibration						
Analyzed 1/30/14		¹³ C ₃ -PFBA			¹³ C ₄ -PFOA	
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-140130-1	0.197	0.236	120	0.198	0.217	109
LCS-140130-2	0.197	0.246	125	0.198	0.230	116
LCS-140130-3	0.197	0.274	139	0.198	0.262	132
Average ± %RSD		128% ± 7.7% ⁽¹⁾		119% ± 9.9%		
LCS-140130-4	1.97	2.36	120	1.98	2.22	112
LCS-140130-5	1.97	2.24	114	1.98	1.96	98.9
LCS-140130-6	1.97	2.20	112	1.98	2.33	118
Average ± %RSD		115% ± 3.6%			110% ± 8.9%	

ETS-8-044.1 Internal standard calibration		12	
Analyzed 1/30/14		¹³ C ₄ -PFOS	
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-140130-1	0.189	0.221	117
LCS-140130-2	0.189	0.207	109
LCS-140130-3	0.189	0.238	126
Average ± %RSD		117% ± 7.2%	
LCS-140130-4	1.90	2.02	106
LCS-140130-5	1.90	2.19	115
LCS-140130-6	1.90	2.08	110
Average ± %RSD		110% ± 4.1%	

NA = Not Applicable (1) LCSs average recovery did not meet acceptance criteria of $100 \pm 20\%$.

PAGE 15 OF 39

3M_MN01596046

ETS-8-044.1 External standard calibration			
Analyzed 1/31/14		PFBA	
	Spiked	Calculated	
Lab ID	Concentration (ng/mL)	Concentration (ng/mL)	%Recovery
LCS-140131-1	1.00	1.05	105
LCS-140131-2	1.00	0.985	98.5
LCS-140131-3	1.00	0.803	80.3
Average ± %RSD		94.6% ± 14%	
LCS-140131-4	10.0	9.94	99.4
LCS-140131-5	10.0	10.3	103
LCS-140131-6	10.0	10.4	104
Average ± %RSD		102% ± 2.4%	
LCS-140131-7	39.8	41.4	104
LCS-140131-8	39.8	39.2	98.6
LCS-140131-9	39.8	39.2	98.5
Average ± %RSD		100% ± 3.1%	

NA = Not Applicable

(1) LCSs average recovery did not meet acceptance criteria of $100 \pm 20\%$.

3.7 Analytical Method Uncertainty

Analytical uncertainty is based on historical QC data that is control charted and used to evaluate method accuracy and precision. The method uncertainty is calculated following ETS-12-012.2. The standard deviation is calculated for the set of accuracy results (in %) obtained for the QC samples. For method ETS-8-044.1, the most recent fifty QC samples were used. The expanded uncertainty is calculated by multiplying the standard deviation by a factor of 2, which corresponds to a confidence level of 95%.

The analytical method uncertainty as calculated by ETS-12-012.2 for PFHS by internal standard calibration was $\pm 24\%$. However, the recovery of the mid set of LCS analyzed on 1/24/14 was 128% for PFHS by internal standard calibration for the samples analyzed on this date. Therefore, the analytical method uncertainty was expanded for samples analyzed by internal standard calibration for PFHS to $\pm 28\%$.

Table 8. Analytical Method Uncertainty.

Analyte	Calibration	Standard Deviation (%)	Method Uncertainty
PFBA	Internal	7.15	±14%
PFOA	Internal	7.96	±16%
PFBS	Internal	8.90	±18%
PFHS	Internal	NA	±28%
PFOS	Internal	7.97	±16%
PFBA	External	9.59	±19%
PFOA	External	7.88	±16%
PFBS	External	7.15	±14%
PFHS	External	8.10	±16%
PFOS	External	9.99	±20%

NA = Not Applicable

PAGE 16 OF 39

3M_MN01596047

3.8 Field Matrix Spikes (FMS)

A target analyte field matrix spike sample was collected at each sampling point to verify that the analytical method is applicable for the collected matrix. Field matrix spikes are generated by adding a measured volume of field sample to a container spiked by the laboratory with the target analytes prior to shipping sample containers for sample collection. Field matrix spikes must be at least 50% of the analyte concentration to be considered an appropriate spike level. Field matrix spike recoveries within method acceptance criteria of 100±30% confirm that "unknown" components in the sample matrix do not significantly interfere with the preparation and analysis of the analytes of interest. The standards used for the preparation of the field matrix spiking solutions contained reference materials comprised of both linear and branched isomers for PFOS and only the linear isomer for PFOA. Field matrix spikes are presented in section 4 of this report.

 $FMS Recovery = \frac{(Sample Concentration of FMS - Average Concentration : Field Sample & Field Sample Dup.)}{Spike Concentration} * 100\%$

		Final Concentration (ng/mL)				
Location	Spike Level	PFBA	PFOA	PFBS	PFHS	PFOS
MW07, PW09, and PW10	FMS	2.00	1.92	2.00	2.00	1.85
MW13	FMS	5.00	4.79	5.00	5.00	4.64
MW16	FMS	24.9	24.8	25.0	25.0	25.0
MW101, MW104, MW105, MW108, MW110, and MW14R	FMS	99.4	99.2	100	100	99.8
MW12	FMS	497	496	500	500	499
	Low	2.00	1.92	2.00	2.00	1.85
Trip Blank	High	99.4	99.2	100	100	99.8

Table 9. Field and Lab Matrix Spike Concentrations

3.9 Lab Matrix Spikes (LMS)

The field matrix spike level prepared for location MW14R was not sufficient for PFBA. Since this was the first sampling of this location, a laboratory matrix spike (LMS) sample was prepared for PFBA to verify that the analytical method is applicable to the collected matrix. The LMS sample was generated by adding a measured volume of standard solution to an aliquot of the primary sample. Since the MW14R samples required dilution prior to sample analysis, the spike amount added was based on the on-column instrument concentration. The actual spike concentration for PFBA is presented in Table 10.

LMS recoveries within method acceptance criteria of 100±30% confirm that "unknown" components in the sample matrix do not significantly interfere with the extraction and analysis of the analytes of interest. LMS concentrations must be 50% of the sample concentration to be considered an appropriate field spike. LMSs are presented in section 4 of this report.

The following calculation was used to calculate the lab matrix spike recovery in Section 4 of the report:

LMS Recovery = (<u>Sample Concentration of LMS – Average Concentration : Field Sample & Field Sample Dup.</u>) * 100% Spike Concentration

Table 10. Lab Matrix Spike Levels.

Sampling Location	PFBA Final Concentration (ng/mL)
MW14R	297

PAGE 17 OF 39

3M_MN01596048

4 Data Summary and Discussion

The tables below summarize the sample results and field matrix spike recoveries for sampling locations as well as the Trip Blank. Each table provides the average concentration and the relative percent difference (%RPD) of the sample and sample duplicate. Results and average values are rounded to three significant figures. Percent relative difference (%RPD) values are rounded to two significant figures. Because of rounding, values vary slightly from those listed in the raw data. Field matrix spikes meeting the method acceptance criteria of ±30%, demonstrate that the method is appropriate for the given matrix.

All field matrix spike and surrogate recovery spikes (where applicable) met method acceptance criteria with the following exceptions:

CGMN GW MW13: The FMS level was not appropriate for PFOA. The FMS spike met method acceptance criteria for the other target analytes and surrogate recoveries met method acceptance criteria. No additional QC samples were prepared for PFOA.

CGMN GW MW16: The FMS level was not appropriate for PFOA and PFOS. The FMS spike met method acceptance criteria for the other target analytes and surrogate recoveries met method acceptance criteria. No additional QC samples were prepared for PFOA and PFOS.

CGMN GW MW101: The FMS level was not appropriate for PFBA and PFHS. The FMS spike met method acceptance criteria for the other target analytes. No additional QC samples were prepared for PFBA and PFHS.

CGMN GW MW110: The FMS level was not appropriate for PFOA. The FMS spike met method acceptance criteria for the other target analytes. No additional QC samples were prepared for PFOA.

CGMN GW PW09: The FMS level was not appropriate for PFBA. The FMS spike met method acceptance criteria for the other target analytes and surrogate recoveries met method acceptance criteria. No additional QC samples were prepared for PFBA.

CGMN GW PW10: The FMS level was not appropriate for PFBA. The FMS spike met method acceptance criteria for the other target analytes and surrogate recoveries met method acceptance criteria. No additional QC samples were prepared for PFBA.

CGMN GW MW14R: The FMS level was not appropriate for PFBA. The FMS spike met method acceptance criteria for the other target analytes and an additional laboratory matrix spike was prepared and met method acceptance criteria for PFBA.

PAGE 18 OF 39

3M_MN01596049

Table 11. CGMN GW MW07 140113

			PFBA		A
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-13-001	CGMN-MW07-0-140113	3.01	NA	0.407	NA
ISO11-01-03-13-002	CGMN-MW07-DB-140113	2.75	NA	0.373	NA
ISO11-01-03-13-003	CGMN-MW07-FMS-140113	5.04	108	2.35	102
Average Concentration (ng/mL) ± %RPD		2.88 ng/ml	. ± 9.0%	0.390 ng/m	L±8.7%

		PFBS		PFHS		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-13-001	CGMN-MW07-0-140113	<0.100	NA	0.0508	NA	0.104	NA
ISO11-01-03-13-002	CGMN-MW07-DB-140113	<0.100	NA	0.0386	NA	0.104	NA
ISO11-01-03-13-003	CGMN-MW07-FMS-140113	2.08	104	2.09	102	1.82	92.6
Average Concentration (ng/mL) ± %RPD		<0.100 r	ng/mL	0.0447 ng/m	L±27% ⁽¹⁾	0.104 ng/r	nL ± 0.0%

		¹³ C ₃ -PFBA	¹³ C₄-PFOA	¹³ C ₄ -PFOS
3M LIMS ID	Description	%Recoverv	%Recovery	%Recovery
ISO11-01-03-13-001	CGMN-MW07-0-140113	105	99.4	112
ISO11-01-03-13-002	CGMN-MW07-DB-140113	99.1	98.6	85.4
ISO11-01-03-13-003	CGMN-MW07-FMS-140113	92.8	112	97.0
Average Recovery (%) ± %RSD		98.8% ± 6.0%	103% ± 7.3%	98.2% ± 14%

NA = Not Applicable Samples were diluted 1:1 with methanol and analyzed by internal standard calibration. (1) Sample/sample duplicate %RPD did not meet method acceptance criteria of <20%.

PAGE 19 OF 39

Table 12. CGMN GW MW12 140116

		PFB	PFBA		A
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-13-004	CGMN-MW12-0-140116	327	NA	682	NA
ISO11-01-03-13-005	CGMN-MW12-DB-140116	297	NA	653	NA
ISO11-01-03-13-006	CGMN-MW12-FMS-140116	866	111	1190	105
Average Concentration (ng/mL) ± %RPD		312 ng/ml	±9.6%	668 ng/ml	. ± 4.3%

		PFE	s	PFF	IS	PFC	os
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-13-004	CGMN-MW12-0-140116	85.4	NA	14.1	NA	129	NA
ISO11-01-03-13-005	CGMN-MW12-DB-140116	78.8	NA	12.1	NA	113	NA
ISO11-01-03-13-006	CGMN-MW12-FMS-140116	588	101	505	98.4	614	98.8
Average Concentration (ng/mL) ± %RPD		82.1 na/m	L ± 8.0%	13.1 na/m	L ± 15%	121 na/m	L ± 13%

NA = Not Applicable Samples were diluted 1:50 and analyzed by external standard calibration.

PAGE 20 OF 39

Table 13. CGMN GW MW13 140114

	PFBA		PFBA		A
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-13-007	CGMN-MW13-0-140114	9.69	NA	9.65	NA
ISO11-01-03-13-008	CGMN-MW13-DB-140114	9.90	NA	9.90	NA
ISO11-01-03-13-009	CGMN-MW13-FMS-140114	13.8	80.1	13.4	NC
Average 0	Concentration (ng/mL) ± %RPD	9.80 ng/ml	L ± 2.1%	9.78 ng/ml	L ± 2.6%

		PFB	S	PFF	IS	PFC	os
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-13-007	CGMN-MW13-0-140114	1.12	NA	0.857	NA	3.02	NA
ISO11-01-03-13-008	CGMN-MW13-DB-140114	1.27	NA	1.08	NA	3.14	NA
ISO11-01-03-13-009	CGMN-MW13-FMS-140114	6.54	107	6.03	101	7.53	96.0
Average Concentration (ng/mL) ± %RPD		1.20 ng/m	L ± 13%	0.969 ng/m	L ± 23% ⁽¹⁾	3.08 ng/m	L ± 3.9%

		¹³ C ₃ -PFBA	¹³ C₄-PFOA	¹³ C ₄ -PFOS
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery
ISO11-01-03-13-007	CGMN-MW13-0-140114	103	108	89.9
ISO11-01-03-13-008	CGMN-MW13-DB-140114	96.8	118	97.7
ISO11-01-03-13-009	CGMN-MW13-FMS-140114	88.3	98.3	94.3
Aver	95.9% ± 7.4%	108% ± 9.1%	94.0% ± 4.1%	

NA = Not Applicable
 NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration.
 Samples were diluted 1:1 with methanol and analyzed by internal standard calibration.
 (1) Sample/sample duplicate %RPD did not meet method acceptance criteria of <20%.

PAGE 21 OF 39

Table 14. CGMN GW MW16 140114

		PFBA PFOA		A	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-13-010	CGMN-MW16-0-140114	43.4	NA	93.1	NA
ISO11-01-03-13-011	CGMN-MW16-DB-140114	42.3	NA	88.9	NA
ISO11-01-03-13-012	CGMN-MW16-FMS-140114	63.2	81.9	>ULOQ	NC
Average Concentration (ng/mL) ± %RPD		42.9 ng/ml	_ ± 2.6%	91.0 ng/ml	L ± 4.6 %

		PFBS		PFHS		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-13-010	CGMN-MW16-0-140114	41.1	NA	5.51	NA	51.0	NA
ISO11-01-03-13-011	CGMN-MW16-DB-140114	38.8	NA	5.52	NA	55.2	NA
ISO11-01-03-13-012	CGMN-MW16-FMS-140114	65.3	101	32.8	109	78.0	NC
Average Concentration (ng/mL) ± %RPD		40.0 ng/ml	± 5.8%	5.52 ng/mL	± 0.18%	53.1 ng/m	L ± 7.9%

		¹³ C ₃ -PFBA	¹³ C ₄ -PFOA	¹³ C₄-PFOS
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery
	Description	70necovery	ARECOVERY	/onecovery
ISO11-01-03-13-010	CGMN-MW16-0-140114	92.7	91.0	75.3
ISO11-01-03-13-011	CGMN-MW16-DB-140114	88.9	95.3	88.8
ISO11-01-03-13-012	CGMN-MW16-FMS-140114	80.0	101	95.8
Aven	87.2% ± 7.5%	95.8% ± 5.2%	86.6% ± 12%	

NA = Not Applicable NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration. Samples were diluted 1:1 with methanol and analyzed by internal standard calibration.

PAGE 22 OF 39

Table 15. CGMN GW MW101 140115

		PFB	3A	PFOA		
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	
ISO11-01-03-13-013	CGMN-MW101-0-140115	1590	NA	80.0	NA	
ISO11-01-03-13-014	CGMN-MW101-DB-140115	1430	NA	78.7	NA	
ISO11-01-03-13-015	CGMN-MW101-FMS-140115	1530	NC	164	85.3	
Average Concentration (ng/mL) ± %RPD		1510 ng/m	i∟±11%	79.4 ng/mL ± 1.6%		

		PFE	s	PFF	IS	PFC	os
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-13-013	CGMN-MW101-0-140115	25.7	NA	383	NA	160	NA
ISO11-01-03-13-014	CGMN-MW101-DB-140115	25.1	NA	413	NA	158	NA
ISO11-01-03-13-015	CGMN-MW101-FMS-140115	117	91.6	477	NC	240	81.2
Average Concentration (ng/mL) ± %RPD		25.4 ng/m	L ± 2.4%	398 na/ml	±7.5%	159 ng/m	L ± 1.3%

NA = Not Applicable NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration. Samples were diluted 1:50 and analyzed by external standard calibration.

PAGE 23 OF 39

Table 16. CGMN GW MW104 140115

		PFB	A	PFOA		
3M LIMS ID	Description	Concentration (ng/mL) %Recovery		Concentration (ng/mL)	%Recovery	
ISO11-01-03-13-016	CGMN-MW104-0-140115	194	NA	35.1	NA	
ISO11-01-03-13-017	CGMN-MW104-DB-140115	210	NA	35.0	NA	
ISO11-01-03-13-018	CGMN-MW104-FMS-140115	285	83.5	129	94.7	
Average Concentration (ng/mL) ± %RPD		202 ng/mL	±7.9%	35.1 ng/mL	. ± 0.29%	

		PFBS		PFHS		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-13-016	CGMN-MW104-0-140115	7.34	NA	14.4	NA	4.22	NA
ISO11-01-03-13-017	CGMN-MW104-DB-140115	7.65	NA	13.9	NA	4.27	NA
ISO11-01-03-13-018	CGMN-MW104-FMS-140115	111	104	114	99.9	96.2	92.1
Average Concentration (ng/mL) ± %RPD		7.50 ng/ml	L ± 4 .1%	14.2 ng/ml	L ± 3.5%	4.25 na/ml	_±1.2%

NA = Not Applicable Samples were diluted 1:10 and analyzed by external standard calibration.

PAGE 24 OF 39

Table 17. CGMN GW MW105 140114

		PFB	A	PFOA		
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	
ISO11-01-03-13-019	CGMN-MW105-0-140114	56.0	NA	68.5	NA	
ISO11-01-03-13-020	CGMN-MW105-DB-140114	55.1	NA	68.0	NA	
ISO11-01-03-13-021	CGMN-MW105-FMS-140114	152	97.0	156	88.5	
Average Concentration (ng/mL) ± %RPD		55.6 ng/ml	L ± 1.6%	68.3 ng/mL ± 0.73%		

		PFBS		PFHS		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-13-019	CGMN-MW105-0-140114	6.48	NA	12.4	NA	152	NA
ISO11-01-03-13-020	CGMN-MW105-DB-140114	5.81	NA	12.8	NA	152	NA
ISO11-01-03-13-021	CGMN-MW105-FMS-140114	101	94.9	106	93.4	244	92.2
Average Concentration (ng/mL) ± %RPD		6.15 na/m	L ± 11%	12.6 ng/m	⊥ ± 3.2%	152 na/m	L ± 0.0%

NA = Not Applicable Samples were diluted 1:10 and analyzed by external standard calibration.

PAGE 25 OF 39

Table 18. CGMN GW MW108 140114

		PFB	PFBA		A
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-13-022	CGMN-MW108-0-140114	48.9	NA	171	NA
ISO11-01-03-13-023	CGMN-MW108-DB-140114	54.2	NA	166	NA
ISO11-01-03-13-024	CGMN-MW108-FMS-140114	141	90.0	264	96.3
Average Concentration (ng/mL) ± %RPD		51.6 ng/m	L±10%	0% 169 ng/mL ± 3.0%	

		PFBS		PFHS		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-13-022	CGMN-MW108-0-140114	18.1	NA	4.19	NA	33.2	NA
ISO11-01-03-13-023	CGMN-MW108-DB-140114	15.9	NA	4.06	NA	33.7	NA
ISO11-01-03-13-024	CGMN-MW108-FMS-140114	124	107	106	102	134	101
Average Concentration (ng/mL) ± %RPD		17.0 ng/m	L ± 13%	4.13 na/ml	± 3.2%	33.5 na/m	L ± 1.5%

NA = Not Applicable Samples were diluted 1:10 and analyzed by external standard calibration.

PAGE 26 OF 39

Table 19. CGMN GW MW110 140114

		PFB	3A	PFOA	
3M LIMS ID	Description	Concentration (ng/mL)			%Recovery
ISO11-01-03-13-025	CGMN-MW110-0-140114	177	NA	247	NA
ISO11-01-03-13-026	CGMN-MW110-DB-140114	181	NA	248	NA
ISO11-01-03-13-027	CGMN-MW110-FMS-140114	305	127	340	NC
Average Concentration (ng/mL) ± %RPD		179 ng/ml	179 ng/mL ± 2.2%		± 0.40%

			s	PFHS		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-13-025	CGMN-MW110-0-140114	88.4	NA	20.2	NA	12.0	NA
ISO11-01-03-13-026	CGMN-MW110-DB-140114	81.7	NA	18.6	NA	12.2	NA
ISO11-01-03-13-027	CGMN-MW110-FMS-140114	192	107	125	106	106	94.1
Average Concentration (ng/mL) ± %RPD		85.1 ng/ml	L ± 7.9%	19.4 na/mi	⊥±8.2%	12.1 na/m	L ± 1.7%

NA = Not Applicable NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration. Samples were diluted 1:10 and analyzed by external standard calibration.

PAGE 27 OF 39

Table 20. CGMN GW PW09 140115

	-	PFB	PFBA		A
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-13-031	CGMN-PW09-0-140115	5.00	NA	1.40	NA
ISO11-01-03-13-032	CGMN-PW09-DB-140115	4.52	NA	1.26	NA
ISO11-01-03-13-033	CGMN-PW09-FMS-140115	7.30	NC	2.90	81.9
Average Concentration (ng/mL) ± %RPD		4.76 ng/m	L ± 10%	1.33 ng/m	L±11%

		PFBS		PFHS		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-13-031	CGMN-PW09-0-140115	0.167	NA	0.117	NA	2.29	NA
ISO11-01-03-13-032	CGMN-PW09-DB-140115	0.178	NA	0.101	NA	1.97	NA
ISO11-01-03-13-033	CGMN-PW09-FMS-140115	2.23	103	2.27	108	4.08	105
Average Concentration (ng/mL) ± %RPD		0.173 ng/m	L±6.4%	0.109 ng/m	L±15%	2.13 ng/m	iL ± 15%

		¹³ C₄-PFOA	¹³ C₄-PFOS
Description	%Recovery	%Recovery	%Recovery
•			98.5
			90.4 110
			99.6% ± 9.9%
	Description CGMN-PW09-0-140115 CGMN-PW09-DB-140115 CGMN-PW09-FMS-140115 age Recovery (%) ± %RSD	CGMN-PW09-0-140115 84.0 CGMN-PW09-DB-140115 90.3 CGMN-PW09-FMS-140115 101	Description %Recovery %Recovery CGMN-PW09-0-140115 84.0 103 CGMN-PW09-DB-140115 90.3 99.5 CGMN-PW09-FMS-140115 101 96.6

NA = Not Applicable NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration. Samples were diluted 1:1 with methanol and analyzed by internal standard calibration.

PAGE 28 OF 39

Table 21. CGMN GW PW10 140115

	-	PFBA		PFOA	
3M LIMS ID	Description	Concentration (ng/mL) %Recovery		Concentration (ng/mL)	%Recovery
ISO11-01-03-13-034	CGMN-PW10-0-140122	4.03	NA	0.223	NA
ISO11-01-03-13-035	CGMN-PW10-DB-140122	4.77	NA	0.200	NA
ISO11-01-03-13-036	CGMN-PW10-FMS-140122	6.79	NC	2.23	105
Average Concentration (ng/mL) ± %RPD		4.40 ng/m	L±17%	0.212 ng/m	L±11%

		PFBS		PFHS		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-13-034	CGMN-PW10-0-140122	0.254	NA	0.0426	NA	0.121	NA
ISO11-01-03-13-035	CGMN-PW10-DB-140122	0.268	NA	0.0543	NA	0.126	NA
ISO11-01-03-13-036	CGMN-PW10-FMS-140122	2.53	113	1.89	92.1	1.99	101
Average Concentration (ng/mL) ± %RPD		0.261 ng/m	∟±5.4%	0.0485 ng/m	L±24% ⁽¹⁾	0.124 ng/m	ıL±4.0%

		¹³ C ₃ -PFBA	¹³ C₄-PFOA	¹³ C ₄ -PFOS
3M LIMS ID	Description	%Recovery	%Recoverv	%Recoverv
	Description	/orcecovery	/arecovery	76Recovery
ISO11-01-03-13-034	CGMN-PW10-0-140122	99.6	116	83.4
ISO11-01-03-13-035	CGMN-PW10-DB-140122	102	89.1	73.7
ISO11-01-03-13-036	CGMN-PW10-FMS-140122	99.6	95.0	103
Aver	age Recovery (%) ± %RSD	100% ± 1.1%	100% ± 14%	86.6% ± 17%

NA = Not Applicable NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration. Samples were diluted 1:1 with methanol and analyzed by internal standard calibration. (1) Sample/sample duplicate %RPD did not meet method acceptance criteria of <20%.

PAGE 29 OF 39

Table 22. CGMN GW MW14R 140113

		PFB	A	PFOA	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-13-037	CGMN-MW14R-0-140113	300	NA	137	NA
ISO11-01-03-13-038	CGMN-MW14R-DB-140113	289	NA	141	NA
ISO11-01-03-13-039	CGMN-MW14R-FMS-140113	361	NC	227	88.7
ISO11-01-03-13-037	CGMN-MW14R-0-140113 LMS	551	86.3	NA	NA
Average Concentration (ng/mL) ± %RPD		295 ng/mL	± 3.7%	139 ng/ml	. ± 2.9%

		PFBS		PFHS		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-13-037	CGMN-MW14R-0-140113	17.3	NA	12.1	NA	25.0	NA
ISO11-01-03-13-038	CGMN-MW14R-DB-140113	17.7	NA	12.4	NA	24.8	NA
ISO11-01-03-13-039	CGMN-MW14R-FMS-140113	117	99.5	114	102	120	95.3
Average Concentration (ng/mL) ± %RPD		17.5 ng/ml	L±2.3%	12.3 ng/ml	L±2.4%	24.9 ng/ml	± 0.80%

NA = Not Applicable NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration. Samples were diluted 1:10 and analyzed by external standard calibration.

PAGE 30 OF 39

Table 23. CGMN GW MW104-RB 140115 and TRIP BLANKS

	-	PFBA		PFOA	
3M LIMS ID	Description	Concentration (ng/mL) %Recovery		Concentration (ng/mL)	%Recovery
ISO11-01-03-13-043	CGMN-GW-MW104-RB-740115	<0.200	NA	0.227	NA
ISO11-01-03-13-040	CGMN-TRIP-0-140113	<0.200	NA	<0.0480	NA
ISO11-01-03-13-041	CGMN-TRIP-LS-140113	2.23	112	1.90	99.2
ISO11-01-03-13-042	CGMN-TRIP-HS-140113	99.7	100	95.0	95.8

		PFBS		PFHS		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-13-043	CGMN-GW-MW104-RB-140115	<0.100	NA	<0.0250	NA	0.235	NA
ISO11-01-03-13-040	CGMN-TRIP-0-140113	<0.100	NA	<0.0250	NA	<0.0232	NA
ISO11-01-03-13-041	CGMN-TRIP-LS-140113	1.72	86.0	2.50	125	1.75	94.4
ISO11-01-03-13-042	CGMN-TRIP-HS-140113	106	106	102	102	102	102

	¹³ C ₃ -PFBA	¹³ C₄-PFOA	¹³ C₄-PFOS	
	-			
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery
ISO11-01-03-13-043	CGMN-GW-MW104-RB-140115	99.0	93.3	102
ISO11-01-03-13-040	CGMN-TRIP-0-140113	86.2	98.0	97.6
ISO11-01-03-13-041	CGMN-TRIP-LS-140113	97.5	96.4	107

NA = Not Applicable Samples were diluted 1:1 and analyzed by internal standard calibration with the exception of the TRIP HS, which was diluted 1:10 and analyzed by external standard calibration.

PAGE 31 OF 39

5 Conclusion

Laboratory control spikes were used to determine the analytical method accuracy and precision for all analytes. The accuracy and precision were then used to estimate the method uncertainty for the results. Field matrix spike recoveries demonstrated that the analytical method was appropriate for the given sample matrix except where noted. In those instances where the field matrix spike recovery did not meet method acceptance criteria, the method uncertainty has been adjusted accordingly. Analysis was completed using 3M Environmental Laboratory method ETS-8-044.1 "Method of Analysis for the Determination of Perfluorinated Compounds in Water by LC/MS/MS; Direct Injection Analysis". Analytical results are reported in Tables 1 and 11-23 of this report.

6 Data / Sample Retention

All remaining sample and associated project data (hardcopy and electronic) will be archived according to 3M Environmental Laboratory standard operating procedures.

7 Attachments

Appendix A: Target Analyte Historical Trend Data for Cottage Grove Monitoring Wells MW07, MW12, MW13, MW16, MW101, MW104, MW105, MW108, MW110, PW09, and PW10.

PAGE 32 OF 39

8 Signatures

Digitally signed by Susan T. Wolf DN: c=US, st=MN, I=St. Paul, cu=3M Environmental Laboratory - authenticated by LRA, email=stwolf@mmm.com, o=3M, cn=Susan T. Wolf Reason: I are the author of this document Date: 2014.02.18 11:50:28 -06'00'

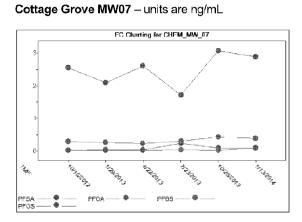
Susan T. Wolf, 3M Principal Analytical Investigator

2-All

Digitally signed by William K. Reagen DN: c=US, st=MN, I=St. Paui, ou=Laboratory Director, ou=3M Environmental Laboratory authenticated by LRA, email=wkreagen@mmm.com, o=3M, cn=William K. Reagen Reason: I am approving this document Date: 2014.02.18 13:16:54 -06'00'

William K. Reagen, Ph.D., 3M Environmental Laboratory Technical Director

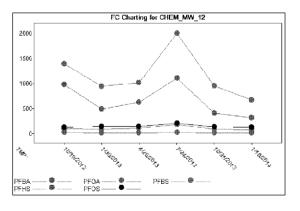
The 3M Environmental Laboratory's Quality Assurance Unit has audited the data and report for this project.


Casey Konell

Digitally signed by Casey Howell DN: c=US, st=MN, I=St. Paul, ou=Quality Assurance Unit ou=3M Environmental Laboratory - authenticated by LRA, email-chowell@mmm.com, c=3M, cn=Casey Howell Reason: I agree to the terms defined by the placement of my signature on this document Date: 2014.02.19 09:46:41-06'00'

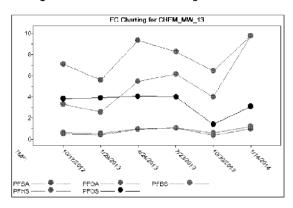
Quality Assurance Representative

This test report shall not be reproduced except in full, without written approval of the 3M Environmental Laboratory.


PAGE 33 OF 39

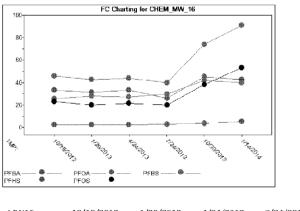
10/15/2012	1/29/2013	4/22/2013	7/23/2013	10/28/2013	1/13/2014
2.55	2.09	2.61	1.71	3.07	2.88
0.298	0.259	0.240	0.303	0.428	0.390
<0.0250	<0.0250	0.0268	0.0396	0.0291	<0.100
0.0257	0.0439	0.0459	0.241	0.104	0.104
	2.55 0.298 <0.0250	2.55 2.09 0.298 0.259 <0.0250	2.55 2.09 2.61 0.298 0.259 0.240 <0.0250	2.55 2.09 2.61 1.71 0.298 0.259 0.240 0.303 <0.0250	2.55 2.09 2.61 1.71 3.07 0.298 0.259 0.240 0.303 0.428 <0.0250

Samples were below the limit of quantitation for PFHS.


Cottage Grove MW12 - units are ng/mL

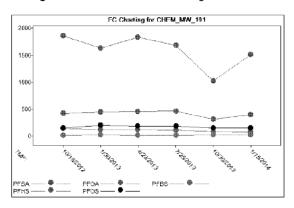
MW12	10/19/2012	1/30/2013	4/25/2013	7/24/2013	10/31/2013	1/16/2014
PFBA	975	484	622	1110	408	312
PFOA	1390	946	1020	2000	954	668
PFBS	94.3	91.4	105	175	87.7	82.1
PFHS	20.9	13.7	16.4	23.9	13.0	13.1
PFOS	122	143	145	204	131	121

PAGE 34 OF 39


3M_MN01596065

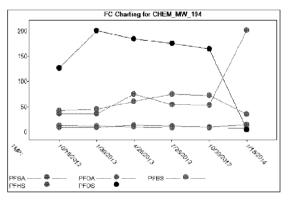
Cottage Grove MW13 - units are ng/mL

MW13	10/17/2012	1/29/2013	4/24/2013	7/23/2013	10/30/2013	1/14/2014
PFBA	7.10	5.60	9.34	8.30	6.48	9.80
PFOA	3.33	2.56	5.46	6.17	4.01	9.78
PFBS	0.619	0.560	0.972	1.07	0.571	1.20
PFHS	0.487	0.396	0.931	1.05	0.366	0.969
PFOS	3.85	3.92	4.05	4.02	1.40	3.08


Cottage Grove MW16 – units are ng/mL

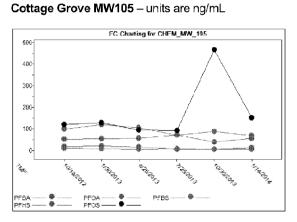
MW16	10/18/2012	1/29/2013	4/24/2013	7/24/2013	10/30/2013	1/14/2014
PFBA	33.6	31.5	33.2	26.3	45.0	42.9
PFOA	45.9	42.6	43.8	39.9	73.9	91.0
PFBS	25.7	28.3	27.5	29.6	42.1	40.0
PFHS	2.71	2.54	2.74	2.83	3.95	5.52
PFOS	23.1	20.2	21.8	20.1	38.2	53.1

PAGE 35 OF 39

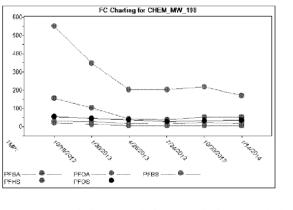

3M_MN01596066

Cottage Grove MW101 - units are ng/mL

MW101	10/18/2012	1/30/2013	4/23/2013	7/25/2013	10/30/2013	1/15/2014
PFBA	1860	1630	1830	1680	1020	1510
PFOA	147	124	121	112	86.7	79.4
PFBS	23.9	25.2	19.5	24.0	25.5	25.4
PFHS	427	455	459	464	314	398
PFOS	154	206	188	189	158	159


Cottage Grove MW104 - units are ng/mL

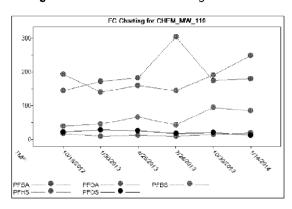
MW104	10/18/2012	1/30/2013	4/25/2013	7/25/2013	10/30/2013	1/15/2014
PFBA	36.0	36.3	74.7	54.3	53.6	202
PFOA	42.0	44.8	60.7	74.7	72.5	35.1
PFBS	12.6	11.4	9.75	8.16	7.95	7.50
PFHS	8.69	9.07	13.4	11.8	10.1	14.2
PFOS	127	201	185	176	165	4.25


PAGE 36 OF 39

3M_MN01596067

MW105 10/19/2012 1/30/2013 4/25/2013 7/25/2013 10/30/2013 1/14/2014 PFBA 52.7 54.4 57.0 71.6 38.9 55.6 PFOA 98.3 119 104 70.6 87.2 68.3 PFBS 9.46 8.03 5.72 6.49 4.98 6.15 PFHS 18.9 21.1 16.0 6.35 6.01 12.6 PFOS 120 129 95.0 92.3 467 152

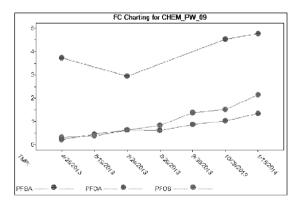
Cottage Grove MW108 - units are ng/mL


MW108 10/18/2012 1/30/2013 4/25/20	013 7/24/2013 10/30/2013 1/14/2014
PFBA 155 101 4	2.5 38.0 51.7 51.6
PFOA 550 348	201 202 218 169
PFBS 30.5 26.5 1	6.1 14.6 21.6 17.0
PFHS 20.7 11.1 4	.95 4.94 4.47 4.13
PFOS 55.2 45.5 3	7.3 26.8 33.2 33.5

PAGE 37 OF 39

3M_MN01596068

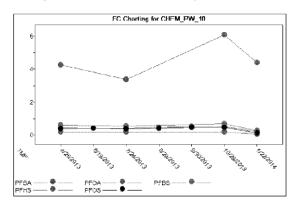
3630.0119


.....

Cottage Grove MW110 - units are ng/mL

MW110	10/18/2012	1/30/2013	4/25/2013	7/24/2013	10/30/2013	1/14/2014
PFBA	144	171	183	304	174	179
PFOA	193	141	160	144	190	248
PFBS	39.6	46.6	66.7	43.8	94.8	85.1
PFHS	17.6	10.3	11.8	9.41	15.3	19.4
PFOS	21.6	28.6	26.4	17.8	21.1	12.1

Cottage Grove PW09 - units are ng/mL



N09	4/25/2013	6/19/2013	7/24/2013	8/29/2013	9/30/2013	10/29/2013	1/15/2014
BA	3.72	NA	2.95	NA	NA	4.53	4.76
ŌĀ	0.223	0.462	0.624	0.605	0.873	1.02	1.33
OS	0.324	0.376	0.622	0.818	1.38	1.52	2.13
	BA OA	BA 3.72 OA 0.223	BA 3.72 NA FOA 0.223 0.462	BA 3.72 NA 2.95 OA 0.223 0.462 0.624	BA 3.72 NA 2.95 NA COA 0.223 0.462 0.624 0.605	BA 3.72 NA 2.95 NA NA COA 0.223 0.462 0.624 0.605 0.873	BA 3.72 NA 2.95 NA NA 4.53 OA 0.223 0.462 0.624 0.605 0.873 1.02

NA = Not Applicable; analyte not requested for the sampling event.

PAGE 38 OF 39

3M_MN01596069

Cottage Grove PW10 - units are ng/mL

PW10	4/25/2013	6/19/2013	7/24/2013	8/29/2013	9/30/2013	10/29/2013	1/22/2014	
PFBA	4.25	NA	3.37	NA	NA	6.09	4.40	
PFOA	0.428	0.415	0.420	0.471	0.528	0.524	0.212	
PFBS	0.594	NA	0.540	NA	NA	0.703	0.261	
PFHS	0.197	NA	0.185	NA	NA	0.193	0.0485	
PFOS	0.396	0.401	0.38	0.415	0.465	0.458	0.124	

NA = Not Applicable; analyte not requested for the sampling event.

PAGE 39 OF 39

3M_MN01596070

3M ENVIRONMENTAL LABORATORY Chain-of-Custody

Shipping Address: 3M Environmental Laboratory 3M Center, Bidg 260-5N-17 St. Paul, MN 55144

Phone: (651) 733-9873 Alt. Phone: (651) 736-6559 Fax: (651) 733-4687

roject: ISO11-01-03-13

Requester: Hohenstein, Gary Allan (MAPLEWOt Department: 452090 Site Source: 01J9C020 Project Number: 0069837001 Date Created: 1/10/2014 Project Description: 3M Cottage Grove Site: 1st guar

Completion Date: Project Lead: Susan T. Wolf Phone Number: 651-733-9851 Email Address: stwolf@mmm.com

Project Description: 3M Cottage Grove Site; 1st quarter 2014 sampling

Copy List: Gaetz, Mark Anthony (MAPLEWOOD-3MUS-MN 3M CENTER) Comments:

3M Sample Number Sample Description Date/Time Sampled Matrix Comment ISO11-01-03-13-001 CGMN-MW07-0- 140/13 1-13-2014/14:40 GW CGMN-MW07-DB- 140113 ISO11-01-03-13-002 ISO11-01-03-13-003 COMN-MW07-FMS- 140113 ISO11-01-03-13-004 CGMN-MW12-0-1-16-2014 12:30 140116 ISO11-01-03-13-005 CGMN-MW12-DB-140116 1-10-2014 12:30 ISO11-01-03-13-006 CGMN-MW12-FMS- 140110 -16-2014 12:30 SO11-01-03-13-007 CGMN-MW13-0- 140114 1-14-2014 09:00 ISO11-01-03-13-008 CGMN-MW13-DB- 140/14 1-14-2014 09:00 ISO11-01-03-13-009 CGMN-MW13-FMS- 140114 19-20141 09:00 CGMN-MW16-0- 140114 ISCI1-01-03-13-010 1-14-2014 11:15 ISO11-01-03-13-011 COMN-MW16-DB- 140114 1-14-2014/ 11:15 CGMN-MW16-FMS- 140/14 ISO11-01-03-13-012 1-14-2014/11-15 ISO11-01-03-13-013 CGMN-MW101-0- 140115 1 1-15-2014/10:50 ISO11-01-03-13-014 CGMN-MW101-DB- 140115 Gin 1-15-2014/ 11:50 Sample Condition Upon Receipt Acceptable All items accounted for Temperature: Other: Collected by (print): JOHN HUNTER Collector's signature: Relinquished by: Date Time Shipped Via Received by: Date Time WESTON 1/17/14

Page 1 of 3

3M ENVIRONMENTAL LABORATORY Chain-of-Custody

Shipping Address:

3M Environmental Laboratory 3M Center, Bldg 260-5N-17 St. Paul, MN 55144

Phone: (651) 733-9873 Alt. Phone: (651) 736-6559 Fax: (651) 733-4687

Project: ISO11-01-03-13 (cont.)

Requester: Hohenstein, Gary Allan (MAPLEWO) Department: 452090 Site Source: 01J9C020 Project Number: 0069837001 Date Created: 1/10/2014 Project Description: 3M Cottage Grove Site; 1st quarter 2014 sampling

117/14

WESTON

Completion Date: Project Lead: Susan T. Wolf Phone Number: 651-733-9851 Email Address: stwolf@mmm.com

<u>3M Sample Number</u>	Sample Description	Date/Time Sampled	<u>Matrix</u>	Comment
ISO11-01-03-13-015	CGMN-MW101-FMS- 140115	1-15-2014/10:50	64	
ISO11-01-03-13-016	CGMN-MW104-0- 140115	1-15-2014/09:45	E E	
18011-01-03-13-017	CGMN-MW104-DB- 140115	1-15-2014/05:45		
ISO11-01-03-13-018	CGMN-MW104-FMS- 140115	1-15-2014/04:45		
ISO11-01-03-13-019	СGMN-MW105-0- 140114	1-14-2014/13:50		
ISO11-01-03-13-020	CGMN-MW105-DB- 140114	1-14-2014/ 13:50		
ISO11-01-03-13-021	CGMN-MW105-FMS- 140114	1-14-2014/13:50	:	
ISO11-01-03-13-022	CGMN-MW108-0- 140114	1-14-2014/1570		
ISO11-01-03-13-023	CGMN-MW108-DB- 140114	1-14-2014/15-20		
ISO11-01-03-13-024	CGNN-MW108-FMS- 1401/4	1-14-2014/15-10		
ISO11-01-03-13-025	CGMN-MW110-0- 140114	1-14-2014/12:20		
ISO11-01-03-13-026	CGMN-MW130-DB- 140114	1-14-2014/12:20	\mathcal{A}	
ISO11-01-03-13-027	CGMN-MW110-EMS- 1401/4	1-14-2014/12:20	64	
ISO11-01-03-13-028	CGMN-PW06-0-			
ISO11-01-03-13-029	CGMN-PW06-DB- NOT	SAMPLED		
ISO11-01-03-13-030	CGMN-PW06-FMS-			
ISO11-01-03-13-031	CGMN-PW09-0- 140115	1-15-2014/07:40	GW	
Sample Condition Upon Temperature:	Receipt Acceptable All iter Deg C Received on Ice Other:	ns accounted for		· · · · · · · · · · · · · · · · · · ·
Collected by (print);	JOHN HUNTER	Collector's signature:	Jal	the
Relinquished by:	Date Time Shipped Via	Received by:		Date Time

Page 2 of 3

SM ENVIRONMENTAL LABORATORY Chain-of-Custody

Shipping Address:

3M Environmental Laboratory 3M Center, Bldg 260-5N-17 St. Paul, MN 55144

Phone: (651) 733-9873 Alt. Phone: (651) 736-6559 Fax: (651) 733-4687

Project: ISO11-01-03-13 (cont.)

Requester: Hohenstein, Gary Allan (MAPLEWO) Department: 452090 Site Source: 01J9C020 Project Number: 0069837001 Date Created: 1/10/2014 Project Description: 3M Cottage Grove Site; 1st quarter 2014 sampling

Completion Date: Project Lead: Susan T. Wolf Phone Number: 651-733-9851 Email Address: stwolf@mmm.com

<u>3M Sample Number</u>	Sample Description	Date/Time Sampled	Matrix	Comment
ISO11-01-03-13-032	CGMN-PW09-DB- 140115	1-15-2014/07:40	60	
ISO11-01-03-13-033	CGMN-PW09-FMS- 140115	1.15.2014/07:40	GW	SAMPLES DEUVERED 4
ISO11-01-03-13-034	COMN-PW10-0- 140122	1-22-2014/1500	GU	TO LAB ON 1/17/14
ISO11-01-03-13-035	CGMN-PW10-DB- 140122	1.22.214/ ,500	<u> </u>	to les on 1/23/14
ISO11-01-03-13-036	CGMN-PW10-FMS- JYDIZZ	1.22.2614 1500	GU	L 10 165 04 1/25/19
1SO11-01-03-13-037	CCMN-MW1418-0- 140113	1-13-14/15:45	GW	SAMPLES DECIVERED
ISO11-01-03-13-038	CGMN-MW14R-DB- 140113	1-13-14/15:45	1	To the matheda
ISO11-01-03-13-039	CGMN-MW14R-FMS- 140113	1-12-14/15:45		10 LHB ON 1/11/14
ISO11-01-03-13-040	CGMN-TRIP-0- 140113	1-13-14/12:00		
ISO11-01-03-13-041	CGMN-TRIP-LS- 140113	1-13-14/12:00		f
ISO11-01-03-13-042	CGMN-TRIP-HS- 140113	1-13-14/ 12:00		
ISO 11-01-03-13-043	GONNIN BB. CGAN-GW-MNNY-RB-	1-15-14/ 07:45	GW	

140115

Sample Condition Upon Receipt Acceptable All items accounted for Temperature: Other:

Collected by (print): JOHN HUNTER				Collector's signatur	re: Da	Col Ht		
Relinquished by:	Date	Time	Shipped Via	Received by:	1	Date	Time	
				A Committee of the second s		l	1	
an a								
		1						

Page 3 of 3

APRIL 2014

Final Report

Fluorochemical Characterization of Aqueous Samples, Cottage Grove Groundwater Sampling – 2nd Quarter 2014

Laboratory Request Number: ISO11-01-03-14

Report Date - Date of Last Signature

Testing Laboratory

3M EHS Operations 3M Environmental Laboratory Building 260-5N-17 Maplewood, MN 55144-1000

Requester

Jim Kotsmith 3M EHS Operations 3M Building 224-5W-17 Saint Paul, MN 55144-1000 Phone: (651) 737-3635

The testing reported herein meet the requirements of ANSI/ISO/IEC 17025:2005 "General Requirements for the Competence of Testing and Calibration Laboratories", in accordance with the A2LA Testing Certificate # 2052.01. Additionally, the laboratory's quality system has been audited and was determined to be in conformance with the EPA GLPs (40 CFR 792) by an independent A2LA assessment.

PAGE 1 OF 60

3M Environmental Laboratory

3M Environmental Laboratory Technical Director: William K. Reagen, Ph.D. 3M Principal Analytical Investigator: Susan Wolf Report Author: Chelsie Grochow

Analytical Report ISO11-01-03-14

Fluorochemical Characterization of Aqueous Samples, Cottage Grove Groundwater Sampling – 2nd Quarter 2014

Report Date: Date of Last Signature

1 Introduction/Summary

The 3M Environmental Laboratory prepared and analyzed groundwater samples collected by Weston Solutions personnel at the 3M Cottage Grove facility. Samples were collected on April 23-25, 2014. Samples were returned to the 3M Environmental Laboratory on April 28, 2014 on ice for the analysis of twelve fluorochemical compounds under laboratory project number ISO11-01-03-14.

The 3M Environmental Laboratory prepared sample containers for fourteen sampling locations. Each sample set consisted of a field sample, field sample duplicate, and field matrix spike. Each empty container was marked with a "fill to here" line that corresponded to a final volume of 200 mL. Containers reserved for field matrix spikes were fortified with an appropriate matrix spike solution containing all analytes prior to being sent to the field for sample collection. All sample bottles were fortified with internal standards and surrogate recovery standards prior to being sent to the field for sample collection.

Samples were prepared and analyzed for PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnA, PFDoA, PFBS, PFHS, PFOS and the surrogate recovery standards (SRSs) ¹³C₃-PFBA, ¹³C₄-PFOA, ¹³C₂-PFUnA, and ¹³C₄-PFOS, using method ETS-8-044.1 "Method of Analysis for the Determination of Perfluorinated Compounds in Water by LC/MS/MS; Direct Injection Analysis". Internal standards were used to aid in the data quality objectives.

Table 1 summarizes the sample results using the analytical method identified above. All results for quality control samples prepared and analyzed with the samples will be reported and discussed elsewhere in this report.

The testing reported herein meet the requirements of ANSI/ISO/IEC 17025:2005 "General Requirements for the Competence of Testing and Calibration Laboratories", in accordance with the A2LA Testing Certificate # 2052.01. Additionally, the laboratory's quality system has been audited and was determined to be in conformance with the EPA GLPs (40 CFR 792) by an independent A2LA assessment.

PAGE 2 OF 60

3M_MN01596076

Table 1. Sample Results Summary (1)

3M LIMS ID	Sample Description	PFBA Concentration (ng/mL)	PFPeA Concentration (ng/mL)	PFHxA Concentration (ng/mL)	PFHpA Concentration (ng/mL)	PFOA Concentration (ng/mL)	PFNA Concentration (ng/mL)	PFDA Concentration (ng/mL)
ISO11-01-03-14-001	CGMN-GW-MW07-0-140423	2.48	0.159	0.0806	<0.0250	0.351	<0.0250	<0.0250
ISO11-01-03-14-002	CGMN-GW-MW07-DB-140423	2.48	0.147	0.0749	<0.0250	0.336	<0.0250	<0.0250
	Average	2.48	0.153	0.0778	<0.0250	0.344	<0.0250	<0.0250
	%RPD Sample/Sample Dup	0.0	7.8	7.3	NA	4.4	NA	NA
ISO11-01-03-14-004	CGMN-GW-MW12-0-140425	218	24.8	26.4	11.7	545	1.77	1.82
ISO11-01-03-14-005	CGMN-GW-MW12-DB-140425	222	24.8	27.1	11.7	550	1.75	1.87
	Average	220 ⁽²⁾	24.8	26.8	11.7	548 ⁽²⁾	1.76	1.85
	%RPD Sample/Sample Dup	1.8	0.0	2.6	0.0	0.91	1.1	2.7
ISO11-01-03-14-008	CGMN-GW-MW13-0-140424	7.45	0.477	0.265	0.0883	8.87	0.0503	<0.0250
ISO11-01-03-14-009	CGMN-GW-MW13-DB-140424	6.83	0.452	0.249	0.0674	8.39	0.0387	<0.0250
	Average	7.14	0.465	0.257	0.0779	8.63	0.0445	<0.0250
	%RPD Sample/Sample Dup	8.7	5.4	6.2	27 ⁽³⁾	5.6	26 ⁽³⁾	NA
ISO11-01-03-14-011	CGMN-GW-MW14R-0-140423	645	280	195	25.4	542	1.70	2.11
ISO11-01-03-14-012	CGMN-GW-MW14R-DB-140423	654	275	199	26.7	543	1.74	2.08
	Average	650 ⁽²⁾	278 ⁽²⁾	197	26.1	543 ⁽²⁾	1.72	2.10
	%RPD Sample/Sample Dup	1.4	1.8	2.0	5.0	0.18	2.3	1.4
ISO11-01-03-14-015	CGMN-GW-MW16-0-140424	41.1	6.91	6.57	3.44	89.1	0.546	0.329
ISO11-01-03-14-016	CGMN-GW-MW16-DB-140424	40.3	6.52	6.42	3.15	82.3	0.523	0.339
	Average	40.7	6.72	6.50	3.30	85.7	0.535	0.334
	%RPD Sample/Sample Dup	2.0	5.8	2.3	8.8	7.9	4.3	3.0

 NA = Not Applicable
 (1) Samples were analyzed using internal standard calibration unless noted otherwise. The analytical method uncertainties associated with the reported results using internal calibration are as follows: PFBA±18%, PFPA±18%, PFHA±16%, PFHA±19%, PFOA±12%, PFNA±19%, PFDA±19%, PFDA±19%, PFDA±18%, PFBS±10%, PFHS±9.3%, PFOS± 16%.

(2) Simple set was analyzed using external standard calibration. The analytical method uncertainties associated with the reported samples using external calibration are as follows: PFBA ± 21%, PFPA ± 17%, PFOA ± 14%, PFBS ± 18%, PFHS ± 11%, and PFOS ± 9.9%.

(3) Sample diversity, in our result of a not need acceptance criteria of \$20%.
 (4) NR = Not reportable; sample area counts below the LOQ area counts and did not meet method blank criteria.

PAGE 3 OF 60

3M LIMS ID	Sample Description	PFBA Concentration (ng/mL)	PFPeA Concentration (ng/mL)	PFHxA Concentration (ng/mL)	PFHpA Concentration (ng/mL)	PFOA Concentration (ng/mL)	PFNA Concentration (ng/mL)	PFDA Concentration (ng/mL)
ISO11-01-03-14-019	CGMN-GW-MW101-0-140425	1330	71.8	60.9	63.2	76.1	7.08	0.248
ISO11-01-03-14-020	CGMN-GW-MW101-DB-140425	1330	72.6	61.3	61.4	75.8	6.84	0.233
	Average	1330 ⁽²⁾	72.2	61.1	62.3	76.0 (2)	6.96	0.241
	%RPD Sample/Sample Dup	0.0	1.1	0.65	2.9	0.39	3.4	6.2
ISO11-01-03-14-050	CGMN-GW-MW102-0-140425	924	30.7	29.1	16.1	58.6	1.84	0.143
ISO11-01-03-14-051	CGMN-GW-MW102-DB-140425	914	30.6	28.5	⁻ 5.8	57.6	1.90	0.129
	Average	919 ⁽²⁾	30.7	28.8	16.0	58.1	1.87	0.136
	%RPD Sample/Sample Dup	1.1	0.33	2.1	1.9	1.7	3.2	10
ISO11-01-03-14-054	CGMN-GW-MW103-0-140425	238	27.3	57.0	31.4	117	0.0487	<0.0250
ISO11-01-03-14-055	CGMN-GW-MW103-DB-140425	243	29.1	57.8	30.4	125	0.0566	<0.0250
	Average	241 ⁽²⁾	28.2	57.4	30.9	121 (2)	0.0527	<0.0250
	%RPD Sample/Sample Dup	2.1	6.4	1.4	3.2	6.6	15	NA
ISO11-01-03-14-023	CGMN-GW-MW104-0-140425	107	12.7	19.9	9.08	82.0	2.57	3.20
ISO11-01-03-14-024	CGMN-GW-MW104-DB-140425	107	12.4	19.5	9.13	82.1	2.60	3.32
	Average	107	12.6	19.7	9.11	82.1	2.59	3.26
	%RPD Sample/Sample Dup	0.0	2.4	2.0	0.55	0.12	1.2	3.7
ISO11-01-03-14-027	CGMN-GW-MW105-0-140425	70.3	5.86	11.7	8.38	42.7	0.577	0.328
ISO11-01-03-14-028	CGMN-GW-MW105-DB-140425	71.7	6.24	11.8	8.89	45.9	0.588	0.339
	Average	71.0	6.05	11.8	8.64	44.3	0.583	0.334
	%RPD Sample/Sample Dup	2.0	6.3	0.85	5.9	7.2	1.9	3.3

NA = Not Applicable

(1) Samples were analyzed using internal standard calibration unless noted otherwise. The analytical method uncertainties associated with the reported results using internal calibration are as follows: PFBA ± 18%, PFPaA ± 18%, PFHxA ± 16%, PFHpA ± 19%, PFOA ± 12%, PFDA ± 19%, PFDA ± 10%, PFHXA ± 16%, PFHXA ± 16%, PFHXA ± 10%, PFDA ± 19%, PFDA ± 10%, PFHXA ± 10%, PFHXA ± 10%, PFDA ± 19%, PFDA ± 10%, PFHXA ± 10%, PFHXA ± 10%, PFHXA ± 10%, PFDA ± 10%, PFDA ± 19%, PFDA ± 19%, PFDA ± 19%, PFDA ± 10%, PFDA ± 10%, PFHXA ± 10%, PFHXA ± 10%, PFDA 16%.

(2) Sample set was analyzed using external standard calibration. The analytical method uncertainties associated with the reported samples using external calibration are as follows: PFBA ± 21%, PFPA ± 17%, PFOA ± 14%, PFBS ± 18%, PFHS ± 11%, and PFOS ± 9.9%.
(3) Sample/sample duplicate RPD did not meet acceptance criteria of ≤20%.
(4) NR = Not reportable; sample area counts below the LOQ area counts and did not meet method blank criteria.

PAGE 4 OF 60

3M LIMS ID	Sample Description	PFBA Concentration (ng/mL)	PFPeA Concentration (ng/mL)	PFHxA Concentration (ng/mL)	PFHpA Concentration (ng/mL)	PFOA Concentration (ng/mL)	PFNA Concentration (ng/mL)	PFDA Concentration (ng/mL)
ISO11-01-03-14-031	CGMN-GW-MW108-0-140425	59.1	10.6	9.39	3.84	166	1.15	0.516
ISO11-01-03-14-032	CGMN-GW-MW108-DB-140425	71.6	12.3	11.0	4.45	162	1.36	0.607
	Average	65.4	11.5	10.2	4.15	164 ⁽²⁾	1.26	0.562
	%RPD Sample/Sample Dup	19	15	16	15	2.4	17	16
ISO11-01-03-14-035	CGMN-GW-MW110-0-140424	186	24.6	34.0	⁻ 2.5	310	0.191	<0.0250
ISO11-01-03-14-036	CGMN-GW-MW110-DB-140424	19 1	23.4	31.7	´2.8	310	0.197	<0.0250
	Average	189 ⁽²⁾	24.0	32.9	12.7	310 ⁽²⁾	0.194	<0.0250
	%RPD Sample/Sample Dup	2.6	5.0	7.0	2.4	0.0	3.1	NA
ISO11-01-03-14-039	CGMN-GW-PW09-0-140425	4.18	0.268	0.127	0.0443	1.03	0.0353	<0.0250
ISO11-01-03-14-040	CGMN-GW-PW09-DB-140425	4.10	0.275	0.143	0.0498	1.07	0.0377	<0.0250
	Average	4.14	0.272	0.135	0.0471	1.05	0.0365	<0.0250
	%RPD Sample/Sample Dup	1.9	2.6	12	12	3.8	6.6	NA
ISO11-01-03-14-042	CGMN-GW-PW10-0-140425	4.99	0.250	0.134	0.0420	0.421	<0.0250	<0.0250
ISO11-01-03-14-043	CGMN-GW-PW10-DB-140425	5.15	0.254	0.167	0.0517	0.420	<0.0250	<0.0250
	Average	5.07	0.252	0.151	0.0469	0.421	<0.0250	<0.0250
	%RPD Sample/Sample Dup	3.2	1.6	22 ⁽³⁾	21 ⁽³⁾	0.24	NA	NA
ISO11-01-03-14-045	CGMN-GW-MW105-RB-140425	<0.0500	<0.0250	<0.0250	<0.0250	<0.0480	<0.0250	<0.0250
ISO11-01-03-14-046	CGMN-GW-TRIP-0-140423	<0.0500	< 0.0250	<0.0250	<0.0250	<0.0480	<0.0250	<0.0250

NA = Not Applicable

(1) Samples were analyzed using internal standard calibration unless noted otherwise. The analytical method uncertainties associated with the reported results using internal calibration are as follows: PFBA ± 18%, PFPaA ± 18%, PFHxA ± 16%, PFHpA ± 19%, PFOA ± 12%, PFDA ± 19%, PFDA ± 19%, PFDA ± 19%, PFDA ± 18%, PFBS ± 0.3%, PFHS ± 9.3%, PFOS ± 0.3%, PFOS ± 0.3%, PFOA ± 0.3%, PFOA ± 0.3%, PFDA ± 0.3\%, P 16%.

(2) Sample set was analyzed using external standard calibration. The analytical method uncertainties associated with the reported samples using external calibration are as follows: PFBA ± 21%, PFPA ± 17%, PFOA ± 14%, PFBS ± 18%, PFHS ± 11%, and PFOS ± 9.9%.
(3) Sample/sample duplicate RPD did not meet acceptance criteria of <20%.
(4) NR = Not reportable; sample area counts below the LOQ area counts and did not meet method blank criteria.

PAGE 5 OF 60

3M LIMS ID	Sample Description	PFUnA Concentration (ng/mL)	PFDoA Concentration (ng/mL)	PFBS Concentration (ng/mL)	PFHS Concentration (ng/mL)	PFOS Concentration (ng/mL)
ISO11-01-03-14-001	CGMN-GW-MW07-0-140423	<0.0250	NR ⁽⁴⁾	0.0357	<0.0250	0.0495
ISO11-01-03-14-002	CGMN-GW-MW07-DB-140423	<0.0250	<0.0250	0.0363	< 0.0250	0.0491
	Average	<0.0250	<0.0250	0.0360	<0.0250	0.0493
	%RPD Sample/Sample Dup	NA	NA	1.7	NA	0.81
ISO11-01-03-14-004	CGMN-GW-MW12-0-140425	0.433	0.154	67.5	9.97	115
ISO11-01-03-14-005	CGMN-GW-MW12-DB-140425	0.415	0.169	70.3	9.67	118
	Average	0.424	0.162	68.9 ⁽²⁾	9.82	117 ⁽²⁾
	%RPD Sample/Sample Dup	4.2	9.3	4.1	3.1	2.6
ISO11-01-03-14-008	CGMN-GW-MW13-0-140424	<0.0250	<0.0250	0.791	0.594	2.46
ISO11-01-03-14-009	CGMN-GW-MW13-DB-140424	<0.0250	<0.0250	0.712	0.517	2.20
	Average	<0.0250	<0.0250	0.752	0.556	2.33
	%RPD Sample/Sample Dup	NA	NA	11	14	11
ISO11-01-03-14-011	CGMN-GW-MW14R-0-140423	<0.0250	<0.0250	18.2	19.7	348
ISO11-01-03-14-012	CGMN-GW-MW14R-DB-140423	<0.0250	<0.0250	18.2	20.3	358
	Average	<0.0250	<0.0250	18.2	20.0	353 ⁽²⁾
	%RPD Sample/Sample Dup	NA	NA	0.0	3.0	2.8
ISO11-01-03-14-015	CGMN-GW-MW16-0-140424	<0.0250	<0.0250	37.7	4.43	51.4
ISO11-01-03-14-016	CGMN-GW-MW16-DB-140424	<0.0250	<0.0250	38.1	4.55	52.4
	Average	<0.0250	<0.0250	37.9 ⁽²⁾	4.49	51.9
	%RPD Sample/Sample Dup	NA	NA	1.1	2.7	1.9

 NA = Not Applicable
 (1) Samples were analyzed using internal standard calibration unless noted otherwise. The analytical method uncertainties associated with the reported results using internal calibration are as follows: PFBA±18%, PFPA±18%, PFHA±16%, PFHA±19%, PFOA±12%, PFNA±19%, PFDA±19%, PFDA±19%, PFDA±18%, PFBS±10%, PFHS±9.3%, PFOS± 16%.

(2) Simple set was analyzed using external standard calibration. The analytical method uncertainties associated with the reported samples using external calibration are as follows: PFBA ± 21%, PFPA ± 17%, PFOA ± 14%, PFBS ± 18%, PFHS ± 11%, and PFOS ± 9.9%.

(3) Sample diversity, in our result of a not need acceptance criteria of \$20%.
 (4) NR = Not reportable; sample area counts below the LOQ area counts and did not meet method blank criteria.

PAGE 6 OF 60

3M LIMS ID	Sample Description	PFUnA Concentration (ng/mL)	PFDoA Concentration (ng/mL)	PFBS Concentration (ng/mL)	PFHS Concentration (ng/mL)	PFOS Concentration (ng/mL)
ISO11-01-03-14-019	CGMN-GW-MW101-0-140425	<0.0250	<0.0250	37.9	364	136
ISO11-01-03-14-020	CGMN-GW-MW101-DB-140425	<0.0250	<0.0250	37.6	364	´ 34
	Average	<0.0250	<0.0250	37.8 ⁽²⁾	364 ⁽²⁾	135 ⁽²⁾
	%RPD Sample/Sample Dup	NA	NA	0.79	0.0	1.5
ISO11-01-03-14-050	CGMN-GW-MW102-0-140425	<0.0250	<0.0250	7.10	146	67.1
ISO11-01-03-14-051	CGMN-GW-MW102-DB-140425	<0.0250	<0.0250	7.14	147	67.6
	Average	<0.0250	<0.0250	7.12	147 ⁽²⁾	67.4
	%RPD Sample/Sample Dup	NA	NA	0.56	0.68	0.74
ISO11-01-03-14-054	CGMN-GW-MW103-0-140425	<0.0250	< 0.0250	6.51	21.0	7.99
ISO11-01-03-14-055	CGMN-GW-MW103-DB-140425	<0.0250	<0.0250	6.51	22.5	7.64
	Average	<0.0250	<0.0250	6.51	21.8 (2)	7.82
	%RPD Sample/Sample Dup	NA	NA	0.0	6.9	4.5
ISO11-01-03-14-023	CGMN-GW-MW104-0-140425	0.0489	<0.0250	7.95	12.8	238
ISO11-01-03-14-024	CGMN-GW-MW104-DB-140425	0.0625	<0.0250	8.25	12.3	229
	Average	0.0557	<0.0250	8.10	12.6	234 ⁽²⁾
	%RPD Sample/Sample Dup	24 ⁽³⁾	NA	3.7	4.0	3.8
ISO11-01-03-14-027	CGMN-GW-MW105-0-140425	<0.0250	<0.0250	7.56	8.48	56.6
ISO11-01-03-14-028	CGMN-GW-MW105-DB-140425	<0.0250	<0.0250	7.80	8.70	60.7
	Average	<0.0250	<0.0250	7.68	8.59	58.7
	%RPD Sample/Sample Dup	NA	NA	3.1	2.6	7.0

NA = Not Applicable

(1) Samples were analyzed using internal standard calibration unless noted otherwise. The analytical method uncertainties associated with the reported results using internal calibration are as follows: PFBA ± 18%, PFPaA ± 18%, PFHxA ± 16%, PFHpA ± 19%, PFOA ± 12%, PFDA ± 19%, PFDA ± 19%, PFDA ± 19%, PFDA ± 18%, PFHS ± 0.3%, PFHS ± 0.3%, PFOS ± 0.3%, PFOS ± 0.3%, PFOA ± 0.0%, PFHS ± 0.0\%, P 16%.

(2) Sample set was analyzed using external standard calibration. The analytical method uncertainties associated with the reported samples using external calibration are as follows: PFBA ± 21%, PFPA ± 17%, PFOA ± 14%, PFBS ± 18%, PFHS ± 11%, and PFOS ± 9.9%.
(3) Sample/sample duplicate RPD did not meet acceptance criteria of ≤20%.
(4) NR = Not reportable; sample area counts below the LOQ area counts and did not meet method blank criteria.

PAGE 7 OF 60

3M LIMS ID	Sample Description	PFUnA Concentration (ng/mL)	PFDoA Concentration (ng/mL)	PFBS Concentration (ng/mL)	PFHS Concentration (ng/mL)	PFOS Concentration (ng/mL)
ISO11-01-03-14-031	CGMN-GW-MW108-0-140425	<0.0250	<0.0250	17.8	3.32	40.2
ISO11-01-03-14-032	CGMN-GW-MW108-DB-140425	<0.0250	<0.0250	17.0	3.84	46.4
	Average	<0.0250	<0.0250	17.4 ⁽²⁾	3.58	43.3
	%RPD Sample/Sample Dup	NA	NA	4.6	15	14
ISO11-01-03-14-035	CGMN-GW-MW110-0-140424	<0.0250	<0.0250	87.1	21.2	12.4
ISO11-01-03-14-036	CGMN-GW-MW110-DB-140424	<0.0250	<0.0250	85.1	20.5	12.6
	Average	<0.0250	<0.0250	86.1 ⁽²⁾	20.9	12.5
	%RPD Sample/Sample Dup	NA	NA	2.3	3.3	1.6
ISO11-01-03-14-039	CGMN-GW-PW09-0-140425	<0.0250	< 0.0250	0.150	0.0823	1.62
ISO11-01-03-14-040	CGMN-GW-PW09-DB-140425	<0.0250	<0.0250	0.145	0.0852	1.58
	Average	<0.0250	<0.0250	0.148	0.0838	1.60
	%RPD Sample/Sample Dup	NA	NA	3.4	3.5	2.5
ISO11-01-03-14-042	CGMN-GW-PW10-0-140425	<0.0250	<0.0250	0.460	0.105	0.438
ISO11-01-03-14-043	CGMN-GW-PW10-DB-140425	<0.0250	< 0.0250	0.481	0.115	0.435
	Average	<0.0250	<0.0250	0.471	0.110	0.437
	%RPD Sample/Sample Dup	NA	NA	4.5	9.1	0.69
ISO11-01-03-14-045	CGMN-GW-MW105-RB-140425	<0.0250	<0.0250	<0.0250	<0.0250	<0.185
ISO11-01-03-14-046	CGMN-GW-TRIP-0-140423	<0.0250	< 0.0250	<0.0250	< 0.0250	<0.185

NA = Not Applicable

(1) Samples were analyzed using internal standard calibration unless noted otherwise. The analytical method uncertainties associated with the reported results using internal calibration are as follows: PFBA ± 18%, PFPeA ± 18%, PFHxA ± 16%, PFHA ± 19%, PFOA ± 12%, PFDA ± 19%, PFDA ± 19%, PFDA ± 19%, PFDA ± 18%, PFBS ± 0.3%, PFHS ± 0.3%, PFOS ± 0.3%, PFOS ± 0.3%, PFOA ± 0.2%, PFDA ± 0.2\%, PFDA 16%.

(2) Sample set was analyzed using external standard calibration. The analytical method uncertainties associated with the reported samples using external calibration are as follows: PFBA ± 21%, PFPA ± 17%, PFOA ± 14%, PFBS ± 18%, PFHS ± 11%, and PFOS ± 9.9%.
(3) Sample/sample duplicate RPD did not meet acceptance criteria of <20%.
(4) NR = Not reportable; sample area counts below the LOQ area counts and did not meet method blank criteria.

PAGE 8 OF 60

2 Methods - Analytical and Preparatory

2.1 Methods

Analysis was completed following 3M Environmental Laboratory method ETS-8-044.1 "Method of Analysis for the Determination of Perfluorinated Compounds in Water by LC/MS/MS; Direct Injection Analysis".

Table 2. Target Analytes

Target Analytes	Acronym	Reference Material Structure
Perfluorobutanoic Acid (C4 Acid)	PFBA	Linear
Perfluoropentanoic Acid (C5 Acid)	PFPeA	Linear
Perfluorohexanoic Acid (C6 Acid)	PFHxA	Linear
Perfluoroheptanoic Acid (C7 Acid)	PFHpA	Linear
Perfluorooctanoic Acid (C8 Acid)	PFOA	Linear + Branched
Perfluorononanoic Acid (C9 Acid)	PFNA	Linear
Perfluorodecanoic Acid (C10 Acid)	PFDA	Linear
Perfluoroundecanoic Acid (C11 Acid)	PFUnA	Linear
Perfluorododecanoic Acid (C12 Acid)	PFDoA	Linear
Perfluorobutanesulfonate (C4 Sulfonate)	PFBS	Linear
Perfluorohexanesulfonate (C6 Sulfonate)	PFHS	Linear
Perfluorooctanesulfonate (C8 Sulfonate)	PFOS	Linear + Branched

2.2 Sample Collection

Samples were collected on April 23-25, 2014 in Nalgene[™] (high-density polyethylene) bottles prepared at the 3M Environmental Laboratory. Prior to sample collection, bottles designated for field matrix spikes were spiked in the laboratory with a known volume of an appropriate matrix spiking solution containing the analytes of interest. All sample bottles were spiked with a mixture of mass-labeled internal standards at a nominal concentration of 1 ng/mL and with surrogate recovery standards (SRSs) at a nominal concentration of 0.1 ng/mL. Collected sample bottles were returned to the laboratory on ice on April 28, 2014.

2.3 Sample Preparation

All samples were prepared by removing a 0.4 mL aliquot of the well mixed sample and diluting it with 0.4 mL of methanol (dilution factor of 2).

Samples requiring a 1:100 dilution were prepared by diluting 0.1 mL of sample with 9.9 mLs of methanol. The sampling locations that required dilution were prepared by adding an aliquot of a surrogate standard solution at a nominal concentration of 1 ng/mL.

During the preparation of the laboratory control samples, an aliquot of a separate internal standard spiking solution was added to the laboratory control samples (nominal concentration of 1 ng/mL). The sample bottles were spiked with an internal standard mix at a nominal concentration of 1 ng/mL prior to being sent to the field for sample collection. The laboratory control samples were then diluted with methanol in the same manner as the samples.

PAGE 9 OF 60

3M_MN01596083

2.4 Analysis

All samples and quality control samples were analyzed for twelve target analytes using high performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS). Pertinent instrument parameters, the liquid chromatography gradient program, and the specific mass transitions analyzed are described in the tables below.

Due to the nature of the sample, the wide range of concentrations found in the sample, and the environmental occurrence of multiple isomers of the laboratory's analytes of interest, the software used for processing the analytical results is not able to consistently integrate the analytical peak, manual integration of the analytical peak is necessary. All manual integrations are performed following the procedures outlined in method ETS-12-010.1. The consistency of the laboratory's integration is ensured through the training of laboratory personnel, the peer review process required for all manual integrations, the review of manual integrations by the QAU, and where necessary the review of manual integrations by laboratory management.

Instrument Name	ETS Kirk
Liquid Chromatograph	Agilent 1200 or 1260
Analysis Method	ETS-8-044.1
Analysis Date	5/8/14, 5/12/14, 5/13/14, 5/14/14
Guard column	Betasil C18 (4.6 mm X 100 mm), 5 μ
Analytical column	Betasil C18 (4.6 mm X 100 mm), 5 μ
Injection Volume	5 or 10 μL
Mass Spectrometer	AB Sciex Triple Quad 5500
lon Source	Turbo Spray
Polarity	Negative
Software	Analyst 1.6.1

Table 3. Instrument Parameters.

Table 4.	Liquid	Chromatography	Gradient Program.
----------	--------	----------------	-------------------

Step Number	Total Time (min)	Flow Rate (μL/min)	Percent A (2 mM ammonium acetate)	Percent B (Methanol)		
	ETS-8-044.1 Analysis					
0	0.00	750	90.0	10.0		
1	0.50	750	90.0	10.0		
2	4.00	750	70.0	30.0		
3	6.00	750	70.0	30.0		
4	11.0	750	20.0	80.0		
5	13.0	750	20.0	80.0		
6	13.5	750	10.0	90.0		
7	16.0	750	10.0	90.0		
8	16.5	750	90.0	10.0		
9	19.0	750	90.0	10.0		

PAGE 10 OF 60

Analyte	Mass Transition Q1/Q3	Internal Standard ⁽¹⁾	Mass Transition Q1/Q3	
PFBA	213/169	[¹³ C ₄]PFBA	217/172	
PFPeA	263/219	[¹³ C ₅]PFPeA	268/223	
	313/119		045/070	
PFHxA	313/269	[¹³ C ₂]PFHxA	315/270	
	363/319	[¹³ C ₄]PFHpA	207/222	
PFHpA	363/119	[C4]PFHpA	367/322	
	413/369			
PFOA	413/219	[¹³ C ₆]PFOA	421/376	
	413/169			
	463/419			
PFNA	463/219	[¹³ C ₉]PFNA	472/427	
	463/169			
	513/469			
PFDA	513/219	[¹³ C ₆]PFDA	51 9/474	
	513/269			
	563/519			
PFUnA	563/269	[¹³ C ₇]PFUnA	570/525	
	563/219			
	613/569			
PFDoA	613/319	[¹³ C ₂]PFDoA	615/570	
	613/269			
DEDC	299/80		202/04	
PFBS	299/99	[¹⁸ O ₂]PFBS	303/84	
DELLO	399/99	[¹³ C ₃]PFHS	400/00	
PFHS	399/80		402/80	
	499/99			
PFOS	499/80	[¹³ C ₆]PFOS	507/80	
	499/130			
[¹³ C ₃]PFBA surrogate	216/172	[¹³ C₄]PFBA	217/172	
[¹³ C ₄]PFOA surrogate	417/372	[¹³ C ₈]PFOA	421/376	
[¹³ C ₄]PFOS surrogate	503/80	[¹³ C _€]PFOS	507/80	
[¹³ C ₂]PFUnA surrogate	565/520	[¹³ C ₇]PFUnA	570/525	
cheduled MRM was used for t	he initial analysis on 5/8/14.	analysis on 5/12/14 and 5/13/14. . Otherwise, the dwell time was 2 n chromatogram" (TIC), which wa		

Table 5. Mass Transitions

PAGE 11 OF 60

3 Data Analysis

3.1 Calibration

Internal calibration analysis:

Samples were analyzed against a matrix-matched stable isotope internal standard calibration curve. Calibration standards were prepared by spiking known amounts of stock solutions into 50 mL of 50:50 laboratory reagent water: methanol. The calibration standards contained an internal standard mix at a nominal concentration of 0.5 ng/mL. A total of fourteen calibration standards ranging from 0.0125 ng/mL to 100 ng/mL (nominal) were analyzed with the prepared samples. Of these fourteen calibration standards, ten contained the surrogates at concentrations ranging from 0.0125 ng/mL to 10 ng/mL (nominal). The re-analysis of PFOS on 5/14/14 consisted of nine calibration standards ranging from 0.0125 ng/mL to 5 ng/mL (nominal). A quadratic, 1/x weighted, calibration curve of the ratio of the standard peak area counts over the internal standard peak area counts was used to fit the data for each analyte. The data were not forced through zero during the fitting process. Calculating the standard concentrations using the peak area ratios and the resultant calibration curve confirmed accuracy of each curve point. The reference standards of PFOA and PFOS used to prepare the calibration standards consisted of both linear and branched isomers.

External calibration analysis:

Samples were analyzed against an external standard calibration curve. Calibration standards were prepared by spiking known amounts of the stock solution containing the target analytes into 90:10 methanol: Milli-Q laboratory water. A total of ten spiked standards ranging from 0.02 ng/mL to 25 ng/mL (nominal) were analyzed. The standards also contained the surrogates at concentrations ranging from 0.02 ng/mL to 25 ng/mL nominal. A quadratic, 1/x weighted, calibration curve of the standard peak area counts was used to fit the data for each analyte. The data were not forced through zero during the fitting process. Calculating the standard concentrations using the peak area counts and the resultant calibration curve confirmed accuracy of each curve point. The reference standards of PFOA and PFOS used to prepare the calibration standards consisted of both linear and branched isomers.

Each curve point was quantitated using the overall calibration curve and reviewed for accuracy. Method calibration accuracy requirements of $100\pm25\%$ ($100\pm30\%$ for the lowest curve point) were met for all analytes. The correlation coefficient (r) was greater than 0.995 for all analytes.

3.2 System Suitability

A calibration standard was analyzed four times at the beginning of the analytical sequence to demonstrate overall system suitability. The acceptance criteria for system suitability samples of less than or equal to 5% relative standard deviation (RSD) for peak area ratio and retention time criteria of less than or equal to 2% RSD, were met for all analytes.

3.3 Limit of Quantitation (LOQ)

The LOQ as defined in method ETS-8-044.1 is the lowest non-zero calibration standard in the curve that meets linearity and accuracy requirements and for which the area counts are at least twice those of the appropriate blanks. The LOQs associated with the sample analysis are listed in the Table 6.

PAGE 12 OF 60

Analyte	5/8/14 LOQ, ng/mL ⁽¹⁾	5/12/14 LOQ, ng/mL ⁽²⁾	5/13/14 LOQ, ng/mL ⁽²⁾	5/14/14 LOQ, ng/mL ⁽¹⁾
PFBA	0.0500	5.00	NA	NA
PFPeA	0.0250	NA	2.00	NA
PFHxA	0.0250	NA	NA	NA
PFHpA	0.0250	NA	NA	NA
PFOA	0.0480	4.79	NA	NA
PFNA	0.0250	NA	NA	NA
PFDA	0.0250	NA	NA	NA
PFUnA	0.0250	NA	NA	NA
PFDoA	0.0250	NA	NA	NA
PFBS	0.0250	2.00	NA	NA
PFHS	0.0250	2.00	NA	NA
PFOS	0.185	1.85	NA	0.0232

Table 6. LOQ

NA = Not Applicable

(1) Dilution factor of 2 was applied to the LOQ.

(2) Dilution factor of 100 was applied to the LOQ.

3.4 Continuing Calibration

During the course of the analytical sequence, several continuing calibration verification samples (CCVs) were analyzed to confirm that the instrument response and the initial calibration curve were still in control. All reported results were bracketed by CCVs that met method acceptance criteria of 100%±25%.

3.5 Blanks

Three types of blanks were prepared and analyzed with the samples: method/solvent blanks, field/trip blanks, and sampling equipment blanks. Each blank result was reviewed and used to evaluate method performance to determine the LOQ for each analyte.

3.6 Lab Control Spikes (LCSs)

Low, mid, and high lab control spikes were prepared for the target analytes and analyzed in triplicate, while only low and high lab control spikes were prepared for the surrogates. LCSs were prepared by spiking known amounts of the analytes into 10 mL of laboratory reagent water containing calcium and magnesium to produce the desired concentration. The LCSs were then diluted with methanol or in the same manner as the samples. Method ETS-8-044.1 states that the average recovery of LCSs at each spiking level must be within 80%-120% with a RSD ≤20%. All LCSs meet these criteria and were used to evaluate the analytical method uncertainty in section 3.7 of the report.

The following calculations were used to generate data in Table 7.

 $LCS Percent Recovery = \frac{Calculated Concentration}{Spike Concentration} * 100\%$

LCS% RSD – standard deviation LCS replicates * 100% average LCS recovery

PAGE 13 OF 60

3M_MN01596087

ETS-8-044.1						
Internal calibration						
Analyzed 5/8/14		PFBA			PFPeA	
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-140507-1	0.198	0.210	106	0.198	0.193	97.6
LCS-140507-2	0.198	0.210	106	0.198	0.199	101
LCS-140507-3	0.198	0.215	108	0.198	0.197	99.7
Average ± %RSD		107% ± 1.1%			99.4% ± 1.7%	
LCS-140507-4	19.8	20.9	106	19.8	21.0	106
LCS-140507-5	19.8	20.6	104	19.8	20.7	105
LCS-140507-6	19.8	21.5	108	19.8	21.2	107
Average ± %RSD		106% ± 1.9%			106% ± 0.94%	
LCS-140507-7	79.0	80.5	102	79.0	79.0	100
LCS-140507-8	79.0	81.5	103	79.0	79.0	100
LCS-140507-9	79.0	82.3	104	79.0	79.7	101
Average ± %RSD		103% ± 0.97%			100% ± 0.58%	

Table 7. Lab Control Spike Results.

ETS-8-044.1 Internal calibration						
Analyzed 5/8/14		PFHxA			PFHpA	
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-140507-1	0.198	0.188	95.2	0.198	0.185	93.3
LCS-140507-2	0.198	0.188	94.7	0.198	0.175	88.6
LCS-140507-3	0.198	0.190	96.1	0.198	0.179	90.3
Average ± %RSD		95.3% ± 0.74%		90.7% ± 2.6%		
LCS-140507-4	19.8	20.7	105	19.8	20.9	106
LCS-140507-5	19.8	20.2	102	19.8	20.8	105
LCS-140507-6	19.8	21.1	106	19.8	21.7	109
Average ± %RSD		104% ± 2.0%			1 07% ± 1.9%	
LCS-140507-7	79.0	78.6	99.5	79.0	76.5	96.8
LCS-140507-8	79.0	78.0	98.7	79.0	75.0	94.9
LCS-140507-9	79.0	72.9	92.3	79.0	76.1	96.3
Average ± %RSD		96.8% ± 4.1%			96.0% ± 1.0%	

NA = Not Applicable (1) LCSs spiked above the upper limit of quantification.

PAGE 14 OF 60

ETS-8-044.1						
Internal calibration Analyzed 5/8/14	PFO	A (Linear + Branc	hed)		PFNA	
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-140507-1	0.190	0.196	103	0.198	0.194	97.9
LCS-140507-2	0.190	0.171	90.0	0.198	0.182	91.8
LCS-140507-3	0.190	0.179	94.3	0.198	0.192	96.9
Average ± %RSD		95.8% ± 6.9%		95.5% ± 3.4%		
LCS-140507-4	19.0	18.6	98.0	19.8	21.5	108
LCS-140507-5	19.0	18.2	96.0	19.8	20.0	101
LCS-140507-6	19.0	19.5	103	19.8	21.7	109
Average ± %RSD		99.0% ± 3.6%			106% ± 4.1%	
LCS-140507-7	75.7	73.1	96.6	79.0	77.2	97.7
LCS-140507-8	75.7	71.3	94.2	79.0	78.1	98.8
LCS-140507-9	75.7	76.7	101	79.0	80.5	102
Average ± %RSD		97.3% ± 3.5%			99.5% ± 2.2%	

ETS-8-044.1						
Internal calibration						
Analyzed 5/8/14		PFDA			PFUnA	
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-140507-1	0.198	0.175	88.4	0.198	0.183	92.3
LCS-140507-2	0.198	0.198	100	0.198	0.190	95.9
LCS-140507-3	0.198	0.198	100	0.198	0.190	95.8
Average ± %RSD		96.1% ± 7.0%		94.7% ± 2.2%		
LCS-140507-4	19.8	19.8	100	19.8	20.7	105
LCS-140507-5	19.8	19.2	97.1	19.8	20.0	101
LCS-140507-6	19.8	19.6	98.9	19.8	21.3	108
Average ± %RSD		98.7% ± 1.5%			105% ± 3.3%	
LCS-140507-7	79.0	76.8	97.3	79.0	80.2	101
LCS-140507-8	79.0	77.8	98.5	79.0	81.2	103
LCS-140507-9	79.0	79.3	100	79.0	80.7	102
Average ± %RSD		98.6% ± 1.4%			102% ± 0.98%	

NA = Not Applicable (1) LCSs spiked above the upper limit of quantification.

PAGE 15 OF 60

ETS-8-044.1						
Internal calibration						
Analyzed 5/8/14		PFDoA			PFBS	1
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-140507-1	0.198	0.199	101	0.198	0.165	83.5
LCS-140507-2	0.198	0.194	98.2	0.198	0.175	88.3
LCS-140507-3	0.198	0.190	96.1	0.198	0.180	90.7
Average ± %RSD		98.4% ± 2.5%		87.5% ± 4.2%		
LCS-140507-4	19.8	20.7	105	19.8	17.9	90.4
LCS-140507-5	19.8	20.4	103	19.8	17.1	86.5
LCS-140507-6	19.8	21.2	107	19.8	17.9	90.6
Average ± %RSD		105% ± 1.9%			89.2% ± 2.6%	
LCS-140507-7	79.0	82.5	104	79.0	>ULOQ	NA
LCS-140507-8	79.0	80.5	102	79.0	>ULOQ	NA
LCS-140507-9	79.0	81.4	103	79.0	>ULOQ	NA
Average ± %RSD		103% ± 0.97%			NA ⁽¹⁾	

ETS-8-044.1						
Internal calibration						
Analyzed 5/8/14		PFHS		PFC	S (Linear + Branch	ed)
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-140507-1	0.198	0.198	99.8	0.184	0.183	99.4
LCS-140507-2	0.198	0.183	92.6	0.184	0.210	114
LCS-140507-3	0.198	0.175	88.2	0.184	0.194	106
Average ± %RSD		93.5% ± 6.3%		106% ± 6.9%		
LCS-140507-4	19.8	19.5	98.6	18.4	19.7	107
LCS-140507-5	19.8	19.6	98.9	18.4	18.8	102
LCS-140507-6	19.8	19.4	97.8	18.4	20.0	109
Average ± %RSD		98.4% ± 0.58%			106% ± 3.4%	
LCS-140507-7	79.0	70.7	89.5	73.2	74.7	102
LCS-140507-8	79.0	71.9	91.0	73.2	76.5	105
LCS-140507-9	79.0	70.6	89.3	73.2	76.6	105
Average ± %RSD		89.9% ± 1.0%			104% ± 1.7%	

NA = Not Applicable (1) LCSs spiked above the upper limit of quantification.

PAGE 16 OF 60

ETS-8-044.1 Internal calibration Analyzed 5/8/14		¹³ C₃-PFBA			¹³ C₄-PFOA	
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-140507-1	0.197	0.192	97.7	0.198	0.208	105
LCS-140507-2	0.197	0.207	105	0.198	0.210	106
LCS-140507-3	0.197	0.197	99.8	0.198	0.183	92.6
Average ± %RSD		101% ± 3.7%			101% ± 7.4%	
LCS-140507-4	1.97	2.02	103	1.98	1.98	100
LCS-140507-5	1.97	1.99	101	1.98	1.91	96.7
LCS-140507-6	1.97	1.98	101	1.98	1.97	99.4
Average ± %RSD		102% ± 1.1%			98.7% ± 1.8%	

ETS-8-044.1						
Analyzed 5/8/14		¹³ C ₂ -PFUnA			¹³ C₄-PFOS	
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-140507-1	0.198	0.185	93.5	0.189	0.188	99.4
LCS-140507-2	0.198	0.208	105	0.189	0.189	99.8
LCS-140507-3	0.198	0.183	92.2	0.189	0.181	95.6
Average ⊥ %RSD		96.9% ± 7.3%			98.3% ± 2.4%	
LCS-140507-4	1.98	2.05	104	1.89	1.99	106
LCS-140507-5	1.98	1.97	99.7	1.89	1.86	98.4
LCS-140507-6	1.98	2.06	104	1.89	1.92	102
Average ± %RSD		103% ± 2.4%			102% ± 3.7%	

NA = Not Applicable (1) LCSs spiked above the upper limit of quantification.

PAGE 17 OF 60

3M_MN01596091

ETS-8-044.1						
External calibration						
Analyzed 5/12/14		PFBA			A (Linear + Branch	ed)
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-140512-1	0.199	0.270	136	0.191	0.221	116
LCS-140512-2	0.199	0.197	99.1	0.191	0.205	107
LCS-140512-3	0.199	0.212	107	0.191	0.210	110
Average ± %RSD		114% ± 17%		111% ± 4.1%		
LCS-140512-4	1.99	2.30	116	1.91	2.17	114
LCS-140512-5	1.99	2.30	115	1.91	2.21	116
LCS-140512-6	1.99	2.33	117	1.91	2.25	118
Average ± %RSD		116% ± 0.86%			116% ± 1.7%	
LCS-140512-7	20.0	22.5	113	19.1	21.3	112
LCS-140512-8	20.0	22.1	110	19.1	22.0	115
LCS-140512-9	20.0	22.2	111	19.1	21.6	113
Average ± %RSD		111% ± 1.4%			113% ± 1.4%	

ETS-8-044.1						
External calibration						
Analyzed 5/12/14		PFBS			PFHS	
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-140512-1	0.199	0.248	125	0.199	0.227	114
LCS-140512-2	0.199	0.212	107	0.199	0.200	101
LCS-140512-3	0.199	0.218	109	0.199	0.212	106
Average ± %RSD		114% ± 8.7%			107% ± 6.1%	
LCS-140512-4	1.99	2.36	119	1.99	2.29	115
LCS-140512-5	1.99	2.40	120	1.99	2.32	116
LCS-140512-6	1.99	2.38	119	1.99	2.37	119
Average ± %RSD		119% ± 0.49%			117% ± 1.8%	
LCS-140512-7	20.0	22.3	111	20.0	22.0	110
LCS-140512-8	20.0	22.3	112	20.0	22.1	111
LCS-140512-9	20.0	22.7	113	20.0	22.3	111
Average ± %RSD		112% ± 0.89%			111% ± 0.52%	

NA = Not Applicable (1) LCSs spiked above the upper limit of quantification.

PAGE 18 OF 60

ETS-8-044.1						
External calibration						
Analyzed 5/12/14	PFOS (Linear + Branched)			¹³ C ₄ -PFOS		
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-140512-1	0.185	0.188	102	0.190	0.214	112
LCS-140512-2	0.185	0.181	97.6	0.190	0.211	111
LCS-140512-3	0.185	0.188	102	0.190	0.216	113
Average ± %RSD	101% ± 2.5%			112% ± 0.89%		
LCS-140512-4	1.85	2.09	113	1.90	2.25	118
LCS-140512-5	1.85	2.15	116	1.90	2.24	118
LCS-140512-6	1.85	2.14	116	1.90	2.10	111
Average ± %RSD	115% ± 1.5%			116% ± 3.5%		
LCS-140512-7	18.5	21.0	114			
LCS-140512-8	18.5	21.3	115			
LCS-140512-9	18.5	21.5	116			
Average ± %RSD		115% ± 0.87%]		

ETS-8-044.1							
External calibration							
Analyzed 5/12/14	¹³ C₃-PFBA			¹³ C ₄ -PFOA			
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	
LCS-140512-1	0.198	0.237	120	0.199	0.227	114	
LCS-140512-2	0.198	0.216	109	0.199	0.221	111	
LCS-140512-3	0.198	0.234	118	0.199	0.217	109	
Average ± %RSD	116% ± 5.1%			111% ± 2.3%			
LCS-140512-4	1.98	2.44	123	1.99	2.32	117	
LCS-140512-5	1.98	2.40	121	1.99	2.33	117	
LCS-140512-6	1.98	2.30	116	1.99	2.29	115	
Average ± %RSD	120% ± 3.0%			116% ± 1.0%			

NA = Not Applicable (1) LCSs spiked above the upper limit of quantification.

PAGE 19 OF 60

Table 7 continued. Lab Control Spike Results.

ETS-8-044.1 External calibration Analyzed 5/13/14		PFPeA	
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-140512-1	0.199	0.210	106
LCS-140512-2	0.199	0.210	106
LCS-140512-3	0.199	0.218	109
Average ± %RSD		107% ± 1.6%	
LCS-140512-4	1.99	2.31	116
LCS-140512-5	1.99	2.33	117
LCS-140512-6	1.99	2.36	118
Average ± %RSD		117% ± 0.85%	
LCS-140512-7	20.0	23.1	115
LCS-140512-8	20.0	22.9	115
LCS-140512-9	20.0	22.9	115
Average ± %RSD		115% ± 0.0%	

ETS-8-044.1								
Internal calibration								
Analyzed 5/14/14	PFC	S (Linear + Branc	hed)	¹³ C₄-PFOS				
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery		
LCS-140513-1	0.0921	0.0948	103	0.0949	0.0895	94.3		
LCS-140513-2	0.0921	0.0897	97.3	0.0949	0.0874	92.1		
LCS-140513-3	0.0921	0.0966	105	0.0949	0.0973	103		
Average ± %RSD		102% ± 3.9%		96.5% ± 6.0%				
LCS-140513-4	0.921	0.985	107	0.949	0.915	96.4		
LCS-140513-5	0.921	0.973	106	0.949	0.887	93.5		
LCS-140513-6	0.921	1.00	109	0.949	0.896	94.4		
Average ± %RSD		107% ± 1.4%			94.8% ± 1.6%			
LCS-140513-7	3.67	3.88	106					
LCS-140513-8	3.67	3.96	108					
LCS-140513-9	3.67	3.95	108					
Average ± %RSD		107% ± 1.1%						

NA = Not Applicable (1) LCSs spiked above the upper limit of quantification.

PAGE 20 OF 60

3.7 Analytical Method Uncertainty

Analytical uncertainty is based on historical QC data that is control charted and used to evaluate method accuracy and precision. The method uncertainty is calculated following ETS-12-012.2. The standard deviation is calculated for the set of accuracy results (in %) obtained for the QC samples. For method ETS-8-044.1, the most recent fifty QC samples were used. The expanded uncertainty is calculated by multiplying the standard deviation by a factor of 2, which corresponds to a confidence level of 95%.

Analyte	Calibration	Standard Deviation (%)	Method Uncertainty
PFBA	Internal	8.90	±18%
PFPeA	Internal	9.09	±18%
PFHxA	Internal	7.78	±16%
PFHpA	Internal	9.35	±19%
PFOA	Internal	5.83	±12%
PFNA	Internal	9.65	±19%
PFDA	Internal	9.39	±19%
PFUnA	Internal	9.40	±19%
PFDoA	Internal	8.82	±18%
PFBS	Internal	5.21	±10%
PFHS	Internal	4.65	±9.3%
PFOS	Internal	7.82	±16%
PFBA	External	10.3	±21%
PFPeA	External	8.44	±17%
PFOA	External	6.87	±14%
PFBS	External	9.17	±18%
PFHS	External	5.62	±11%
PFOS	External	4.93	±9.9%

Table 8. Analytical Method Uncertainty.

3.8 Field Matrix Spikes (FMS)

A field matrix spike sample was collected at each sampling point to verify that the analytical method is applicable for the collected matrix. Field matrix spikes are generated by adding a measured volume of field sample to a container spiked by the laboratory with the target analytes prior to shipping sample containers for sample collection. Field matrix spikes must be at least 0.5 times the analyte concentration to be considered an appropriate spike level. Field matrix spike recoveries within method acceptance criteria of 100±30% confirm that "unknown" components in the sample matrix do not significantly interfere with the extraction and analysis of the analytes of interest. The standards used for the preparation of the field matrix spiking solutions contained reference materials comprised of both linear and branched isomers for PFOA and PFOS. Field matrix spikes are presented in section 4 of this report.

In addition to target analyte field matrix spikes, each sample bottle contained stable isotope surrogate recovery spikes of ${}^{13}C_3$ -PFBA, ${}^{13}C_4$ -PFOA, ${}^{13}C_2$ -PFUnA, and ${}^{13}C_4$ -PFOS, which were added at a nominal concentration of 0.1 ng/mL to all sample bottles prior to sample collection. The ${}^{13}C_3$ -PFBA and ${}^{13}C_4$ -PFOA were selected to represent perfluorocarboxylic acids from C4-C8. The ${}^{13}C_2$ -labeled PFUnA was selected to represent perfluorocarboxylic acids from C9-C12. The ${}^{13}C_4$ -labeled PFOS was selected to represent the C4, C6, C8 perfluorosulfonic acids. Surrogate matrix spike recoveries within method acceptance criteria of 100±30% confirm that "unknown" components in the sample matrix do

PAGE 21 OF 60

3M_MN01596095

3630.0146

not significantly interfere with the preparation and analysis of the analytes of interest. The surrogate spike recoveries are included in section 4 of this report.

FMS Recovery = (Sample Concentration of FMS – Average Concentration : Field Sample & Field Sample Dup.) * 100% Spike Concentration

				F	Final Spik	e Conce	ntration (ng/mL)				
Well ID	PFBA	PFPeA	PFHxA	PFHpA	PFOA	PFNA	PFDA	PFUnA	PFDoA	PFBS	PFHS	PFOS
MW07, PW09, PW10	2.00	2.00	2.00	2.00	1.92	2.00	2.00	2.00	2.00	2.00	2.00	1.85
MW13	10.0	10.0	10.0	10.0	9.58	10.0	10.0	10.0	10.0	10.0	10.0	9.27
MW16	5.00	5.00	5.00	5.00	4.79	5.00	5.00	5.00	5.00	5.00	5.00	4.64
	50.0	NA	NA	NA	49.4	NA	NA	NA	NA	49.5	49.5	49.4
MW101, MW103,	5.00	5.00	5.00	5.00	4.79	5.00	5.00	5.00	5.00	5.00	5.00	4.64
MW105, MW108	100	NA	NA	NA	98.8	NA	NA	NA	NA	99.0	99.0	98.8
MW12, MW14R, MW102, MW104,	10.0	10.0	10.0	10.0	9.58	10.0	10.0	10.0	10.0	10.0	10.0	9.27
MW110	100	NA	NA	NA	98.8	NA	NA	NA	NA	99.0	99.0	98.8
	2.00	2.00	2.00	2.00	1.92	2.00	2.00	2.00	2.00	2.00	2.00	1.85
Trip Bank	10.0	10.0	10.0	10.0	9.58	10.0	10.0	10.0	10.0	10.0	10.0	9.27
	100	NA	NA	NA	98.8	NA	NA	NA	NA	99.0	99.0	98.8

Table 9. Field Matrix Spike Concentrations

NA = Not Applicable. The spiking solution did not contain all of the selected analytes.

4 Data Summary and Discussion

The tables below summarize the sample results and field matrix spike recoveries for the fourteen locations as well as the Trip Blank. Each table provides the average concentration and the relative percent difference (%RPD) of the sample and sample duplicate. Results and average values are rounded to three significant figures. Relative percent difference (%RPD) values are rounded to two significant figures. Because of rounding, values vary slightly from those listed in the raw data. Field matrix spikes meeting the method acceptance criteria of $\pm 30\%$, demonstrate that the method is appropriate for the given matrix.

For those analytes where the field matrix spike level was not appropriate as compared to the sample concentration, the surrogate recovery standards were used to assess method accuracy. For all sampling locations, field matrix spikes (where applicable) and/or surrogate recovery standards met method acceptance criteria except for the following:

MW102: The low field matrix spike sample had a surrogate recovery of 69.0% for ${}^{13}C_4$ -PFOS. Since the most appropriate field matrix spike sample met acceptance criteria and the average surrogate recovery for ${}^{13}C_4$ -PFOS was 73.3%, the method uncertainty was not expanded.

Trip Blank: The mid level field matrix spike recoveries were approximately 50% of the expected value. Based on other FMS spike levels at half of the concentration of the mid level, it is likely the mid field matrix spike was spiked at 5 ng/mL instead of the intended 10 ng/mL. All other field matrix spikes met acceptance criteria.

PAGE 22 OF 60

3M_MN01596096

3630.0147

Table 10. CGMN-GW-MW07-140423 (1)

		PFBA		PFPeA		PFHxA	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-001	CGMN-GW-MW07-0-140423	2.48	NA	0.159	NA	0.0806	NA
ISO11-01-03-14-002	CGMN-GW-MW07-DB-140423	2.48	NA	0.147	NA	0.0749	NA
ISO11-01-03-14-003	CGMN-GW-MW07-FMS-140423	4.58	105	2.06	95.4	1.99	95.6
Average Concentration (ng/mL) ± %RPD		2.48 ng/mL ± 0.0%		0.153 ng/mL ± 7.8%		0.0778 ng/mL ± 7.3%	

		PFHpA		PFOA		PFNA	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-001	CGMN-GW-MW07-0-140423	<0.0250	NA	0.351	NA	<0.0250	NA
ISO11-01-03-14-002	CGMN-GW-MW07-DB-140423	<0.0250	NA	0.336	NA	<0.0250	NA
ISO11-01-03-14-003	CGMN-GW-MW07-FMS-140423	1.90	95.0	2.06	89.4	1.90	95.0
Average Concentration (ng/mL) ± %RPD		<0.0250 ng/mL		0.344 ng/mL ± 4.4%		<0.0250 ng/mL	

		PFDA PFUnA		A PFDoA		οA	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-001	CGMN-GW-MW07-0-140423	<0.0250	NA	<0.0250	NA	NR	NA
ISO11-01-03-14-002	CGMN-GW-MW07-DB-140423	<0.0250	NA	<0.0250	NA	<0.0250	NA
ISO11-01-03-14-003	CGMN-GW-MW07-FMS-140423	1.86	93.0	1.90	95.0	1.92	96.0
Average Concentration (ng/mL) ± %RPD		<0.0250 ng/mL		<0.0250 ng/mL		<0.0250 ng/mL	

NA = Not Applicable NR = Not Reportable; sample area counts were below the LOQ area counts and did not meet method blank criteria (1) Samples were analyzed using internal standard calibration.

PAGE 23 OF 60

Table 10 continued. CGMN-GW-MW07-140423 (1)

		PFBS		PFH	S	PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-001	CGMN-GW-MW07-0-140423	0.0357	NA	<0.0250	NA	0.0495	NA
ISO11-01-03-14-002	CGMN-GW-MW07-DB-140423	0.0363	NA	<0.0250	NA	0.0491	NA
ISO11-01-03-14-003	CGMN-GW-MW07-FMS-140423	1.66	81.2	1.77	88.5	1.87	98.4
Average Concentration (ng/mL) ± %RPD		0.0360 ng/mL ± 1.7%		<0.0250 ng/mL		0.0493 ng/mL ± 0.81%	

		¹³ C ₃ -PFBA	¹³ C ₄ -PFOA	¹³ C ₂ -PFUnA	¹³ C ₄ -PFOS
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery	%Recovery
ISO11-01-03-14-001	CGMN-GW-MW07-0-140423	98.6	90.8	95.6	99.6
ISO11-01-03-14-002	CGMN-GW-MW07-DB-140423	93.6	96.2	98.2	100
ISO11-01-03-14-003	CGMN-GW-MW07-FMS-140423	106	87.9	91.0	101
Average	99.4% ± 6.3%	91.6% ± 4.6%	94.9% ± 3.8%	100% ± 0.72%	

NA = Not Applicable
 NR = Not Reportable; sample area counts were below the LOQ area counts and did not meet method blank criteria
 (1) Samples were analyzed using internal standard calibration.

PAGE 24 OF 60

Table 11. CGMN-GW-MW12-140425

		PFBA ⁽¹⁾		PFPeA ⁽²⁾		PFHxA ⁽²⁾	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-004	CGMN-GW-MW12-0-140425	218	NA	24.8	NA	26.4	NA
ISO11-01-03-14-005	CGMN-GW-MW12-DB-140425	222	NA	24.8	NA	27.1	NA
ISO11-01-03-14-006	CGMN-GW-MW12-LS-140425	NA (3)	NA ⁽³⁾	35.0	NC	35.9	NC
ISO11-01-03-14-007	CGMN-GW-MW12-HS-140425	317	NC	NA ⁽⁴⁾	NA (4)	NA ⁽⁴⁾	NA (4)
Average Concentration (ng/mL) ± %RPD		220 ng/mL ± 1.8%		24.8 ng/mL ± 0.0%		26.8 ng/mL ± 2.6%	

		PFHpA ⁽²⁾		PFOA (1)		PFNA ⁽²⁾	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-004	CGMN-GW-MW12-0-140425	11.7	NA	545	NA	1.77	NA
ISO11-01-03-14-005	CGMN-GW-MW12-DB-140425	11.7	NA	550	NA	1.75	NA
ISO11-01-03-14-006	CGMN-GW-MW12-LS-140425	22.8	111	NA ⁽³⁾	NA ⁽³⁾	11.3	95.4
ISO11-01-03-14-007	CGMN-GW-MW12-HS-140425	NA ⁽⁴⁾	NA ⁽⁴⁾	652	NC	NA ⁽⁴⁾	NA ⁽⁴⁾
Average Concentration (ng/mL) ± %RPD		11.7 ng/mL ± 0.0%		548 ng/mL ± 0.91%		1.76 ng/mL±1.1%	

NA = Not Applicable
NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration.
(1) Samples were analyzed using external standard calibration.
(2) Samples were analyzed using internal standard calibration.
(3) Samples were not re-analyzed for this analyte.
(4) The spike level did not contain the target analyte.

PAGE 25 OF 60

Table 11 continued. CGMN-GW-MW12-140425

	-	PFDA ⁽²⁾		PFUnA ⁽²⁾		PFDoA (2)	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-004	CGMN-GW-MW12-0-140425	1.82	NA	0.433	NA	0.154	NA
ISO11-01-03-14-005	CGMN-GW-MW12-DB-140425	1.87	NA	0.415	NA	0.169	NA
ISO11-01-03-14-006	CGMN-GW-MW12-LS-140425	11.5	96.5	10.7	103	10.2	100
ISO11-01-03-14-007	CGMN-GW-MW12-HS-140425	NA (4)	NA ⁽⁴⁾	NA ⁽⁴⁾	NA ⁽¹⁾	NA ⁽⁴⁾	NA (1)
Average Concentration (ng/mL) ± %RPD		1.85 ng/mL ± 2.7%		0.424 ng/mL ± 4.2%		0.162 ng/mL ± 9.3%	

		PFBS ⁽¹⁾		PFHS ⁽²⁾		PFOS ⁽¹⁾	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-004	CGMN-GW-MW12-0-140425	67.5	NA	9.97	NA	115	NA
ISO11-01-03-14-005	CGMN-GW-MW12-DB-140425	70.3	NA	9.67	NA	118	NA
ISO11-01-03-14-006	CGMN-GW-MW12-LS-140425	NA ⁽³⁾	NA (3)	20.3	105	NA ⁽³⁾	NA ⁽³⁾
ISO11-01-03-14-007	CGMN-GW-MW12-HS-140425	164	96.1	NA ⁽⁴⁾	NA ⁽⁴⁾	202	86.0
Average Concentration (ng/mL) ± %RPD		68.9 ng/mL ± 4.1%		9.82 ng/mL ± 3.1%		117 ng/mL ± 2.6%	

		¹³ C ₃ -PFBA ⁽¹⁾	¹³ C ₄ -PFOA ⁽¹⁾	¹³ C ₂ -PFUnA (2)	¹³ C ₄ -PFOS ⁽¹⁾
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery	%Recovery
ISO11-01-03-14-004	CGMN-GW-MW12-0-140425	109	105	88.0	110
ISO11-01-03-14-005	CGMN-GW-MW12-DB-140425	113	105	96.3	108
ISO11-01-03-14-006	CGMN-GW-MW12-LS-140425	NA ⁽³⁾	NA ⁽³⁾	114	NA ⁽³⁾
ISO11-01-03-14-007	CGMN-GW-MW12-HS-140425	109	106	92.1	107
Average	Recovery (%) ± %RSD	110% ± 2.1%	105% ± 0.55%	97.6% ± 12%	108% ± 1.4%

NA = Not Applicable
NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration.
(1) Samples were analyzed using external standard calibration.
(2) Samples were analyzed using internal standard calibration.
(3) Samples were not re-analyzed for this analyte.
(4) The spike level did not contain the target analyte.

PAGE 26 OF 60

Table 12. CGMN-GW-MW13-140424 (1)

		PFBA		PFPeA		PFHxA	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-008	CGMN-GW-MW13-0-140424	7.45	NA	0.477	NA	0.265	NA
ISO11-01-03-14-009	CGMN-GW-MW13-DB-140424	6.83	NA	0.452	NA	0.249	NA
ISO11-01-03-14-010	CGMN-GW-MW13-FMS-140424	18.1	110	10.8	103	10.6	103
Average Concentration (ng/mL) ± %RPD		7.14 ng/mL ± 8.7%		0.465 ng/mL ± 5.4%		0.257 ng/mL ± 6.2%	

		PFHpA		PFOA		PFNA	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-008	CGMN-GW-MW13-0-140424	0.0883	NA	8.87	NA	0.0503	NA
ISO11-01-03-14-009	CGMN-GW-MW13-DB-140424	0.0674	NA	8.39	NA	0.0387	NA
ISO11-01-03-14-010	CGMN-GW-MW13-FMS-140424	9.47	93.9	18.6	104	9.81	97.7
Average Co	ncentration (ng/mL) ± %RPD	0.0779 ng/mL ± 27% ⁽²⁾		8.63 ng/mL ± 5.6%		0.0445 ng/mL ± 26% ⁽²⁾	

		PFDA		PFUnA		PFDoA	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-008	CGMN-GW-MW13-0-140424	<0.0250	NA	<0.0250	NA	<0.0250	NA
ISO11-01-03-14-009	CGMN-GW-MW13-DB-140424	<0.0250	NA	<0.0250	NA	<0.0250	NA
ISO11-01-03-14-010	CGMN-GW-MW13-FMS-140424	9.66	96.6	9.91	99.1	9.94	99.4
Average Cor	ncentration (ng/mL) ± %RPD	<0.0250 ng/mL		<0.0250 ng/mL		<0.0250 ng/mL	

NA = Not Applicable
Samples were analyzed using internal standard calibration.
Sample/sample duplicate RPD did not meet acceptance criteria of ≤20%.

PAGE 27 OF 60

Table 12 continued. CGMN-GW-MW13-140424 (1)

		PFBS		PFHS		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-008	CGMN-GW-MW13-0-140424	0.791	NA	0.594	NA	2.46	NA
ISO11-01-03-14-009	CGMN-GW-MW13-DB-140424	0.712	NA	0.517	NA	2.20	NA
ISO11-01-03-14-010	CGMN-GW-MW13-FMS-140424	9.12	83.7	9.76	92.0	11.9	103
Average Concentration (ng/mL) ± %RPD		0.752 ng/mL ± 11%		0.556 ng/mL ± 14%		2.33 ng/mL ± 11%	

		¹³ C ₃ -PFBA	¹³ C ₄ -PFOA	¹³ C ₂ -PFUnA	¹³ C ₄ -PFOS
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery	%Recovery
ISO11-01-03-14-008	CGMN-GW-MW13-0-140424	102	94.6	95.2	97.6
ISO11-01-03-14-009	CGMN-GW-MW13-DB-140424	101	102	85.9	94.8
ISO11-01-03-14-010	CGMN-GW-MW13-FMS-140424	91.8	98.3	109	101
Average	98.3% ± 5.7%	98.3% ± 3.8%	96.7% ± 12%	97.8% ± 3.2%	

NA = Not Applicable
Samples were analyzed using internal standard calibration.
Sample/sample duplicate RPD did not meet acceptance criteria of ≤20%.

PAGE 28 OF 60

Table 13. CGMN-GW-MW14R-140423

		PFBA ⁽¹⁾		PFPeA ⁽¹⁾		PFHxA ⁽²⁾	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-011	CGMN-GW-MW14R-0-140423	645	NA	280	NA	195	NA
ISO11-01-03-14-012	CGMN-GW-MW14R-DB-140423	654	NA	275	NA	199	NA
ISO11-01-03-14-013	CGMN-GW-MW14R-LS-140423	NA (3)	NA (3)	NA (3)	NA (3)	193	NC
ISO11-01-03-14-014	CGMN-GW-MW14R-HS-140423	751	NC	NA ⁽¹⁾	NA ⁽¹⁾	NA ⁽¹⁾	NA (1)
Average Concentration (ng/mL) ± %RPD		650 ng/mL ± 1.4%		278 ng/mL ± 1.8%		197 ng/mL ± 2.0%	

		PFHpA (2)		PFOA ^(II)		PFNA ⁽²⁾	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-011	CGMN-GW-MW14R-0-140423	25.4	NA	542	NA	1.70	NA
ISO11-01-03-14-012	CGMN-GW-MW14R-DB-140423	26.7	NA	543	NA	1.74	NA
ISO11-01-03-14-013	CGMN-GW-MW14R-LS-140423	34.8	NC	NA ⁽³⁾	NA ⁽³⁾	11.6	98.8
ISO11-01-03-14-014	CGMN-GW-MW14R-HS-140423	NA ⁽⁴⁾	NA (1)	646	NC	NA ⁽¹⁾	NA ⁽¹⁾
Average Concentration (ng/mL) ± %RPD		26.1 ng/mL ± 5.0%		543 ng/mL ± 0.18%		1.72 ng/mL ± 2.3%	

NA = Not Applicable
NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration.
(1) Samples were analyzed using external standard calibration.
(2) Samples were analyzed using internal standard calibration.
(3) Samples were not re-analyzed for this analyte.
(4) The spike level did not contain the target analyte.

PAGE 29 OF 60

Table 13 continued. CGMN-GW-MW14R-140423

		PFDA ⁽²⁾		PFUnA ⁽²⁾		PFDoA (2)	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-011	CGMN-GW-MW14R-0-140423	2.11	NA	<0.0250	NA	<0.0250	NA
ISO11-01-03-14-012	CGMN-GW-MW14R-DB-140423	2.08	NA	<0.0250	NA	<0.0250	NA
ISO11-01-03-14-013	CGMN-GW-MW14R-LS-140423	11.4	93.0	9.51	95.1	9.81	98.1
ISO11-01-03-14-014	CGMN-GW-MW14R-HS-140423	NA ⁽⁴⁾	NA ⁽⁴⁾	NA ⁽⁴⁾	NA ⁽⁴⁾	NA ⁽⁴⁾	NA ⁽⁴⁾
Average Concentration (ng/mL) ± %RPD		2.10 ng/mL ± 1.4%		<0.0250 ng/mL		<0.0250 ng/mL	

		PFBS ⁽²⁾		PFHS ⁽²⁾		PFOS ⁽¹⁾	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-011	CGMN-GW-MW14R-0-140423	18.2	NA	19.7	NA	348	NA
ISO11-01-03-14-012	CGMN-GW-MW14R-DB-140423	18.2	NA	20.3	NA	358	NA
ISO11-01-03-14-013	CGMN-GW-MW14R-LS-140423	26.0	78.0	29.9	99.0	NA ⁽³⁾	NA ⁽³⁾
ISO11-01-03-14-014	CGMN-GW-MW14R-HS-140423	NA ⁽³⁾	NA ⁽³⁾	NA ⁽³⁾	NA ⁽³⁾	46 1	NC
Average Concentration (ng/mL) ± %RPD		18.2 ng/mL ± 0.0%		20.0 ng/mL ± 3.0%		353 ng/mL ± 2.8%	

		¹³ C ₃ -PFBA ⁽¹⁾	¹³ C ₄ -PFOA ⁽¹⁾	¹³ C ₂ -PFUnA ⁽²⁾	¹³ C ₄ -PFOS ⁽¹⁾
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery	%Recovery
ISO11-01-03-14-011	CGMN-GW-MW14R-0-140423	107	108	99.8	108
ISO11-01-03-14-012	CGMN-GW-MW14R-DB-140423	112	-09	96.0	111
ISO11-01-03-14-013	CGMN-GW-MW14R-LS-140423	NA (3)	NA ⁽³⁾	95.8	NA ⁽³⁾
ISO11-01-03-14-014	CGMN-GW-MW14R-HS-140423	111	106	102	113
Average	Recovery (%) ± %RSD	110% ± 2.4%	108% ± 1.4%	98.4% ± 3.1%	111% ± 2.3%

 Average Recovery (%) ± %RSD
 110% ± 2.4%
 108% :

 NA = Not Applicable
 NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration.
 (1) Samples were analyzed using external standard calibration.
 (2) Samples were analyzed using internal standard calibration.
 (3) Samples were not re-analyzed for this analyte.
 (4) The spike level did not contain the target analyte.

PAGE 30 OF 60

Table 14. CGMN-GW-MW16-140424

	-	PFBA ⁽¹⁾		PFPeA ⁽¹⁾		PFHxA ⁽¹⁾	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-015	CGMN-GW-MW16-0-140424	41.1	NA	6.91	NA	6.57	NA
ISO11-01-03-14-016	CGMN-GW-MW16-DB-140424	40.3	NA	6.52	NA	6.42	NA
ISO11-01-03-14-017	CGMN-GW-MW16-LS-140424	45.7	NC	11.7	99.6	11.5	100
ISO11-01-03-14-018	CGMN-GW-MW16-HS-140424	91.0	101	NA (2)	NA (2)	NA (2)	NA ⁽²⁾
Average Concentration (ng/mL) ± %RPD		40.7 ng/mL ± 2.0%		6.72 ng/mL ± 5.8%		6.50 ng/mL ± 2.3%	

		PFHpA ⁽¹⁾		PFOA ⁽¹⁾		PFNA ⁽¹⁾	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-015	CGMN-GW-MW16-0-140424	3.44	NA	89.1	NA	0.546	NA
ISO11-01-03-14-016	CGMN-GW-MW16-DB-140424	3.15	NA	82.3	NA	0.523	NA
ISO11-01-03-14-017	CGMN-GW-MW16-LS-140424	8.42	102	94.3	NC	5.52	99.7
ISO11-01-03-14-018	CGMN-GW-MW16-HS-140424	NA (2)	NA (2)	123	75.5	NA ⁽²⁾	NA (2)
Average Concentration (ng/mL) ± %RPD		3.30 ng/mL ± 8.8%		85.7 ng/mL ± 7.9%		0.535 ng/mL ± 4.3%	

NA = Not Applicable
NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration.
(1) Samples were analyzed using internal standard calibration.
(2) The spike level did not contain the target analyte.
(3) Samples were analyzed using external standard calibration.
(4) Samples were not re-analyzed for this analyte.

PAGE 31 OF 60

Table 14 continued. CGMN-GW-MW16-140424

		PFDA ⁽¹⁾		PFUnA (1)		PFDoA (1)	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-015	CGMN-GW-MW16-0-140424	0.329	NA	<0.0250	NA	<0.0250	NA
ISO11-01-03-14-016	CGMN-GW-MW16-DB-140424	0.339	NA	< 0.0250	NA	<0.0250	NA
ISO11-01-03-14-017	CGMN-GW-MW16-LS-140424	5.02	93.7	4.75	95.0	4.86	97.2
ISO11-01-03-14-018	CGMN-GW-MW16-HS-140424	NA (2)	NA (2)	NA ⁽²⁾	NA ⁽²⁾	NA ⁽²⁾	NA (2)
Average Concentration (ng/mL) ± %RPD		0.334 ng/mL ± 3.0%		<0.0250 ng/mL		<0.0250 ng/mL	

		PFBS (3)		PFH	PFHS (1)		S ⁽¹⁾
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-015	CGMN-GW-MW16-0-140424	37.7	NA	4.43	NA	51.4	NA
ISO11-01-03-14-016	CGMN-GW-MW16-DB-140424	38.1	NA	4.55	NA	52.4	NA
ISO11-01-03-14-017	CGMN-GW-MW16-LS-140424	NA (1)	NA ⁽¹⁾	9.30	96.2	59.2	NC
ISO11-01-03-14-018	CGMN-GW-MW16-HS-140424	89.0	103	48.6	89.1	108	114
Average Concentration (ng/mL) ± %RPD		37.9 ng/mL ± 1.1%		4.49 ng/mL ± 2.7%		51.9 ng/mL ± 1.9%	

		¹³ C ₃ -PFBA ⁽¹⁾	¹³ C ₄ -PFOA ⁽¹⁾	¹³ C ₂ -PFUnA ⁽¹⁾	¹³ C ₄ -PFOS ⁽¹⁾
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery	%Recovery
ISO11-01-03-14-015	CGMN-GW-MW16-0-140424	101	100	93.5	96.0
ISO11-01-03-14-016	CGMN-GW-MW16-DB-140424	97.2	87.2	92.2	104
ISO11-01-03-14-017	CGMN-GW-MW16-LS-140424	100	108	98.5	98.3
ISO11-01-03-14-018	CGMN-GW-MW16-HS-140424	100	92.7	107	104
Average Recovery (%) ± %RSD		99.6% ± 1.6%	97.0% 9.3%	97.8% ± 6.9%	101% ± 4.0%

 Average Recovery (%) ± %RSD
 99.6% ± 1.6%
 97.0%

 NA = Not Applicable
 NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration.
 (1)
 Samples were analyzed using internal standard calibration.
 (2)
 The spike level did not contain the target analyte.
 (3)
 Samples were analyzed using external standard calibration.
 (4)
 Samples were not re-analyzed for this analyte.
 (3)

PAGE 32 OF 60

Table 15. CGMN-GW-MW101-140425

	-	PFBA ⁽¹⁾		PFPeA (2)		PFHxA ⁽²⁾	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-019	CGMN-GW-MW101-0-140425	1330	NA	71.8	NA	60.9	NA
ISO11-01-03-14-020	CGMN-GW-MW101-DB-140425	1330	NA	72.6	NA	61.3	NA
ISO11-01-03-14-021	CGMN-GW-MW101-LS-140425	NA (3)	NA (3)	75.1	NC	68.4	NC
ISO11-01-03-14-022	CGMN-GW-MW101-HS-140425	1410	NC	NA (4)	NA (4)	NA ⁽⁴⁾	NA ⁽⁴⁾
Average Concentration (ng/mL) ± %RPD		1330 ng/mL ± 0.0%		72.2 ng/mL ± 1.1%		61.1 ng/mL ± 0.65%	

		PFHpA ⁽²⁾		PFOA (1)		PFNA ⁽²⁾	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-019	CGMN-GW-MW101-0-140425	63.2	NA	76.1	NA	7.08	NA
ISO11-01-03-14-020	CGMN-GW-MW101-DB-140425	61.4	NA	75.8	NA	6.84	NA
ISO11-01-03-14-021	CGMN-GW-MW101-LS-140425	67.7	NG	NA ⁽³⁾	NA ⁽³⁾	11.9	98.8
ISO11-01-03-14-022	CGMN-GW-MW101-HS-140425	NA (4)	NA (4)	177	102	NA ⁽⁴⁾	NA (4)
Average Concentration (ng/mL) ± %RPD		62.3 ng/mL ± 2.9%		76.0 ng/mL ± 0.39%		6.96 ng/mL ± 3.4%	

NA = Not Applicable
NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration.
(1) Samples were analyzed using external standard calibration.
(2) Samples were analyzed using internal standard calibration.
(3) Samples were not re-analyzed for this analyte.
(4) The spike level did not contain the target analyte.

PAGE 33 OF 60

Table 15 continued. CGMN-GW-MW101-140425

		PFDA ⁽²⁾		PFUnA (2)		PFDoA (2)	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-019	CGMN-GW-MW101-0-140425	0.248	NA	< 0.0250	NA	<0.0250	NA
ISO11-01-03-14-020	CGMN-GW-MW101-DB-140425	0.233	NA	<0.0250	NA	<0.0250	NA
ISO11-01-03-14-021	CGMN-GW-MW101-LS-140425	5.11	97.4	4.78	95.6	4.94	98.8
ISO11-01-03-14-022	CGMN-GW-MW101-HS-140425	NA ⁽ⁱ⁾	NA ⁽¹⁾	NA (1)	NA ⁽¹⁾	NA ⁽¹⁾	NA (1)
Average Concentration (ng/mL) ± %RPD		0.241 ng/mL ± 6.2%		<0.0250 ng/mL		<0.0250 ng/mL	

		PFBS (1)		PFH	PFHS ⁽¹⁾		S ⁽¹⁾
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-019	CGMN-GW-MW101-0-140425	37.9	NA	364	NA	136	NA
ISO11-01-03-14-020	CGMN-GW-MW101-DB-140425	37.6	NA	364	NA	134	NA
ISO11-01-03-14-021	CGMN-GW-MW101-LS-140425	NA ⁽³⁾	NA ⁽³⁾	NA ⁽³⁾	NA ⁽³⁾	NA ⁽³⁾	NA ⁽³⁾
ISO11-01-03-14-022	CGMN-GW-MW101-HS-140425	142	105	461	NC	231	97.2
Average Concentration (ng/mL) ± %RPD		37.8 ng/mL ± 0.79%		364 ng/mL ± 0.0%		135 ng/mL ± 1.5%	

		¹³ C ₃ -PFBA ⁽¹⁾	¹³ C ₄ -PFOA ⁽¹⁾	¹³ C ₂ -PFUnA ⁽²⁾	¹³ C ₄ -PFOS ⁽¹⁾
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery	%Recovery
ISO11-01-03-14-019	CGMN-GW-MW101-0-140425	107	107	93.1	110
ISO11-01-03-14-020	CGMN-GW-MW101-DB-140425	106	106	96.1	111
ISO11-01-03-14-021	CGMN-GW-MW101-LS-140425	NA ⁽³⁾	NA ⁽³⁾	96.8	NA ⁽³⁾
ISO11-01-03-14-022	CGMN-GW-MW101-HS-140425	106	104	91.3	109
Average Recovery (%) ± %RSD		106% ± 0.54%	106% ± 1.4%	94.3% ± 2.7%	110% ± 0.91%

NA = Not Applicable
NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration.
(1) Samples were analyzed using external standard calibration.
(2) Samples were analyzed using internal standard calibration.
(3) Samples were not re-analyzed for this analyte.
(4) The spike level did not contain the target analyte.

PAGE 34 OF 60

Table 16. CGMN-GW-MW102-140425

	-	PFBA ⁽¹⁾		PFPeA (2)		PFHxA ⁽²⁾	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-050	CGMN-GW-MW102-0-140425	924	NA	30.7	NA	29.1	NA
ISO11-01-03-14-051	CGMN-GW-MW102-DB-140425	914	NA	30.6	NA	28.5	NA
ISO11-01-03-14-052	CGMN-GW-MW102-LS-140425	NA (3)	NA (3)	40.3	NC	39.8	NC
ISO11-01-03-14-053	CGMN-GW-MW102-HS-140425	995	NC	NA ⁽⁴⁾	NA (4)	NA ⁽⁴⁾	NA ⁽⁴⁾
Average Concentration (ng/mL) ± %RPD		919 ng/mL ± 1.1%		30.7 ng/mL ± 0.33%		28.8 ng/mL ± 2.1%	

		PFHpA ⁽²⁾		PFO	PFOA ⁽²⁾		A ⁽²⁾
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-050	CGMN-GW-MW102-0-140425	16.1	NA	58.6	NA	1.84	NA
ISO11-01-03-14-051	CGMN-GW-MW102-DB-140425	15.8	NA	57.6	NA	1.90	NA
ISO11-01-03-14-052	CGMN-GW-MW102-LS-140425	26.9	⁻ 09	64.6	NC	11.7	98.3
ISO11-01-03-14-053	CGMN-GW-MW102-HS-140425	NA (4)	NA (4)	140	82.9	NA ⁽⁴⁾	NA (4)
Average Concentration (ng/mL) ± %RPD		16.0 ng/mL ± 1.9%		58.1 ng/mL ± 1.7%		1.87 ng/mL ± 3.2%	

NA = Not Applicable
NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration.
(1) Samples were analyzed using external standard calibration.
(2) Samples were not re-analyzed for this analyte.
(3) Semples were not contain the target analyte.
(4) The spike level did not contain the target analyte.
(5) Surrogate recovery did not meet acceptance criteria of 100 ± 30%.

PAGE 35 OF 60

Table 16 continued. CGMN-GW-MW102-140425

		PFDA ⁽²⁾		PFUnA ⁽²⁾		PFDoA (2)	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-050	CGMN-GW-MW102-0-140425	0.143	NA	<0.0250	NA	<0.0250	NA
ISO11-01-03-14-051	CGMN-GW-MW102-DB-140425	0.129	NA	<0.0250	NA	<0.0250	NA
ISO11-01-03-14-052	CGMN-GW-MW102-LS-140425	9.41	92.7	9.44	94.4	9.74	97.4
ISO11-01-03-14-053	CGMN-GW-MW102-HS-140425	NA ⁽⁴⁾	NA ⁽⁴⁾	NA ⁽⁴⁾	NA ⁽⁴⁾	NA ⁽⁴⁾	NA ⁽⁴⁾
Average Concentration (ng/mL) ± %RPD		0.136 ng/mL ± 10%		<0.0250 ng/mL		<0.0250 ng/mL	

		PFBS ⁽²⁾		PFHS ⁽¹⁾		PFOS (2)	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-050	CGMN-GW-MW102-0-140425	7.10	NA	146	NA	67 .1	NA
ISO11-01-03-14-051	CGMN-GW-MW102-DB-140425	7.14	NA	147	NA	67.6	NA
ISO11-01-03-14-052	CGMN-GW-MW102-LS-140425	15.3	81.8	NA ⁽³⁾	NA ⁽³⁾	71.5	NC
ISO11-01-03-14-053	CGMN-GW-MW102-HS-140425	NA (3)	NA ⁽³⁾	244	98.0	143	76.5
Average Concentration (ng/mL) ± %RPD		7.12 ng/mL ± 0.56%		147 ng/mL ± 0.68%		67.4 ng/mL ± 0.74%	

		¹³ C ₃ -PFBA ⁽¹⁾	¹³ C ₄ -PFOA ⁽²⁾	¹³ C ₂ -PFUnA ⁽²⁾	¹³ C ₄ -PFOS ⁽²⁾			
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery	%Recovery			
ISO11-01-03-14-050	CGMN-GW-MW102-0-140425	110	103	92.2	73.9			
ISO11-01-03-14-051	CGMN-GW-MW102-DB-140425	110	104	93.3	76.6			
ISO11-01-03-14-052	CGMN-GW-MW102-LS-140425	NA ⁽³⁾	95.3	95.1	69.0 ⁽⁶⁾			
SO11-01-03-14-053 CGMN-GW-MW102-HS-140425		107	103	97.0	73.5			
Average	Recovery (%) ± %RSD	109% ± 1.6%	101% ± 4.0%	94.4% ± 2.2%	73.3% ± 4.3%			
Average Recovery (%) ± %RSD 109% ± 1.6% 101% ± 4.0% 94.4% ± 2.2% 73.3% ± 4.3% NA = Not Applicable NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration. (1) Samples were analyzed using external standard calibration. (2) Samples were analyzed using internal standard calibration. (3) Samples were analyzed using internal standard calibration. (3) Samples were not re-analyzed for this analyte. (4) The spike level did not contain the target analyte. (5) Surgate recovery did not meet acceptance criteria of 100 ± 30%. (4)								

PAGE 36 OF 60

Table 17. CGMN-GW-MW103-140425

		PFBA ⁽¹⁾		PFPeA (2)		PFHxA ⁽²⁾	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-054	CGMN-GW-MW103-0-140425	238	NA	27.3	NA	57.0	NA
ISO11-01-03-14-055	CGMN-GW-MW103-DB-140425	243	NA	29.1	NA	57.8	NA
ISO11-01-03-14-056	CGMN-GW-MW103-LS-140425	NA (3)	NA ⁽³⁾	32.0	NC	57.7	NC
ISO11-01-03-14-057	CGMN-GW-MW103-HS-140425	331	NC	NA ⁽⁴⁾	NA (4)	NA ⁽⁴⁾	NA (4)
Average Concentration (ng/mL) ± %RPD		241 ng/mL ± 2.1%		28.2 ng/mL ± 6.4%		57.4 ng/mL ± 1.4%	

		PFHpA ⁽²⁾		PFOA (1)		PFNA ⁽²⁾	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-054	CGMN-GW-MW103-0-140425	31.4	NA	117	NA	0.0487	NA
ISO11-01-03-14-055	CGMN-GW-MW103-DB-140425	30.4	NA	125	NA	0.0566	NA
ISO11-01-03-14-056	CGMN-GW-MW103-LS-140425	36.0	102	NA ⁽³⁾	NA (3)	4.76	94.1
ISO11-01-03-14-057	CGMN-GW-MW103-HS-140425	NA (4)	NA ⁽⁴⁾	227	107	NA ⁽⁴⁾	NA (4)
Average Concentration (ng/mL) ± %RPD		30.9 ng/mL ± 3.2%		121 ng/mL ± 6.6%		0.0527 ng/mL ± 15%	

NA = Not Applicable
NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration.
(1) Samples were analyzed using external standard calibration.
(2) Samples were analyzed using internal standard calibration.
(3) Samples were not re-analyzed for this analyte.
(4) The spike level did not contain the target analyte.

PAGE 37 OF 60

Table 17 continued. CGMN-GW-MW103-140425

		PFDA ⁽²⁾		PFUnA (2)		PFDoA (2)	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-054	CGMN-GW-MW103-0-140425	<0.0250	NA	<0.0250	NA	<0.0250	NA
ISO11-01-03-14-055	CGMN-GW-MW103-DB-140425	<0.0250	NA	<0.0250	NA	<0.0250	NA
ISO11-01-03-14-056	CGMN-GW-MW103-LS-140425	4.75	95.0	4.90	98.0	4.85	97.0
ISO11-01-03-14-057	CGMN-GW-MW103-HS-140425	NA (4)	NA (4)	NA ⁽⁴⁾	NA ⁽⁴⁾	NA ⁽⁴⁾	NA ⁽⁴⁾
Average Concentration (ng/mL) ± %RPD		<0.0250 ng/mL		<0.0250 ng/mL		<0.0250 ng/mL	

		PFBS ⁽²⁾		PFHS (1)		PFOS (2)	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-054	CGMN-GW-MW103-0-140425	6.51	NA	21.0	NA	7.99	NA
ISO11-01-03-14-055	CGMN-GW-MW103-DB-140425	6.51	NA	22.5	NA	7.64	NA
ISO11-01-03-14-056	CGMN-GW-MW103-LS-140425	10.3	75.8	NA ⁽³⁾	NA ⁽³⁾	11.9	87.9
ISO11-01-03-14-057	CGMN-GW-MW103-HS-140425	NA (3)	NA ⁽³⁾	124	103	108	101
Average Concentration (ng/mL) ± %RPD		6.51 ng/mL ± 0.0%		21.8 ng/mL ± 6.9%		7.82 ng/mL ± 4.5%	

		¹³ C ₃ -PFBA ⁽¹⁾	¹³ C ₄ -PFOA ⁽¹⁾	¹³ C ₂ -PFUnA ⁽²⁾	¹³ C ₄ -PFOS ⁽²⁾
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery	%Recovery
ISO11-01-03-14-054	CGMN-GW-MW103-0-140425	108	109	92.9	92.0
ISO11-01-03-14-055	CGMN-GW-MW103-DB-140425	110	109	97.6	98.1
ISO11-01-03-14-056	CGMN-GW-MW103-LS-140425	NA ⁽³⁾	NA ⁽³⁾	99.0	89.8
ISO11-01-03-14-057	CGMN-GW-MW103-HS-140425	107	110	95.4	97.0
Average	e Recovery (%) ± %RSD	108% ± 1.4%	109% ± 0.53%	96.2% ± 2.8%	94.2% ± 4.2%

 Average Recovery (%) ± %RSD
 108% ± 1.4%
 109%

 NA = Not Applicable
 NC = Not Calculatot; Spike level was less than 0.5x the endogenous sample concentration.
 (1)
 Samples were analyzed using external standard calibration.
 (2)
 Samples were analyzed using internal standard calibration.
 (3)
 Samples were not re-analyzed for this analyte.
 (4)
 The spike level did not contain the target analyte.
 (3)

PAGE 38 OF 60

Table 18. CGMN-GW-MW104-140425

	-	PFBA ⁽¹⁾		PFPeA (1)		PFHxA (1)	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-023	CGMN-GW-MW104-0-140425	107	NA	12.7	NA	19.9	NA
ISO11-01-03-14-024	CGMN-GW-MW104-DB-140425	107	NA	12.4	NA	19.5	NA
ISO11-01-03-14-025	CGMN-GW-MW104-LS-140425	114	NC	22.6	100	28.8	91.0
ISO11-01-03-14-026	CGMN-GW-MW104-HS-140425	197	90.0	NA ⁽²⁾	NA (2)	NA (2)	NA (2)
Average Concentration (ng/mL) ± %RPD		107 ng/mL ± 0.0%		12.6 ng/mL ± 2.4%		19.7 ng/mL ± 2.0%	

		PFHpA (1)		PFOA (1)		PFNA (1)	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-023	CGMN-GW-MW104-0-140425	9.08	NA	82.0	NA	2.57	NA
ISO11-01-03-14-024	CGMN-GW-MW104-DB-140425	9.13	NA	82.1	NA	2.60	NA
ISO11-01-03-14-025	CGMN-GW-MW104-LS-140425	18.4	92.9	92.1	NC	12.3	97.1
ISO11-01-03-14-026	CGMN-GW-MW104-HS-140425	NA (2)	NA ⁽²⁾	158	79.2	NA ⁽²⁾	NA ⁽²⁾
Average Concentration (ng/mL) ± %RPD		9.11 ng/mL ± 0.55%		82.1 ng/mL ± 0.12%		2.59 ng/mL ± 1.2%	

NA = Not Applicable
NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration.
(1) Samples were analyzed using internal standard calibration.
(2) The spike level did not contain the target analyte.
(3) Samples/sample duplicate RPD did not meet acceptance criteria of ≤20%.
(4) Samples were not re-analyzed for this analyte.
(5) Samples were analyzed using external standard calibration.

PAGE 39 OF 60

Table 18 continued. CGMN-GW-MW104-140425

		PFDA ⁽¹⁾		PFUnA ⁽¹⁾		PFDoA (1)	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-023	CGMN-GW-MW104-0-140425	3.20	NA	0.0489	NA	<0.0250	NA
ISO11-01-03-14-024	CGMN-GW-MW104-DB-140425	3.32	NA	0.0625	NA	<0.0250	NA
ISO11-01-03-14-025	CGMN-GW-MW104-LS-140425	13.3	^ 00	10.0	99.4	9.83	98.3
ISO11-01-03-14-026	CGMN-GW-MW104-HS-140425	NA (2)	NA (2)	NA (2)	NA (2)	NA (2)	NA (2)
Average Concentration (ng/mL) ± %RPD		3.26 ng/mL ± 3.7%		0.0557 ng/mL ± 24% ⁽³⁾		<0.0250 ng/mL	

		PFBS ⁽¹⁾		PFHS (1)		PFOS (5)	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-023	CGMN-GW-MW104-0-140425	7.95	NA	12.8	NA	238	NA
ISO11-01-03-14-024	CGMN-GW-MW104-DB-140425	8.25	NA	12.3	NA	229	NA
ISO11-01-03-14-025	CGMN-GW-MW104-LS-140425	15.6	75.0	21.9	93.0	NA ⁽⁴⁾	NA ⁽⁴⁾
ISO11-01-03-14-026	CGMN-GW-MW104-HS-140425	NA (4)	NA ⁽⁴⁾	NA (4)	NA ⁽⁴⁾	332	NC
Average Concentration (ng/mL) ± %RPD		8.10 ng/mL ± 3.7%		12.6 ng/mL ± 4.0%		234 ng/mL ± 3.8%	

		¹³ C ₃ -PFBA ⁽¹⁾	¹³ C ₄ -PFOA ⁽¹⁾	¹³ C ₂ -PFUnA ⁽¹⁾	¹³ C ₄ -PFOS ⁽⁵⁾
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery	%Recovery
ISO11-01-03-14-023	CGMN-GW-MW104-0-140425	99.2	86.7	101	111
ISO11-01-03-14-024	CGMN-GW-MW104-DB-140425	100	96.9	102	111
ISO11-01-03-14-025	CGMN-GW-MW104-LS-140425	99.1	96.1	113	NA ⁽⁴⁾
ISO11-01-03-14-026	CGMN-GW-MW104-HS-140425	96.1	98.7	98.6	101
Average	Recovery (%) ± %RSD	98.6% ± 1.7%	94.6% ± 5.7%	104% ± 6.1%	108% ± 5.3%

 Average Recovery (%) ± %RSD
 98.6% ± 1.7%
 94.6%

 NA = Not Applicable
 NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration.
 (1)
 Samples were analyzed using internal standard calibration.
 (2)
 The spike level did not contain the target analyte.
 (3)
 Sample/sample duplicate RPD did not meet acceptance oriteria of ≤20%.
 (4)
 Samples were analyzed for this analyte.
 (5)
 Samples were analyzed using external standard calibration.

PAGE 40 OF 60

Table 19. CGMN-GW-MW105-140425 (1)

		PFBA		PFPeA		PFHxA	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-027	CGMN-GW-MW105-0-140425	70.3	NA	5.86	NA	11.7	NA
ISO11-01-03-14-028	CGMN-GW-MW105-DB-140425	71.7	NA	6.24	NA	11.8	NA
ISO11-01-03-14-029	CGMN-GW-MW105-LS-140425	74.1	NC	10.5	89.0	16.6	NC
ISO11-01-03-14-030	CGMN-GW-MW105-HS-140425	164	93.0	NA ⁽²⁾	NA ⁽²⁾	NA ⁽²⁾	NA ⁽²⁾
Average Concentration (ng/mL) ± %RPD		71.0 ng/mL ± 2.0%		6.05 ng/mL ± 6.3%		11.8 ng/mL ± 0.85%	

		PFHpA		PFOA		PFNA	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-027	CGMN-GW-MW105-0-140425	8.38	NA	42.7	NA	0.577	NA
ISO11-01-03-14-028	CGMN-GW-MW105-DB-140425	8.89	NA	45.9	NA	0.588	NA
ISO11-01-03-14-029	CGMN-GW-MW105-LS-140425	13.5	97.2	47.2	NC	5.51	98.5
ISO11-01-03-14-030	CGMN-GW-MW105-HS-140425	NA (2)	NA ⁽²⁾	122	78.6	NA ⁽²⁾	NA (2)
Average Concentration (ng/mL) ± %RPD		8.64 ng/mL ± 5.9%		44.3 ng/mL ± 7.2%		0.583 ng/mL ± 1.9%	

NA = Not Applicable
NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration.
(1) Samples were analyzed using internal standard calibration.
(2) The spike level did not contain the target analyte.
(3) Samples were not re-analyzed for this analyte.

PAGE 41 OF 60

Table 19 continued. CGMN-GW-MW105-140425 (1)

		PFDA		PFUnA		PFDoA	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-027	CGMN-GW-MW105-0-140425	0.328	NA	<0.0250	NA	<0.0250	NA
ISO11-01-03-14-028	CGMN-GW-MW105-DB-140425	0.339	NA	<0.0250	NA	<0.0250	NA
ISO11-01-03-14-029	CGMN-GW-MW105-LS-140425	5.10	95.3	4.91	98.2	4.83	96.6
ISO11-01-03-14-030	CGMN-GW-MW105-HS-140425	NA (2)	NA ⁽²⁾	NA (2)	NA ⁽²⁾	NA (2)	NA ⁽²⁾
Average Concentration (ng/mL) ± %RPD		0.334 ng/mL ± 3.3%		<0.0250 ng/mL		<0.0250 ng/mL	

		PFBS		PFHS		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-027	CGMN-GW-MW105-0-140425	7.56	NA	8.48	NA	56.6	NA
ISO11-01-03-14-028	CGMN-GW-MW105-DB-140425	7.80	NA	8.70	NA	60.7	NA
ISO11-01-03-14-029	CGMN-GW-MW105-LS-140425	12.0	86.4	12.9	86.2	66.1	NC
ISO11-01-03-14-030	CGMN-GW-MW105-HS-140425	NA ⁽³⁾	NA ⁽³⁾	97.0	89.3	169	112
Average Concentration (ng/mL) ± %RPD		7.68 ng/mL ± 3.1%		8.59 ng/mL ± 2.6%		58.7 ng/mL ± 7.0%	

		¹³ C₃-PFBA	¹³ C ₄ -PFOA	¹³ C ₂ -PFUnA	¹³ C ₄ -PFOS
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery	%Recovery
ISO11-01-03-14-027	CGMN-GW-MW105-0-140425	96.4	95.6	92.9	88.0
ISO11-01-03-14-028	CGMN-GW-MW105-DB-140425	102	99.3	98.4	95.5
ISO11-01-03-14-029	CGMN-GW-MW105-LS-140425	100	101	94.4	90.6
ISO11-01-03-14-030	CGMN-GW-MW105-HS-140425	99.5	104	95.8	96.9
Average	Recovery (%) ± %RSD	99.5% ± 2.3%	100% ± 3.5%	95.4% ± 2.5%	92.8% ± 4.5%

NA = Not Applicable
NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration.
(1) Samples were analyzed using internal standard calibration.
(2) The spike level did not contain the target analyte.
(3) Samples were not re-analyzed for this analyte.

PAGE 42 OF 60

Table 20. CGMN-GW-MW108-140425

	-	PFBA ⁽¹⁾		PFPeA ⁽¹⁾		PFHxA ⁽¹⁾	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-031	CGMN-GW-MW108-0-140425	59.1	NA	10.6	NA	9.39	NA
ISO11-01-03-14-032	CGMN-GW-MW108-DB-140425	71.6	NA	12.3	NA	11.0	NA
ISO11-01-03-14-033	CGMN-GW-MW108-LS-140425	74.3	NC	17.0	NC	16.3	NC
ISO11-01-03-14-034	CGMN-GW-MW108-HS-140425	156	90.6	NA (2)	NA (2)	NA ⁽²⁾	NA (2)
Average Concentration (ng/mL) ± %RPD		65.4 ng/mL ± 19%		11.5 ng/mL ± 15%		10.2 ng/mL ± 16%	

		PFHpA ⁽¹⁾		PFOA (3)		PFNA (1)	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-031	CGMN-GW-MW108-0-140425	3.84	NA	166	NA	1.15	NA
ISO11-01-03-14-032	CGMN-GW-MW108-DB-140425	4.45	NA	162	NA	1.36	NA
ISO11-01-03-14-033	CGMN-GW-MW108-LS-140425	10.1	ŕ 19	NA ⁽⁴⁾	NA (1)	6.43	103
ISO11-01-03-14-034	CGMN-GW-MW108-HS-140425	NA (2)	NA (2)	265	102	NA ⁽²⁾	NA ⁽²⁾
Average Concentration (ng/mL) ± %RPD		4.15 ng/mL ± 15%		164 ng/mL ± 2.4%		1.26 ng/mL ± 17%	

NA = Not Applicable
NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration.
(1) Samples were analyzed using internal standard calibration.
(2) The spike level did not contain the target analyte.
(3) Samples were analyzed using external standard calibration.
(4) Samples were not re-analyzed for this analyte.

PAGE 43 OF 60

Table 20 continued. CGMN-GW-MW108-140425

		PFDA ⁽¹⁾		PFUnA (1)		PFDoA (1)	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-031	CGMN-GW-MW108-0-140425	0.516	NA	<0.0250	NA	<0.0250	NA
ISO11-01-03-14-032	CGMN-GW-MW108-DB-140425	0.607	NA	<0.0250	NA	<0.0250	NA
ISO11-01-03-14-033	CGMN-GW-MW108-LS-140425	5.34	95.6	4.95	99.0	4.98	99.6
ISO11-01-03-14-034	CGMN-GW-MW108-HS-140425	NA (2)	NA (2)	NA (2)	NA ⁽²⁾	NA ⁽²⁾	NA (2)
Average Concentration (ng/mL) ± %RPD		0.562 ng/mL ± 16%		<0.0250 ng/mL		<0.0250 ng/mL	

		PFBS (3)		PFHS (1)		PFOS (1)	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-031	CGMN-GW-MW108-0-140425	17.8	NA	3.32	NA	40.2	NA
ISO11-01-03-14-032	CGMN-GW-MW108-DB-140425	17.0	NA	3.84	NA	46.4	NA
ISO11-01-03-14-033	CGMN-GW-MW108-LS-140425	NA (0)	NA (1)	8.85	105	52.2	NC
ISO11-01-03-14-034	CGMN-GW-MW108-HS-140425	124	108	93.0	90.3	153	111
Average Concentration (ng/mL) ± %RPD		17.4 ng/mL ± 4.6%		3.58 ng/mL ± 15%		43.3 ng/mL ± 14%	

		¹³ C ₃ -PFBA ⁽¹⁾	¹³ C ₄ -PFOA ⁽³⁾	¹³ C ₂ -PFUnA ⁽¹⁾	¹³ C ₄ -PFOS ⁽¹⁾
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery	%Recovery
ISO11-01-03-14-031	CGMN-GW-MW108-0-140425	97.6	98.8	101	98.6
ISO11-01-03-14-032	CGMN-GW-MW108-DB-140425	96.6	97.4	99.2	89.5
ISO11-01-03-14-033	CGMN-GW-MW108-LS-140425	99.3	NA ⁽⁴⁾	102	103
ISO11-01-03-14-034	CGMN-GW-MW108-HS-140425	98.8	99.4	94.6	94 .1
Average	e Recovery (%) ± %RSD	98.1% ± 1.2%	98.5% ± 1.0%	99.2% ± 3.3%	96.3% ± 6.0%

NA = Not Applicable
NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration.
(1) Samples were analyzed using internal standard calibration.
(2) The spike level did not contain the target analyte.
(3) Samples were analyzed using external standard calibration.
(4) Samples were not re-analyzed for this analyte.

PAGE 44 OF 60

Table 21. CGMN-GW-MW110-140424

	-	PFBA ⁽¹⁾		PFPeA ⁽²⁾		PFHxA ⁽²⁾	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-035	CGMN-GW-MW110-0-140424	186	NA	24.6	NA	34.0	NA
ISO11-01-03-14-036	CGMN-GW-MW110-DB-140424	191	NA	23.4	NA	31.7	NA
ISO11-01-03-14-037	CGMN-GW-MW110-LS-140424	NA (3)	NA ⁽³⁾	38.4	90.6	47.6	NC
ISO11-01-03-14-038	CGMN-GW-MW110-HS-140424	306	117	NA ⁽⁴⁾	NA ⁽⁴⁾	NA ⁽⁴⁾	NA ⁽⁴⁾
Average Concentration (ng/mL) ± %RPD		189 ng/mL ± 2.6%		24.0 ng/mL ± 5.0%		32.9 ng/mL ± 7.0%	

		PFHpA ⁽²⁾		PFOA (1)		PFNA ⁽²⁾	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-035	CGMN-GW-MW110-0-140424	12.5	NA	310	NA	0.191	NA
ISO11-01-03-14-036	CGMN-GW-MW110-DB-140424	12.8	NA	310	NA	0.197	NA
ISO11-01-03-14-037	CGMN-GW-MW110-LS-140424	28.6	^ 00	NA ⁽³⁾	NA ⁽³⁾	15.8	98.2
ISO11-01-03-14-038	CGMN-GW-MW110-HS-140424	NA ⁽⁴⁾	NA ⁽⁴⁾	410	NC	NA ⁽⁴⁾	NA ⁽⁴⁾
Average Concentration (ng/mL) ± %RPD		12.7 ng/mL ± 2.4%		310 ng/mL ± 0.0%		0.194 ng/mL ± 3.1%	

NA = Not Applicable
NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration.
(1) Samples were analyzed using external standard calibration.
(2) Samples were analyzed using internal standard calibration.
(3) Samples were not re-analyzed for this analyte.
(4) The spike level did not contain the target analyte.

PAGE 45 OF 60

Table 21 continued. CGMN-GW-MW110-140424

		PFDA (2)		PFUnA ⁽²⁾		PFDoA (2)	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-035	CGMN-GW-MW110-0-140424	<0.0250	NA	<0.0250	NA	<0.0250	NA
ISO11-01-03-14-036	CGMN-GW-MW110-DB-140424	< 0.0250	NA	<0.0250	NA	<0.0250	NA
ISO11-01-03-14-037	CGMN-GW-MW110-LS-140424	15.3	96.2	15.5	97.5	15.3	96.2
ISO11-01-03-14-038	CGMN-GW-MW110-HS-140424	NA (1)	NA (1)	NA ⁽⁴⁾	NA ^(II)	NA ⁽¹⁾	NA (1)
Average Concentration (ng/mL) ± %RPD		<0.0250 ng/mL		<0.0250 ng/mL		<0.0250 ng/mL	

		PFBS ⁽¹⁾		PFHS ⁽²⁾		PFOS (2)	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-035	CGMN-GW-MW110-0-140424	87.1	NA	21.2	NA	12.4	NA
ISO11-01-03-14-036	CGMN-GW-MW110-DB-140424	85.1	NA	20.5	NA	12.6	NA
ISO11-01-03-14-037	CGMN-GW-MW110-LS-140424	NA (3)	NA ⁽³⁾	33.7	80.5	26.3	93.9
ISO11-01-03-14-038	CGMN-GW-MW110-HS-140424	185	99.9	NA	NA	114	103
Average Concentration (ng/mL) ± %RPD		86.1 ng/mL ± 2.3%		20.9 ng/mL ± 3.3%		12.5 ng/mL ± 1.6%	

		¹³ C ₃ -PFBA ⁽¹⁾	¹³ C ₄ -PFOA ⁽¹⁾	¹³ C ₂ -PFUnA ⁽²⁾	¹³ C ₄ -PFOS ⁽²⁾
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery	%Recovery
ISO11-01-03-14-035	CGMN-GW-MW110-0-140424	101	102	100	93.6
ISO11-01-03-14-036	CGMN-GW-MW110-DB-140424	96.6	97.3	95.3	91.7
ISO11-01-03-14-037	CGMN-GW-MW110-LS-140424	NA ⁽³⁾	NA ⁽³⁾	106	92.8
ISO11-01-03-14-038	CGMN-GW-MW110-HS-140424	104	99.8	99.8	96.4
Average Recovery (%) ± %RSD		101% ± 3.7%	99.7%±2.4%	100% ± 4.4%	93.6% ± 2.1%

NA = Not Applicable
NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration.
(1) Samples were analyzed using external standard calibration.
(2) Samples were analyzed using internal standard calibration.
(3) Samples were not re-analyzed tor this analyte.
(4) The spike level did not contain the target analyte.

PAGE 46 OF 60

Table 22. CGMN-GW-PW09-140425 (1)

PFBA		BA	PFPeA		PFHxA		
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-039	CGMN-GW-PW09-0-140425	4.18	NA	0.268	NA	0.127	NA
ISO11-01-03-14-040	CGMN-GW-PW09-DB-140425	4.10	NA	0.275	NA	0.143	NA
ISO11-01-03-14-041	CGMN-GW-PW09-FMS-140425	6.14	NC	2.17	94.9	2.08	97.3
Average Concentration (ng/mL) ± %RPD		4.14 ng/mL ± 1.9%		0.272 ng/mL ± 2.6%		0.135 ng/mL ± 12%	

		PFHpA		PFOA		PFNA	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-039	CGMN-GW-PW09-0-140425	0.0443	NA	1.03	NA	0.0353	NA
ISO11-01-03-14-040	CGMN-GW-PW09-DB-140425	0.0498	NA	1.07	NA	0.0377	NA
ISO11-01-03-14-041	CGMN-GW-PW09-FMS-140425	2.14	105	2.69	85.4	1.89	92.7
Average Concentration (ng/mL) ± %RPD		0.0471 ng/mL ± 12%		1.05 ng/mL ± 3.8%		0.0365 ng/mL ± 6.6%	

		PFDA		PFUnA		PFDoA	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-039	CGMN-GW-PW09-0-140425	<0.0250	NA	<0.0250	NA	<0.0250	NA
ISO11-01-03-14-040	CGMN-GW-PW09-DB-140425	<0.0250	NA	<0.0250	NA	<0.0250	NA
ISO11-01-03-14-041	CGMN-GW-PW09-FMS-140425	1.82	91.0	1.90	95.0	1.99	99.5
Average Concentration (ng/mL) ± %RPD		<0.0250 ng/mL		<0.0250 ng/mL		<0.0250 ng/mL	

NA = Not Applicable
 NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration.
 (1) Samples were analyzed using internal standard calibration.

PAGE 47 OF 60

Table 22 continued. CGMN-GW-PW09-140425 (1)

		PFBS		PFHS		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-039	CGMN-GW-PW09-0-140425	0.150	NA	0.0823	NA	1.62	NA
ISO11-01-03-14-040	CGMN-GW-PW09-DB-140425	0.145	NA	0.0852	NA	1.58	NA
ISO11-01-03-14-041	CGMN-GW-PW09-FMS-140425	1.79	82.1	1.87	89.3	3.44	99.5
Average Concentration (ng/mL) ± %RPD		0.148 ng/mL ± 3.4%		0.0838 ng/mL ± 3.5%		1.60 ng/mL ± 2.5%	

		¹³ C ₃ -PFBA	¹³ C ₄ -PFOA	¹³ C ₂ -PFUnA	¹³ C ₄ -PFOS
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery	%Recovery
ISO11-01-03-14-039	CGMN-GW-PW09-0-140425	98.0	95.4	96.2	96.6
ISO11-01-03-14-040	CGMN-GW-PW09-DB-140425	102	99.4	90.9	97.9
ISO11-01-03-14-041	CGMN-GW-PW09-FMS-140425	99.9	87.5	91.6	99.7
Average	e Recovery (%) ± %RSD	100% ± 2.0%	94.1% ± 6.4%	92.9% ± 3.1%	98.1% ± 1.6%

NA = Not Applicable NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration. (1) Samples were analyzed using internal standard calibration.

PAGE 48 OF 60

Table 23. CGMN-GW-PW10-140425 (1)

	PFBA		BA	PFP	eA	PFHxA	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-042	CGMN-GW-PW10-0-140425	4.99	NA	0.250	NA	0.134	NA
ISO11-01-03-14-043	CGMN-GW-PW10-DB-140425	5.15	NA	0.254	NA	0.167	NA
ISO11-01-03-14-044	CGMN-GW-PW10-FMS-140425	7.16	NC	2.22	98.4	2.13	99.0
Average Concentration (ng/mL) ± %RPD		5.07 ng/mL ± 3.2%		0.252 ng/mL ± 1.6%		0.151 ng/mL ± 22% ⁽²⁾	

		PFHpA		PFOA		PFNA	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-042	CGMN-GW-PW10-0-140425	0.0420	NA	0.421	NA	<0.0250	NA
ISO11-01-03-14-043	CGMN-GW-PW10-DB-140425	0.0517	NA	0.420	NA	<0.0250	NA
ISO11-01-03-14-044	CGMN-GW-PW10-FMS-140425	1.92	93.7	2.32	98.9	1.88	94.0
Average Concentration (ng/mL) ± %RPD		0.0469 ng/mL ± 21% ⁽²⁾		0.421 ng/mL ± 0.24%		<0.0250 ng/mL	

		PFDA		PFUnA		PFDoA	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-042	CGMN-GW-PW10-0-140425	<0.0250	NA	<0.0250	NA	<0.0250	NA
ISO11-01-03-14-043	CGMN-GW-PW10-DB-140425	<0.0250	NA	<0.0250	NA	<0.0250	NA
ISO11-01-03-14-044	CGMN-GW-PW10-FMS-140425	1.83	91.5	1.93	96.5	1.97	98.5
Average Concentration (ng/mL) ± %RPD		<0.0250 ng/mL		<0.0250 ng/mL		<0.0250 ng/mL	

NA = Not Applicable
NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration.
(1) Samples were analyzed using internal standard calibration.
(2) Sample/sample duplicate RPD did not meet acceptance criteria of ≤20%.

PAGE 49 OF 60

Table 23 continued. CGMN-GW-PW10-140425 (1)

		PFBS		PFHS		PFOS	
3M LIMS ID	Description	Concentration ((ng/mL) %Recovery		Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-042	CGMN-GW-PW10-0-140425	0.460	NA	0.105	NA	0.438	NA
ISO11-01-03-14-043	CGMN-GW-PW10-DB-140425	0.481	NA	0.115	NA	0.435	NA
ISO11-01-03-14-044	CGMN-GW-PW10-FMS-140425	2.11	82.0	1.92	90.5	2.31	101
Average Concentration (ng/mL) ± %RPD		0.471 ng/mL ± 4.5%		0.110 ng/mL ± 9.1%		0.437 ng/mL ± 0.69%	

		¹³ C ₃ -PFBA	¹³ C ₄ -PFOA	¹³ C ₂ -PFUnA	¹³ C₄-PFOS
3M LIMS ID Description		%Recovery	%Recovery	%Recovery	%Recovery
ISO11-01-03-14-042	CGMN-GW-PW10-0-140425	99.2	87.6	95.9	94.1
ISO11-01-03-14-043	ISO11-01-03-14-043 CGMN-GW-PW10-DB-140425		101	99.8	88.4
ISO11-01-03-14-044	CGMN-GW-PW10-FMS-140425	98.5	95.5	97.6	93.4
Average	Recovery (%) ± %RSD	98.5% ± 0.76%	94.7% ± 7.1%	97.8% ± 2.0%	92.0% ± 3.4%

NA = Not Applicable
NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration.
(1) Samples were analyzed using internal standard calibration.
(2) Sample/sample duplicate RPD did not meet acceptance criteria of ≤20%.

PAGE 50 OF 60

Table 24. CGMN-GW-TRIP-140423 (1)

		PFBA		PFPeA		PFHxA	
3M LIMS ID	M LIMS ID Description		%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-046	CGMN-GW-TRIP-0-140423	<0.0500	NA	<0.0250	NA	<0.0250	NA
ISO11-01-03-14-047	CGMN-GW-TRIP-LS-140423	2.00	100	1.86	93.0	1.82	91.0
ISO11-01-03-14-048	CGMN-GW-TRIP-MS-140423	5.19	51.9 ⁽²⁾	4.96	49.6 ⁽²⁾	4.79	47.9 ⁽²⁾
ISO11-01-03-14-049	CGMN-GW-TRIP-HS-140423	99.0	99.0	NA ⁽³⁾	NA (3)	NA ⁽³⁾	NA (3)

		PFHpA		PFOA		PFNA	
3M LIMS ID	Description	Concentration (ng/mL) %Recovery		Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-046	CGMN-GW-TRIP-0-140423	<0.0250	NA	<0.0480	NA	<0.0250	NA
ISO11-01-03-14-047	CGMN-GW-TRIP-LS-140423	1.94	97.0	1.79	93.2	1.81	90.5
ISO11-01-03-14-048	CGMN-GW-TRIP-MS-140423	4.88	48.8 ⁽²⁾	4.91	51.3 ⁽²⁾	4.69	46.9 ⁽²⁾
ISO11-01-03-14-049	CGMN-GW-TRIP-HS-140423	NA ⁽³⁾	NA ⁽³⁾	85.4	86.4	NA ⁽³⁾	NA ⁽³⁾

		PFDA		PFUnA		PFDoA	
3M LIMS ID Description		Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-14-046	CGMN-GW-TRIP-0-140423	<0.0250	NA	<0.0250	NA	<0.0250	NA
ISO11-01-03-14-047	CGMN-GW-TRIP-LS-140423	1.82	91.0	1.88	94.0	1.89	94.5
ISO11-01-03-14-048	CGMN-GW-TRIP-MS-140423	4.74	47.4 ⁽²⁾	4.99	49.9 ⁽²⁾	4.93	49.3 ⁽²⁾
ISO11-01-03-14-049	CGMN-GW-TRIP-HS-140423	NA ⁽³⁾	NA ⁽³⁾	NA ⁽³⁾	NA ⁽³⁾	NA ⁽³⁾	NA ⁽³⁾

NA = Not Applicable
(1) Samples were analyzed using internal standard calibration.
(2) Field matrix spike recovery did not meet acceptance criteria of 100 ± 30%.
(3) The spike level did not contain the target analyte.

PAGE 51 OF 60

Table 24 continued. CGMN-GW-TRIP-140423 (1)

		PFBS		PFHS		PFOS	
3M LIMS ID	Description	Concentration (ng/mL) %Rec		Concentration (ng/mL)			%Recovery
ISO11-01-03-14-046	CGMN-GW-TRIP-0-140423	<0.0250	NA	<0.0250	NA	<0.185	NA
ISO11-01-03-14-047	CGMN-GW-TRIP-LS-140423	1.67	83.5	1.78	89.0	1.77	95.7
ISO11-01-03-14-048	CGMN-GW-TRIP-MS-140423	4.19	41.9 ⁽²⁾	4.63	46.3 ⁽²⁾	4.50	48.5 ⁽²⁾
ISO11-01-03-14-049	CGMN-GW-TRIP-HS-140423	71.8	72.5	83.9	84.7	102	103

		¹³ C ₃ -PFBA	¹³ C ₄ -PFOA	¹³ C ₂ -PFUnA	¹³ C₄-PFOS
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery	%Recovery
ISO11-01-03-14-046	CGMN-GW-TRIP-0-140423	100	104	97.2	99.1
ISO11-01-03-14-047	CGMN-GW-TRIP-LS-140423	97.3	90.5	95.2	99.7
ISO11-01-03-14-048	CGMN-GW-TRIP-MS-140423	104	109	100	99.0
ISO11-01-03-14-049	CGMN-GW-TRIP-HS-140423	98.3	103	97.0	89.2

NA = Not Applicable
(1) Samples were analyzed using internal standard calibration.
(2) Field matrix spike recovery did not meet acceptance criteria of 100 ± 30%.
(3) The spike level did not contain the target analyte.

PAGE 52 OF 60

5 Conclusion

Laboratory control spikes were used to determine the analytical method accuracy and precision for all analytes. The accuracy and precision were then used to estimate the method uncertainty for the results. Field matrix spike recoveries demonstrated that the analytical method was appropriate for the given sample matrix. Analysis was completed using 3M Environmental Laboratory method ETS-8-044.1 "Method of Analysis for the Determination of Perfluorinated Compounds in Water by LC/MS/MS; Direct Injection Analysis". Analytical results are reported in Table 1 and 10-24 of this report.


6 Data / Sample Retention

All remaining sample and associated project data (hardcopy and electronic) will be archived according to 3M Environmental Laboratory standard operating procedures.

7 Attachments

Attachment A: Select target analyte historical trend data for select Cottage Grove locations.

8 Signatures

Digitally signed by Susan T. Wolf DN: c=US, st=MN, I=St. Paul, ou=3M Environmental Laboratory - authenticated by LRA, email=stwolf@mmm.com, o=3M, cn=5usan T. Wolf Reason: I have reviewed this document Date: 2014.05.27 12:17.23 -05:00'

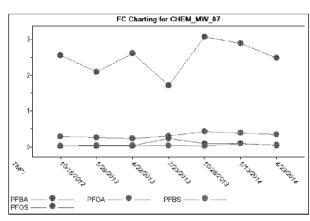
Susan T. Wolf, 3M Principal Analytical Investigator

1 All

Digitally signed by William K. Reagen DN: ceUS, st=MN, ESt. Paul, out=aboratory Director, oue-SM Environmental Laboratory - authenticatec by LRA, email=wtragen@mmm.com, or=3M, cr=William K. Reagen@mmm.com, or=3M, cr=William K. Reagen@mmm.com Date: 2014.05.27 12:57/44 -0500'

William K. Reagen, Ph.D., 3M Environmental Laboratory Technical Director

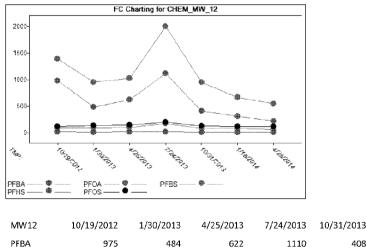
The 3M Environmental Laboratory's Quality Assurance Unit has audited the data and report for this project.


save reviewed Inia document L05.28 07:48:21 -09001

Quality Assurance Representative

This test report shall not be reproduced except in full, without written approval of the 3M Environmental Laboratory.

PAGE 53 OF 60


Attachment A: Select Target Analyte Historical Trend Data; units of ng/mL

MW07

MW07	10/15/2012	1/29/2013	4/22/2013	7/23/2013	10/28/2013	1/13/2014	4/23/2014
PFBA	2.55	2.09	2.61	1.71	3.07	2.88	2.48
PFOA	0.298	0.259	0.240	0.303	0.428	0.390	0.344
PFBS	<0.0250	<0.0250	0.0268	0.0396	0.0291	< 0.100	0.0360
PFOS	0.0257	0.0439	0.0459	0.241	0.104	0.104	0.0493

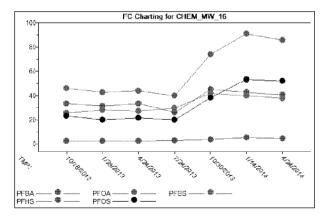
MW12

MW12	10/19/2012	1/30/2013	4/25/2013	7/24/2013	10/31/2013	1/16/2014	4/25/2014
PFBA	975	484	622	1110	408	312	220
PFOA	1390	946	1020	2000	954	668	548
PFBS	94.3	91.4	105	175	87.7	82.1	68.9
PFHS	20.9	13.7	16.4	23.9	13	13.1	9.82
PFOS	122	143	145	204	131	121	117

PAGE 54 OF 60

3M_MN01596128

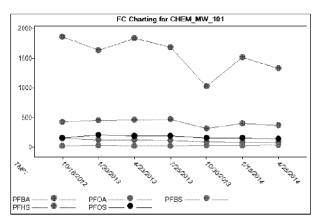
3630.0179


Attachment A continued: Select Target Analyte Historical Trend Data; units of ng/mL

MW13

MW13	10/17/2012	1/29/2013	4/24/2013	7/23/2013	10/30/2013	1/14/2014	4/24/2014	
PFBA	7.10	5.60	9.34	8.30	6.48	9.80	7.14	
PFOA	3.33	2.56	5.46	6.17	4.01	9.78	8.63	
PFBS	0.619	0.560	0.972	1.07	0.571	1.20	0.752	
PFHS	0.487	0.396	0.931	1.05	0.366	0.969	0.556	
PFOS	3.85	3.92	4.05	4.02	1.40	3.08	2.33	

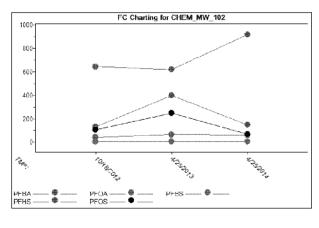
MW16



MW16	10/18/2012	1/29/2013	4/24/2013	7/24/2013	10/30/2013	1/14/2014	4/24/2014
PFBA	33.6	31.5	33.2	26.3	45.0	42.9	40.7
PFOA	45.9	42.6	43.8	39.9	73.9	91.0	85.7
PFBS	25.7	28.3	27.5	29.6	42.1	40.0	37.9
PFHS	2.71	2.54	2.74	2.83	3.95	5.52	4.49
PFOS	23.1	20.2	21.8	20.1	38.2	53.1	51.9

PAGE 55 OF 60

3M_MN01596129


3630.0180

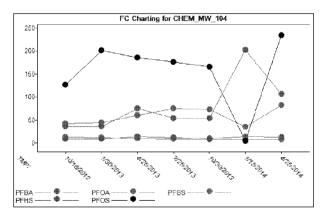
MW101

MW101	10/18/2012	1/30/2013	4/23/2013	7/25/2013	10/30/2013	1/15/2014	4/25/2014
PFBA	1860	1630	1830	1680	1020	1510	1330
PFOA	147	124	121	112	86.7	79.4	76.0
PFBS	23.9	25.2	19.5	24.0	25.5	25.4	37.8
PFHS	427	455	459	464	314	398	364
PFOS	154	206	188	189	158	159	135

MW102

/18/2012	4/25/2013	4/25/2014
648	621	919
42.2	62.0	58.1
5.52	4.57	7.12
129	401	147
107	250	67.4
	648 42.2 5.52 129	64862142.262.05.524.57129401

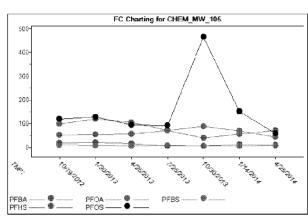
PAGE 56 OF 60


3M_MN01596130

	FC Charting for CHEM_MW_103
250-	
200-	
150-	
100-	
50-	
0-	
AND.	
РЕВА Ф РЕНЗ Ф	PF0A @ PFBS @
MW103	10/18/2012 4/25/2013 4/25/2014

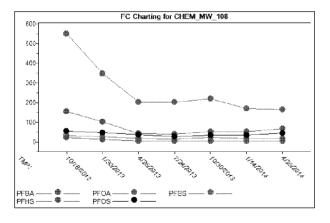
MW103

MW103	1 0/18/201 2	4/25/2013	4/25/2014
PFBA	226	241	241
PFOA	115	126	121
PFBS	7.16	7.01	6.51
PFHS	26.2	24.7	21.8
PFOS	4.02	1.55	7.82


MW104

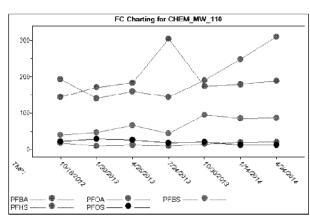
MW104	10/18/2012	1/30/2013	4/25/2013	7/25/2013	10/30/2013	1/15/2014	4/25/2014
PFBA	36.0	36.3	74.7	54.3	53.6	202	107
PFOA	42.0	44.8	60.7	74.7	72.5	35.1	82.1
PFBS	12.6	11.4	9.75	8.16	7.95	7.50	8.10
PFHS	8.69	9.07	13.4	11.8	10.1	14.2	12.6
PFOS	127	201	185	176	165	4.25	234

PAGE 57 OF 60


3M_MN01596131

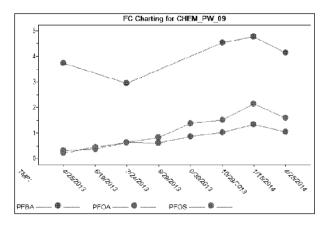
MW105

MW105	10/19/2012	1/30/2013	4/25/2013	7/25/2013	10/30/2013	1/14/2014	4/25/2014
PFBA	52.7	54.4	57.0	71.6	38.9	55.6	71.0
PFOA	98.3	119	104	70.6	87.2	68.3	44.3
PFBS	9.46	8.03	5.72	6.49	4.98	6.15	7.68
PFHS	18.9	21.1	16.0	6.35	6.01	12.6	8.59
PFOS	120	129	95.0	92.3	467	152	58.7


MW108

MW108	10/18/2012	1/30/2013	4/25/2013	7/24/2013	10/30/2013	1/14/2014	4/25/2014
PFBA	155	101	42.5	38.0	51.7	51.6	65.4
PFOA	550	348	201	202	218	169	164
PFBS	30.5	26.5	16.1	14.6	21.6	17.0	17.4
PFHS	20.7	11.1	4.95	4.94	4.47	4.13	3.58
PFOS	55.2	45.5	37.3	26.8	33.2	33.5	43.3

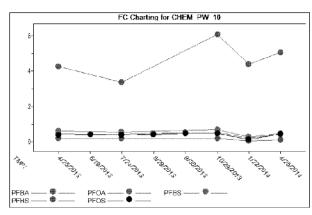
PAGE 58 OF 60


3M_MN01596132

MW110

MW110	10/18/2012	1/30/2013	4/25/2013	7/24/2013	10/30/2013	1/14/2014	4/24/2014
PFBA	144	171	183	304	174	179	189
PFOA	193	141	160	144	190	248	310
PFBS	39.6	46.6	66.7	43.8	94.8	85.1	86.1
PFHS	17.6	10.3	11.8	9.41	15.3	19.4	20.9
PFOS	21.6	28.6	26.4	17.8	21.1	12.1	12.5

PW09



PW09	4/25/2013	6/19/2013	7/24/2013	8/29/2013	9/30/2013	10/29/2013	1/15/2014	4/25/2014
PFBA	3.72	NA	2.95	NA	NA	4.53	4.76	4.14
PFOA	0.223	0.462	0.624	0.605	0.873	1.02	1.33	1.05
PFOS	0.324	0.376	0.622	0.818	1.38	1.52	2.13	1.60

NA=Not applicable; analyte was not requested for this sampling event.

PAGE 59 OF 60

3M_MN01596133

PW10

PW10	4/25/2013	6/19/2013	7/24/2013	8/29/2013	9/30/2013	10/29/2013	1/22/2014	4/25/2014
PFBA	4.25	NA	3.37	NA	NA	6.09	4.40	5.07
PFOA	0.428	0.415	0.420	0.471	0.528	0.524	0.212	0.421
PFBS	0.594	NA	0.540	NA	NA	0.703	0.261	0.471
PFHS	0.197	NA	0.185	NA	NA	0.193	0.0485	0.110
PFOS	0.396	0.401	0.38	0.415	0.465	0.458	0.124	0.437

NA=Not applicable; analyte was not requested for this sampling event.

PAGE 60 OF 60

3M ENVIRONMENTAL LABORATORY Chain-of-Custody

Shipping Address: 3M Environmental Laboratory 3M Center, Bldg 260-5N-17 St. Paul, MN 55144

Phone: (651) 733-9873 All. Phone: (651) 736-6559 Fax: (651) 733-4687

Project: ISO11-01-03-14

Requester: Kotsmith, James Ronald (MAPLEWO Department: 452090 Site Source: 0119C020 Project Number: 0073138015 Date Created: 4/14/2014 Project Description: Cottage Grove GW Sampling; 2nd Quarter 2014 Comments:

Completion Date: Project Lead: Susan T. Wolf Phone Number: 651-733-9851 Email Address: stwolf@mmm.com

3M Sample Number	Sample Description	Date/Time Sampled Matrix Comment
ISO11-01-03-14-001	CGMN-GW-GW-MW07-0- 19 64 23	
ISO11-01-03-14-002	CGMN-GW-GW-MW07-DB- 14 CH 23	
18011-01-03-14-003	CGMN-GW-GW-MW07-FMS-14 64-23	4/23/14 1425
ISO11-01-03-14-004	COMN-GW-MW12-0- 1404 25	1/25/14 1930
ISO11-01-03-14-005	CGMN-GW-MW12-DB-	1630
ISO11-01-03-14-006	CGMN-GW-MW12-LS-	1530
15011-01-03-14-007	CGMN-GW-MW12-HS- 146925	4/25/14 1530
ISO11-01-03-14-008	ССММ-GW-МW13.0. 14 04 24	4/24/19 1215
ISO11-01-03-14-009	CGMN-GW-MW13-DB-	4/24/14 1215
ISO11-01-03-14-010	CGMN-GW-MW13-EMS- 140434	4/24/14 1215
ISOT1-01-03-14-011	CGMN-GW-MW14R-0- 14 04 23	4/23/14 1005
SOI1-01-03-14-012	CGMN-GW-MW14R-DB-	4/23/14 1505
SO11-01-03-14-013	CGMN-GW-MW14R-LS-	4/23/14 1505
SO11-01-03-14-014	CGMN-GW-MW14R-HS- 146423	4/23/14 1505 BW

Sample Condition Upon Receipt Deg C

Acceptable

All items accounted for

Temperature:

Received on Ice

Other:

HUNTER Collected by (print): TOHN st. Collector's signature: Relinquished by: Date Time Shipped Via Received by: Date Time

Page 1 of 4

3M_MN01596135

3M ENVIRONMENTAL LABORATORY Chain-of-Custody

Project: ISO11-01-03-14 (cont.)

3M Sample Number

Requester: Kotsmith, James Ronald (MAPLEWO Department: 452090 Site Source: 0119C020 Project Number: 0073138015 Date Created: 4/14/2014 Project Description: Cottage Grove GW Sampling; 2nd Quarter 2014

Sample Description

Shipping Address: 3M Environmental Laboratory 3M Center, Bldg 260-5N-17 St. Paul, MN 55144

Phone: (651) 733-9873 Alt. Phone: (651) 736-6559 Fax: (651) 733-4687

Completion Date: Project Lead: Susan T. Wolf Phone Number: 651-733-9851 Email Address: stwolf@mmm.com

<u> </u>	Sample Description	Date/Time Sampled Matrix Comment
ISO11-01-03-14-015	CGMN-GW-MW16-0- 140424	
ISO11-01-03-14-016	CGMN-GW-MW16-DB-	4/24/14 1350 GW
15011-01-03-14-017	CGMN-GW-MW16-LS-	4/24/14 1350
18011-01-03-14-018	CGMN-GW-MW16-HS- 146424	4/24/14 1350
ISO11-01-03-14-019	CGMN-GW-MW101-0- 140425	4/24/14 1350
18011-01-03-14-020	CGMN-GW-MW101-DB-	9/25/14 1245
ISO11-01-03-14-021	COMN-GW-MW101-LS-	1245
ISO11-01-03-14-022	CGMN-GW-MW101-HS-	1245
ISO11-01-03-14-023	CGMN-GW-MW104-0-	12.45
15011-01-03-14-024	CGMN-GW-MW104-DB-	1325
15011-01-03-14-025	CGMN-GW-MW104-LS-	1326
ISO11-01-03-14-026	CGMN-GW-MW104-HS-	1729
ISO11-01-03-14-027	CGMN-GW-MW105-0-	1325
ISO11-01-03-14-028	COMN-GW-MW105-DB-	1135
SC11-01-03-14-029	CGMN-GW-MW105-LS-	1435
SO11-01-03-14-030	CGMN-GW-MW105-HS-	1935
SO11-01-03-14-031	CGMN-GW-MW108-0- 140425	4/25/14 1515 6W

Sample Condition Upon Receipt

□ Acceptable

All items accounted for

Temperature;

Received on Ice

Deg C

Other:

Collected by (print); JOHN HUNTER L. Collector's signature: Relinquished by: Date Time Shipped Via Received by: Date Time

Page 2 of 4

3M_MN01596136

SM ENVIRONMENTAL LABORATORY Chain-of-Custody

Completion Date;

Project Lead: Susan T. Wolf

Phone Number: 651-733-9851 Email Address: stwolf@mmm.com

Shipping Address:

3M Environmental Laboratory 3M Center, Bldg 260-5N-17 St. Paul, MN 55144

Phone: (651) 733-9873 Alt. Phone: (651) 736-6559 Fax: (651) 733-4687

Project: ISO11-01-03-14 (cont.)

Requester: Kotsmith, James Ronald (MAPLEWO Department: 452090 Site Source: 01J9C020 Project Number: 0073138015 Date Created: 4/14/2014 Project Description: Cottage Grove GW Source: 2, 100

Project Description: Cottage Grove GW Sampling; 2nd Quarter 2014 <u>3M Sample Number</u> Sample Description

3M Sample Number	Sample Description	Date/Time Sampled Matrix Comment
ISO11-01-03-14-032	CGMN-GW-MW108-DB- 40475	
18011-01-03-14-033	CGMN-GW-MW108-LS-	
ISO11-01-03-14-034	CGMN-GW-MWIC8-HS- 140425	4/25/14 1515
18011-01-03-14-035	CGMN-GW-MW110-0- 146424	
ISOI1-01-03-14-036	CGMN-GW-MW110-DB-	
ISO11-0f-03-14-037	COMN-GW-MW110-LS-	1500
ISO11-01-03-14-038	CGMN-GW-MW110-HS- 140424	
ISOI1-01-03-14-039	CGMN+GW-PW09-0- 1404 65	
ISOT1-01-03-14-040	CGMN-GW-PW09-DB-	
SO11-01-03-14-041	CGMN-GW-PW09-FMS-	1000
SO11-01-03-14-042	CGMN-GW-PW10-0-	1000
SO11-01-03-14-043	CGMN-GW-PW10-DB-	0945
SQ11-01-03-14-044	COMN-GW-PW10-FMS- 140429	0945
SO11-01-03-14-045	COMN-OW-OW- AWOUTRB- 1404 25	1 0945
SC11-01-03-14-046	CGMN-GW-TRIP-0- 146412	4/25/14 110
5011-01-03-14-047	CGMN-GW-TRIP-LS- 140423	4/23/14 1300
011-01-03-14-048	CGMN-GW-TRIP-MS- 140423	4/23/4 1300 U 4/23/4 1300 GW

Sample Condition Upon Receipt: Temperature: De

□ Acceptable

Deg C

All items accounted for

Received on Ice Other:

 Collected by (print):
 JOHN
 HUNTER
 Collector's signature:
 John

 Relinquished by:
 Date
 Time
 Shipped Via
 Received by:
 Date
 Time

Page 3 of 4

3M_MN01596137

3M ENVIRONMENTAL LABORATORY Chain-of-Custody

Shipping Address:

3M Environmental Laboratory 3M Center, Bidg 260-5N-17 St. Paul, MN 55144

Phone: (651) 733-9873 Alt. Phone: (651) 736-6559 Fax: (651) 733-4687

Project: ISO11-01-03-14 (cont.)

Requester: Kotsmith, James Ronald (MAPLEWO Department: 452090 Site Source: 01J9C020 Project Number; 0073138015 Date Created: 4/14/2014 Project Description: Cottage Grove GW Sampling; 2nd Quarter 2014

3M Sample Number Sample Description

Completion Date: Project Lead: Susan T. Wolf Phone Number: 651-733-9851 Email Address: stwolf@mmm.com

<u>erresonnpic (MDHDer</u>	Sample Description	Date/Time Sampled Matrix Comment
18011-01-03-14-049	CGMN-GW-TRIP-HS- 140423	I Hand I I I I
15011-01-03-14-050	CGMN-GW-MW102-0- 140426	
ISO11-01-03-14-051	CGMN-GW-MW102-DB-	
ISO11-01-03-14-052	CGMN-GW-MW102-LS-	1200
ISO11-01-03-14-053	CGMN-GW-MW102-HS-	1200
SO11-01-03-14-054	CGMN-GW-MW103-0.	100
SO11-01-03-14-055	CGMN-GW-MW103-DB-	345
SO11-01-03-14-056	CGMN-GW-MW103-LS.	1345
SOT1-01-03-14-057	CGMN-GW-MW103-HS- 140425	4/25/14 1345 GW

Sample Condition Upon Receipt

C Acceptable

All items accounted for

Temperature:

Received on Ice

Other:

Deg C

		<u>ne renz</u>	 Collector's signature:	an AX	
Relinquished by:	Date	Time	Received by:	Date	Time
				ŀ	
					-
		-			
	L	- I			

Page 4 of 4

3M_MN01596138

JULY 2014

Final Report

Analysis of PFBA, PFOA, PFBS, PFHS, and PFOS in Aqueous Samples, Cottage Grove Groundwater Sampling 3rd Quarter 2014

Laboratory Request Number: ISO11-01-03-16

Report Date - Date of Last Signature

Testing Laboratory

3M EHS&S Operations 3M Environmental Laboratory Building 260-5N-17 Maplewood, MN 55144-1000

Requester

Gary Hohenstein 3M EHS&S Operations 3M Building 224-5W-03 Saint Paul, MN 55144-1000 Phone: (651) 737-3570

The testing reported herein meet the requirements of ANSI/ISO/IEC 17025:2005 "General Requirements for the Competence of Testing and Calibration Laboratories", in accordance with A2LA Certificate # 2052.01. Additionally, the laboratory's quality system has been audited and was determined to be in conformance with the EPA GLPs (40 CFR 792) by an independent A2LA assessment.

PAGE 1 OF 37

3M_MN01596140

3M Environmental Laboratory

3M Environmental Laboratory Technical Director: William K. Reagen, Ph.D. 3M Principal Analytical Investigator: Susan Wolf Report Author: Chelsie Grochow

Analytical Report ISO11-01-03-16

Analysis of PFBA, PFOA, PFBS, PFHS, and PFOS in Aqueous Samples, Cottage Grove Groundwater Sampling -3^{rd} Quarter 2014

Report Date: Date of Last Signature

1 Introduction/Summary

The 3M Environmental Laboratory prepared and analyzed groundwater samples collected by Weston Solutions personnel at the 3M Cottage Grove facility. Samples were collected on July 15-17, 2014. Samples were returned to the 3M Environmental Laboratory on July 18, 2014 on ice for the analysis of Perfluorobutanoic acid (PFBA), Perfluoroctanoic acid (PFOA), Perfluorobutane sulfonate (PFBS), Perfluorohexane sulfonate (PFHS) and Perfluoroctane sulfonate (PFOS) under laboratory project number ISO11-01-03-16.

The 3M Environmental Laboratory prepared sample containers for twelve sampling locations. Each sample set consisted of a field sample, field sample duplicate, and a target analyte field matrix spike. Each empty container was marked with a "fill to here" line that corresponded to a final volume of 200 mL. Containers reserved for field matrix spikes were fortified with an appropriate matrix spike solution containing the target analytes prior to being sent to the field for sample collection. Select sample bottles were fortified with internal standards and surrogate recovery standards prior to being sent to the field for sample collection.

Samples were prepared and analyzed for PFBA, PFOA, PFBS, PFHS, and PFOS using method ETS-8-044.1 "Method of Analysis for the Determination of Perfluorinated Compounds in Water by LC/MS/MS; Direct Injection Analysis". Internal standards were used to aid in the data quality objectives for the analysis of select samples, were applicable.

Table 1 summarizes the sample results using the analytical method identified above. All results for quality control samples prepared and analyzed with the samples will be reported and discussed elsewhere in this report.

The testing reported herein meet the requirements of ANSI/ISO/IEC 17025:2005 "General Requirements for the Competence of Testing and Calibration Laboratories", in accordance with A2LA Certificate # 2052.01. Additionally, the laboratory's quality system has been audited and was determined to be in conformance with the EPA GLPs (40 CFR 792) by an independent A2LA assessment.

PAGE 2 OF 37

3M_MN01596141

Table 1. Sample Results Summary ⁽¹⁾

			Conc	entration (ng	/mL)	
3M LIMS ID	Sample Description	PFBA	PFOA	PFBS	PFHS	PFOS
ISO11-01-03-16-001	CGMN-MW07-0-140716	3.16	0.606	0.0759	0.0434	0.237
ISO11-01-03-16-002	CGMN-MW07-DB-140716	2.93	0.598	0.0765	0.0398	0.236
	Average	3.05	0.602	0.0762	0.0416	0.237
	%RPD Sample/Sample Dup	7.6	1.3	0.79	8.7	0.42
ISO11-01-03-16-004	CGMN-MW12-0-140717	157	395	49.3	7.87	94.2
ISO11-01-03-16-005	CGMN-MW12-DB-140717	150	409	51.4	8.34	99.5
	Average	154 ⁽²⁾	402 ⁽²⁾	50.4 ⁽²⁾	8.11 ⁽²⁾	96.9 ⁽²⁾
	%RPD Sample/Sample Dup	4.6	3.5	4.2	5.8	5.5
ISO11-01-03-16-007	CGMN-MW13-0-140716	7.86	13.9	0.970	0.700	4.37
ISO11-01-03-16-008	CGMN-MW13-DB-140716	8.29	14.8	0.975	0.726	4.58
	Average	8.08	14.4	0.973	0.713	4.48
	%RPD Sample/Sample Dup	5.3	6.3	0.51	3.6	4.7
ISO11-01-03-16-010	CGMN-MW14R-0-140716	685	430	29.8	20.7 (2)	156 ⁽²⁾
ISO11-01-03-16-011	CGMN-MW14R-DB-140716	657	421	29.3	19.4 ⁽²⁾	159 ⁽²⁾
	Average	671 ⁽²⁾	426 ⁽²⁾	29.6 ⁽²⁾	20.1 ⁽²⁾	158 ⁽²⁾
	%RPD Sample/Sample Dup	4.2	2.1	1.7	6.5	1.9
ISO11-01-03-16-013	CGMN-MW16-0-140716	46.7	99.1	37.4	5.39	57.8
ISO11-01-03-16-014	CGMN-MW16-DB-140716	44.7	97.4	38.3	5.52	56.1
	Average	45.7	98.3	37.9	5.46	57.0
	%RPD Sample/Sample Dup	4.4	1.7	2.4	2.4	3.0
ISO11-01-03-16-016	CGMN-MW101-0-140717	1460	83.5	29.5	483	19 1
ISO11-01-03-16-017	CGMN-MW101-DB-140717	1450	84.2	29.0	477	194
	Average	1460 ⁽²⁾	83.9 ⁽²⁾	29.3 ⁽²⁾	480 ⁽²⁾	193 ⁽²⁾
	%RPD Sample/Sample Dup	0.69	0.83	1.7	1.3	1.6
ISO11-01-03-16-019	CGMN-MW104-0-140717	47.4	74.4	8.62	8.90	228
ISO11-01-03-16-020	CGMN-MW104-DB-140717	48.4	78.5	8.74	8.99	238
	Average	47.9 ⁽²⁾	76.5 ⁽²⁾	8.68 (2)	8.95 ⁽²⁾	233 (2)
	%RPD Sample/Sample Dup	2.1	5.4	1.4	1.0	4.3
ISO11-01-03-16-022	CGMN-MW105-0-140717	40.9	27.3	4.87	6.34	37.5
ISO11-01-03-16-023	CGMN-MW105-DB-140717	37.4	28.0	4.91	6.96	34.9
	Average	39.2 ⁽²⁾	27.7 (2)	4.89 ⁽²⁾	6.65 ⁽²⁾	36.2 ⁽²⁾
	%RPD Sample/Sample Dup	8.9	2.5	0.82	9.3	7.2
ISO11-01-03-16-025	CGMN-MW108-0-140717	224	526	60.5	11.4	58.2
ISO11-01-03-16-026	CGMN-MW108-DB-140717	219	518	60.9	11.1	57.7
	Average	222 ⁽²⁾	522 ⁽²⁾	60.7 ⁽²⁾	11.3 ⁽²⁾	58.0 ⁽²⁾
	%RPD Sample/Sample Dup	2.3	1.5	0.66	2.7	0.86

NA = Not Applicable

(1) Sample set was analyzed by internal standard calibration, except where noted. The analytical method uncertainties associated with the reported results by internal standard calibration are as follows: PFBA ± 17%, PFOA ± 15%, PFBS ± 18%, PFHS ± 17%, and PFOS ± 20%.

(2) Sample set was analyzed by external standard calibration. The analytical method uncertainties associated with the reported results by external standard calibration are as follows: PFBA ± 18%, PFOA ± 13%, PFBS ± 15%, PFHS ± 13%, and PFOS ± 11%.

(3) The sample/sample duplicate RPD did not meet acceptance criteria of $\leq 20\%$.

PAGE 3 OF 37

		Concentration (ng/mL)				
3M LIMS ID	Sample Description	PFBA	PFOA	PFBS	PFHS	PFOS
ISO11-01-03-16-028	CGMN-MW110-0-140716	187	344	8 1.1	21.4	16.4
ISO11-01-03-16-029	CGMN-MW110-DB-140716	183	435	83.4	26.7	14.4
	Average	185 ⁽²⁾	390 ⁽²⁾	82.3 ⁽²⁾	24.1 ⁽²⁾	15.4 ⁽²⁾
	%RPD Sample/Sample Dup	2.2	23 ⁽³⁾	2.8	22 ⁽³⁾	13
ISO11-01-03-16-031	CGMN-PW09-0-140717	4.32	1.17	0.152	0.0810	1.79
ISO11-01-03-16-032	CGMN-PW09-DB-140717	4.32	1.15	0.158	0.0806	1.78
	Average	4.32	1.16	0.155	0.0808	1.79
	%RPD Sample/Sample Dup	0.0	1.7	3.9	0.50	0.56
ISO11-01-03-16-034	CGMN-PW10-0-140717	4.79	0.479	0.522	0.101	0.498
ISO11-01-03-16-035	CGMN-PW10-DB-140717	5.01	0.489	0.558	0.106	0.507
	Average	4.90	0.484	0.540	0.104	0.503
	%RPD Sample/Sample Dup	4.5	2.1	6.7	4.8	1.8

Table 1 continued. Sample Results Summary (1)

NA = Not Applicable

(1) Sample set was analyzed by internal standard calibration, except where noted. The analytical method uncertainties associated with the reported results by internal standard calibration are as follows: PFBA ± 17%, PFOA ± 15%, PFBS ± 18%, PFHS ± 17%, and PFOS ± 20%.

(2) Sample set was analyzed by external standard calibration. The analytical method uncertainties associated with the reported results by external standard calibration are as follows: PFBA±18%, PFOA±13%, PFBS±15%, PFHS±13%, and PFOS±11%.

(3) The sample/sample duplicate RPD did not meet acceptance criteria of ≤20%.

2 Methods - Analytical and Preparatory

2.1 Methods

Analysis was completed following 3M Environmental Laboratory method ETS-8-044.1 "Method of Analysis for the Determination of Perfluorinated Compounds in Water by LC/MS/MS; Direct Injection Analysis".

Table	2	Taxant Amalutaa
rable	۷.	Target Analytes

Target Analytes	Acronym	Reference Material Structure
Perfluorobutanoic Acid (C4 Acid)	PFBA	Linear
Perfluorooctanoic Acid (C8 Acid)	PFOA	Linear + Branched
Perfluorobutanesulfonate (C4 Sulfonate)	PFBS	Linear
Perfluorohexanesulfonate (C6 Sulfonate)	PFHS	Linear
Perfluorooctanesulfonate (C8 Sulfonate)	PFOS	Linear + Branched

2.2 Sample Collection

Samples were collected on July 15-17, 2014 in Nalgene[™] (high-density polyethylene) bottles prepared at the 3M Environmental Laboratory. Prior to sample collection, bottles designated for field matrix spikes were spiked in the laboratory with a known volume of an appropriate matrix spiking solution containing the analytes of interest. Collected sample bottles were returned to the laboratory on ice on July 18, 2014.

PAGE 4 OF 37

3M_MN01596143

2.3 Sample Preparation

Sample concentrations were expected to range from <0.025 ng/mL to >1000 ng/mL. Sampling locations that were expected to have concentration <100 ng/mL were analyzed by internal standard calibration analysis. Sampling locations that were expected to have concentration >100 ng/mL were analyzed by external standard calibration analysis. The following sample preparation procedures were followed for each type of analysis.

Internal standard calibration analysis: Samples analyzed by internal standard calibration were prepared by removing a 0.4 mL aliquot of the well mixed sample and diluting it with 0.4 mL of methanol (dilution factor of 2).

During the preparation of the laboratory control samples, an aliquot of a separate internal standard spiking solution was added to the laboratory control samples (nominal concentration of 1 ng/mL). The sample bottles were spiked with an internal standard mix at a nominal concentration of 1 ng/mL prior to being sent to the field for sample collection. The laboratory control samples were then diluted with methanol in the same manner as the samples.

External standard calibration analysis: Samples analyzed by external standard calibration required dilution prior to analysis. Samples were prepared by diluting 0.1 mL of a well-mixed sample with 9.8 mL of methanol (dilution factor of 100). An aliquot of surrogate spiking solution was added to the diluted samples at a nominal concentration of 1 ng/mL.

2.4 Analysis

All samples and quality control samples were analyzed for five target analytes using high performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS). Pertinent instrument parameters, the liquid chromatography gradient program, and the specific mass transitions analyzed are described in the tables below.

Due to the nature of the sample, the wide range of concentrations found in the sample, and the environmental occurrence of multiple isomers of the laboratory's analytes of interest, the software used for processing the analytical results is not able to consistently integrate the analytical peak, manual integration of the analytical peak is necessary. All manual integrations are performed following the procedures outlined in method ETS-12-010. The consistency of the laboratory's integration is ensured through the training of laboratory personnel, the peer review process required for all manual integrations, the review of manual integrations by the QAU, and where necessary the review of manual integrations by laboratory management.

Instrument Name	ETS Kirk
Liquid Chromatograph	Agilent 1260
Analysis Method	ETS-8-044.1
Analysis Date	7/22/14, 7/23/14, 7/28/14
Guard column	Betasil C18 (4.6 mm X 100 mm), 5 μ
Analytical column	Betasil C18 (4.6 mm X 100 mm), 5 μ
Injection Volume	5 μL
Mass Spectrometer	AB Sciex TripleQuad 5500
Ion Source	Turbo Spray
Polarity	Negative
Software Analyst 1.6.1	

Table 3. Instrument Parameters.

PAGE 5 OF 37

	ETS-8-044.1 Analysis				
Step Number	Total Time (min)	Flow Rate (μL/min)	Percent A (2 mM ammonium acetate)	Percent B (Methanol)	
0	0.00	750	90.0	10.0	
1	0.50	750	90.0	10.0	
2	4.00	750	70.0	30.0	
3	6.00	750	70.0	30.0	
4	11.0	750	20.0	80.0	
5	13.0	750	20.0	80.0	
6	13.5	750	10.0	90.0	
7	16.0	750	10.0	90.0	
8	16.5	750	90.0	10.0	
9	19.0	750	90.0	10.0	

Table 4. Liquid Chromatography Gradient Program.

Table 5. Mass Transitions

Analyte	Mass Transition Q1/Q3	Internal Standard ⁽¹⁾	Mass Transition Q1/Q3	
PFBA	213/169	[¹³ C ₄]-PFBA	217/172	
	413/369			
PFOA	413/219	[¹³ C ₈]-PFOA	421/376	
	413/169			
0500	299/80	180 10500	000/04	
PFBS	299/99	[¹⁸ O ₂]-PFBS	303/84	
BELLO	399/99		100/00	
PFHS	399/80	[¹³ C ₃]-PFHS	402/80	
	499/99			
PFOS	499/80	[¹³ C ₈]PFOS	507/80	
	499/130			
[¹³ C ₃]-PFBA	216/172	[¹³ C ₄]-PFBA	217/172	
[¹³ C₁]-PFOA	417/372	[¹³ C ₈]-PFOA	421/376	
[¹³ C₄]-PFOS	503/80	[¹³ C ₈]-PFOS	507/80	

Dwell time was 20 msec for each transition. The individual transitions were summed to produce a "total ion chromatogram" (TIC), which was used for quantitation.

(1) Internal standard was not used for the samples analyzed by solvent dilution external standard calibration.

PAGE 6 OF 37

3M_MN01596145

3 Data Analysis

3.1 Calibration

Solvent dilution analysis using internal standard calibration: Samples were analyzed for all analytes against a matrix-matched stable isotope internal standard calibration curve. Calibration standards were prepared by spiking known amounts of stock solutions into 50 mL of 50:50 methanol:laboratory reagent water. The calibration standards contained an internal standard mix at a nominal concentration of 0.5 ng/mL. Calibration standards ranging from 0.0125 ng/mL to 100 ng/mL (nominal) were analyzed (0.0125 ng/mL to 10 ng/mL (nominal) for the SRSs). A quadratic, 1/x weighted, calibration curve of the ratio of the standard peak area counts over the internal standard peak area counts was used to fit the data for each analyte. The data were not forced through zero during the fitting process. Calculating the standard concentrations using the peak area ratios and the resultant calibration curve confirmed accuracy of each curve point.

Solvent dilution analysis using external standard calibration: Samples were analyzed against an external standard calibration curve. Calibration standards were prepared by spiking known amounts of the stock solution into 50 mL of 90:10 methanol: laboratory Milli-Q[™] water. Calibration standards ranging from 0.02 ng/mL to 25 ng/mL (nominal) were analyzed. A quadratic, 1/x weighted, calibration curve of the standard peak area counts was used to fit the data for each analyte. Low or high points were disabled to meet method criteria. The data were not forced through zero during the fitting process. Calculating the standard concentrations using the peak area counts and the resultant calibration curve confirmed accuracy of each curve point.

For both methods of analysis, each curve point was quantitated using the overall calibration curve and reviewed for accuracy. Method calibration accuracy requirements of 100±25% (100±30% for the lowest curve point) were met for all analytes. The correlation coefficient (r) was greater than 0.995 for all analytes.

3.2 System Suitability

A calibration standard was analyzed four times at the beginning of the analytical sequence to demonstrate overall system suitability. The acceptance criteria for system suitability samples of less than or equal to 5% relative standard deviation (RSD) for peak are counts or peak area ratio and retention time criteria of less than or equal to 2% RSD were met for all analytes.

3.3 Limit of Quantitation (LOQ)

The LOQ as defined in method ETS-8-044.1 is the lowest non-zero calibration standard in the curve that meets linearity and accuracy requirements and for which the area counts are at least twice those of the appropriate blanks. The LOQs associated with the sample analysis are listed in the Table 6 below.

Analyte	LOQ, ng/mL ⁽¹⁾ 7/22/14 Analysis	LOQ, ng/mL ⁽²⁾ 7/23/14, 7/28/14 Analysis
PFBA	0.0500	5.00
PFOA	0.0240	1.92
PFBS	0.0250	2.00
PFHS	0.0250	2.00
PFOS	0.0232	1.85

Table 6. LOQ

(1) A dilution factor of 2 was applied to the LOQ.

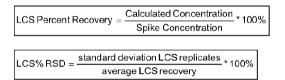
(2) A dilution factor of 100 was applied to the LOQ.

PAGE 7 OF 37

3.4 Continuing Calibration

During the course of the analytical sequence, several continuing calibration verification samples (CCVs) were analyzed to confirm that the instrument response and the initial calibration curve were still in control. All reported results were bracketed by CCVs that met method acceptance criteria of 100%±25%.

3.5 Blanks


Three types of blanks were prepared and analyzed with the samples: method/solvent blanks, field/trip blanks, and sampling equipment blanks. Each blank result was reviewed and used to evaluate method performance. The method/solvent blanks were used to determine the LOQ for each analyte.

3.6 Lab Control Spikes (LCSs)

Low, mid, and high lab control spikes were prepared for the target analytes and analyzed in triplicate. LCSs prepared for internal standard calibration analysis were prepared by spiking known amounts of the analytes into 10 mL of laboratory reagent water to produce the desired concentration. The LCSs were then diluted in the same manner as the samples. LCSs prepared for external standard calibration analysis were prepared by spiking known amounts of the analytes into 1.0 mL of laboratory reagent water and 9.0 mL of methanol to produce the desired concentration. Method ETS-8-044.1 states that the average recovery of LCSs at each spiking level must be within 80%-120% with a RSD $\leq 20\%$. All LCS samples met criteria.

All LCS samples were used in the determination of the analytical method uncertainty in section 3.7 of the report.

The following calculations were used to generate data in Table 7.

Table 7. Laboratory Control Spike Results.

ETS-8-044.1 Internal standard						
calibration						
Analyzed 7/22/14		PFBA		PFO	A (Linear + Branched)	
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-140722-1	0.198	0.158	79.6	0.190	0.198	104
LCS-140722-2	0.198	0.160	80.8	0.190	0.180	94.8
LCS-140722-3	0.198	0.159	80.2	0.190	0.188	98.9
Average ± %RSD		80.2% ± 0.75%		99.2% ± 4.6%		
LCS-140722-4	19.8	19.1	96.7	19.0	17.6	92.9
LCS-140722-5	19.8	19.4	98.0	19.0	18.4	96.7
LCS-140722-6	19.8	20.6	104	19.0	18.2	95.6
Average \pm %RSD	99.6% ± 3.9%				95.1% ± 2.1%	
LCS-140722-7	160	163	102	153	149	97.2
LCS-140722-8	160	162	101	153	144	94.4
LCS-140722-9	160	154	96.4	153	145	94.6
Average \pm %RSD		99.8% ± 3.0%			95.4% ± 1.6%	

PAGE 8 OF 37

3M_MN01596147

ETS-8-044.1						
Internal standard calibration						
Analyzed 7/22/14		PFBS			PFHS	
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-140722-1	0.198	0.178	89.7	0.198	0.193	97.6
LCS-140722-2	0.198	0.171	86.4	0.198	0.199	100
LCS-140722-3	0.198	0.180	90.9	0.198	0.197	99.4
Average ± %RSD		89.0% ± 2.6%		99.0% ± 1.3%		
LCS-140722-4	19.8	17.1	86.6	19.8	18.6	94.0
LCS-140722-5	19.8	17.5	88.4	19.8	19.5	98.5
LCS-140722-6	19.8	18.2	92.0	19.8	20.2	102
Average ± %RSD		89.0% ± 3.1%			98.2% ± 4 .1%	
LCS-140722-7	160	138	86.0	160	142	88.9
LCS-140722-8	160	129	80.4	160	141	88.1
LCS-140722-9	160	129	80.8	160	140	87.7
Average ± %RSD		82.4% ± 3.8%			88.2% ±0.69%	

ETS-8-044.1 Internal standard calibration Analyzed 7/22/14	PEOS) (l inoar + Branch	od)		
Lab ID	PFOS (Linear + Branched) Spiked Calculated Concentration (ng/mL) (ng/mL) %Recovery				
LCS-140722-1	0.184	0.180	97.8		
LCS-140722-2	0.184	0.171	92.8		
LCS-140722-3	0.184	0.179	97.2		
Average ± %RSD		95.9% ± 2.8%			
LCS-140722-4	18.4	17.2	93.3		
LCS-140722-5	18.4	18.0	97.6		
LCS-140722-6	18.4	17.9	97.2		
Average ± %RSD		96.0% ± 2.5%			
LCS-140722-7	148	142	96.2		
LCS-140722-8	148	137	92.3		
LCS-140722-9	148	136	9 1.6		
Average ± %RSD		93.4% ± 2.7%			

PAGE 9 OF 37

ETS-8-044.1						
Internal standard calibration						
Analyzed 7/22/14		¹³ C ₃ -PFBA			¹³ C ₄ -PFOA	
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-140722-1	0.197	0.195	98.9	0.198	0.212	107
LCS-140722-2	0.197	0.188	95.2	0.198	0.193	97.6
LCS-140722-3	0.197	0.185	94.1	0.198	0.208	105
Average ± %RSD		96.1% ± 2.6%			103% ± 4.8%	
LCS-140722-4	1.97	2.03	103	1.98	2.13	107
LCS-140722-5	1.97	1.91	96.9	1.98	2.01	102
LCS-140722-6	1.97	2.04	103	1.98	2.20	11-
Average ± %RSD		101% ± 3.5%			107% ± 4.2%	

ETS-8-044.1 Internal standard calibration		¹³ C₄-PFOS	
Analyzed 7/22/14	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-140722-1	0.189	0.182	96.6
LCS-140722-2	0.189	0.185	97.8
LCS-140722-3	0.189	0.195	103
Average ± %RSD		99.1% ± 3.4%	
LCS-140722-4	1.89	1.89	100
LCS-140722-5	1.89	1.80	95.1
LCS-140722-6	1.89	1.94	103
Average ± %RSD		99.4% ± 4.0%	

PAGE 10 OF 37

3M_MN01596149

ETS-8-044.1 External standard						
calibration Analyzed 7/23/14		PFBA		PEO	A (Linear + Branched)	
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-140723-1	0.199	0.196	98.7	0.191	0.204	107
LCS-140723-2	0.199	0.201	101	0.191	0.201	105
LCS-140723-3	0.199	0.179	89.7	0.191	0.197	103
Average \pm %RSD		96.5% ± 6.2%		105% ± 1.9%		
LCS-140723-4	1.99	2.22	11 2	1.91	2.17	114
LCS-140723-5	1.99	2.18	110	1.91	2.09	109
LCS-140723-6	1.99	2.20	111	1.91	2.18	114
Average \pm %RSD		111% ± 0.90%			112% ± 2.6%	
LCS-140723-7	20.0	22.0	110	19.1	21.9	115
LCS-140723-8	20.0	21.9	110	19.1	22.0	115
LCS-140723-9	20.0	22.2	111	19.1	21.6	113
Average ± %RSD		110% ± 0.52%			114% ± 1.0%	

ETS-8-044.1						
External standard calibration						
Analyzed 7/23/14		PFBS			PFHS	
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-140723-1	0.199	0.225	113	0.199	0.220	110
LCS-140723-2	0.199	0.221	111	0.199	0.229	115
LCS-140723-3	0.199	0.226	113	0.199	0.227	114
Average ± %RSD		112% ± 1.0%		113% ± 2.3%		
LCS-140723-4	1.99	2.32	117	1.99	2.28	115
LCS-140723-5	1.99	2.21	111	1.99	2.19	110
LCS-140723-6	1.99	2.28	115	1.99	2.29	115
Average ± %RSD		114% ± 2.7%			113% ± 2.5%	
LCS-140723-7	20.0	22.6	113	20.0	22.4	112
LCS-140723-8	20.0	22.4	112	20.0	21.8	109
LCS-140723-9	20.0	22.4	112	20.0	21.7	109
Average ± %RSD		112% ± 0.51%			110% ± 1.6%	

PAGE 11 OF 37

ETS-8-044.1 External standard calibration Analyzed 7/23/14	PFOS) (Linear + Branch	ed)
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-140723-1	0.185	0.199	107
LCS-140723-2	0.185	0.202	109
LCS-140723-3	0.185	0.197	107
Average ± %RSD		108% ± 1.1%	
LCS-140723-4	1.85	2.09	113
LCS-140723-5	1.85	2.05	111
LCS-140723-6	1.85	2.12	114
Average ± %RSD		1 13% ± 1 .4%	
LCS-140723-7	18.5	21.3	115
LCS-140723-8	18.5	20.8	112
LCS-140723-9	18.5	20.7	112
Average ± %RSD		113% ± 1.5%	

ETS-8-044.1						
Internal standard calibration						
Analyzed 7/23/14		¹³ C ₃ -PFBA			¹³ C ₄ -PFOA	
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-140723-1	0.198	0.216	109	0.199	0.215	108
LCS-140723-2	0.198	0.214	108	0.199	0.212	107
LCS-140723-3	0.198	0.195	98.6	0.199	0.209	105
Average ± %RSD		105% ± 5.5%			107% ± 1.4%	
LCS-140723-4	1.98	2.22	11 2	1.99	2.23	11 2
LCS-140723-5	1.98	2.21	111	1.99	2.17	109
LCS-140723-6	1.98	2.21	1 12	1.99	2.20	110
Average ± %RSD		112% ± 0.52%			11 0% ± 1 .4%	

PAGE 12 OF 37

3M_MN01596151

ETS-8-044.1 Internal standard calibration			
Analyzed 7/23/14		¹³ C ₄ -PFOS	r
	Spiked Concentration	Calculated Concentration	
Lab ID	(ng/mL)	(ng/mL)	%Recovery
LCS-140723-1	0.190	0.208	110
LCS-140723-2	0.190	0.202	107
LCS-140723-3	0.190	0.205	108
Average ± %RSD		108% ± 1.4%	
LCS-140723-4	1.90	2.11	111
LCS-140723-5	1.90	2.10	110
LCS-140723-6	1.90	2.08	110
Average ± %RSD		110% ± 0.52%	

ETS-8-044.1						
External standard calibration						
Analyzed 7/28/14		PFBA		PFO	A (Linear + Branched)	
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-140728-1	0.199	0.204	103	0.191	0.197	103
LCS-140728-2	0.199	0.176	88.6	0.191	0.196	103
LCS-140728-3	0.199	0.201	101	0.191	0.205	107
Average ± %RSD		97.5% ± 8.0%		104% ± 2.2%		
LCS-140728-4	1.99	2.23	112	1.91	2.01	105
LCS-140728-5	1.99	2.23	112	1.91	2.05	107
LCS-140728-6	1.99	2.20	111	1.91	2.04	107
Average \pm %RSD		112% ± 0.52%			106% ± 1.1%	
LCS-140728-7	20.0	21.5	108	19.1	20.9	109
LCS-140728-8	20.0	21.1	105	19.1	20.0	105
LCS-140728-9	20.0	21.8	109	19.1	21.0	110
Average ± %RSD		107% ± 1.9%			108% ± 2.4%	

PAGE 13 OF 37

3M_MN01596152

ETS-8-044.1 External standard calibration						
Analyzed 7/28/14		PFBS			PFHS	
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-140728-1	0.199	0.212	107	0.199	0.208	105
LCS-140728-2	0.199	0.223	112	0.199	0.222	111
LCS-140728-3	0.199	0.219	110	0.199	0.219	110
Average ± %RSD		110% ± 2.3%		109% ± 3.0%		
LCS-140728-4	1.99	2.17	109	1.99	2.16	109
LCS-140728-5	1.99	2.21	111	1.99	2.17	109
LCS-140728-6	1.99	2.15	108	1.99	2.14	108
Average ± %RSD		1 09% ± 1 .4%			109% ± 0.53%	
LCS-140728-7	20.0	21.6	108	20.0	21.9	110
LCS-140728-8	20.0	20.7	103	20.0	21.2	106
LCS-140728-9	20.0	21.4	107	20.0	21.6	108
Average ± %RSD		106% ± 2.5%			108% ± 1.9%	

ETS-8-044.1 External standard calibration Analyzed 7/28/14	PFOS) (Linear + Branch	ed)
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-140728-1	0.185	0.191	103
LCS-140728-2	0.185	0.195	105
LCS-140728-3	0.185	0.197	106
Average ± %RSD		105% ± 1.5%	
LCS-140728-4	1.85	1.98	107
LCS-140728-5	1.85	2.00	108
LCS-140728-6	1.85	2.00	108
Average ± %RSD		108% ± 0.54%	
LCS-140728-7	18.5	19.9	108
LCS-140728-8	18.5	19.6	106
LCS-140728-9	18.5	20.7	112
Average ± %RSD		109% ± 2.8%	

PAGE 14 OF 37

3M_MN01596153

ETS-8-044.1						
Internal standard calibration						
Analyzed 7/28/14		¹³ C ₃ -PFBA			¹³ C ₄ -PFOA	
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-140728-1	0.198	0.208	105	0.199	0.208	104
LCS-140728-2	0.198	0.196	98.9	0.199	0.211	106
LCS-140728-3	0.198	0.190	95.8	0.199	0.201	101
Average ± %RSD		99.9% ± 4.7%		104% ± 2.4%		
LCS-140728-4	1.98	2.02	102	1.99	1.99	99.8
LCS-140728-5	1.98	2.11	107	1.99	2.14	107
LCS-140728-6	1.98	2.14	108	1.99	2.11	106
Average ± %RSD		106% ± 3.0%			104% ± 3.7%	

ETS-8-044.1 Internal standard calibration		13	
Analyzed 7/28/14	Spiked	¹³ C ₄ -PFOS Calculated	
Lab ID	Concentration (ng/mL)	Concentration (ng/mL)	%Recovery
LCS-140728-1	0.190	0.203	107
LCS-140728-2	0.190	0.195	103
LCS-140728-3	0.190	0.194	102
Average ± %RSD		104% ± 2.5%	
LCS-140728-4	1.90	1.88	99.1
LCS-140728-5	1.90	2.05	108
LCS-140728-6	1.90	2.02	106
Average ± %RSD		104% ± 4.5%	

PAGE 15 OF 37

3M_MN01596154

3.7 Analytical Method Uncertainty

Analytical uncertainty is based on historical QC data that is control charted and used to evaluate method accuracy and precision. The method uncertainty is calculated following ETS-12-012.2. The standard deviation is calculated for the set of accuracy results (in %) obtained for the QC samples. For method ETS-8-044.1, the most recent fifty QC samples were used. The expanded uncertainty is calculated by multiplying the standard deviation by a factor of 2, which corresponds to a confidence level of 95%.

Analyte	Calibration	Standard Deviation (%)	Method Uncertainty
PFBA	Internal	8.56	±17%
PFOA	Internal	7.42	±15%
PFBS	Internal	9.14	±18%
PFHS	Internal	8.69	±17%
PFOS	Internal	9.93	±20%
PFBA	External	8.93	±18%
PFOA	External	6.59	±13%
PFBS	External	7.67	±15%
PFHS	External	6.37	±13%
PFOS	External	5.33	±11%

Table 8. Analytical Method Uncertainty.

3.8 Field Matrix Spikes (FMS)

A target analyte field matrix spike sample was collected at each sampling point to verify that the analytical method is applicable for the collected matrix. Field matrix spikes are generated by adding a measured volume of field sample to a container spiked by the laboratory with the target analytes prior to shipping sample containers for sample collection. Field matrix spikes must be at least 50% of the analyte concentration to be considered an appropriate spike level. Field matrix spike recoveries within method acceptance criteria of 100±30% confirm that "unknown" components in the sample matrix do not significantly interfere with the preparation and analysis of the analytes of interest. The standards used for the preparation of the field matrix spiking solutions contained reference materials comprised of both linear and branched isomers for PFOS and only the linear isomer for PFOA. Field matrix spikes are presented in section 4 of this report.

In addition to target analyte field matrix spikes, each sample contained stable isotope surrogate recovery spikes of ${}^{13}C_3$ -PFBA, ${}^{13}C_4$ -PFOA, and ${}^{13}C_4$ -PFOS, which were added at a nominal concentration of 0.1 ng/mL to select sample bottles prior to sample collection or at a nominal concentration of 1 ng/mL following sample collection. The ${}^{13}C_3$ -PFBA and ${}^{13}C_4$ -PFOA were selected to represent perfluorocarboxylic acids. The ${}^{13}C_4$ -labeled PFOS was selected to represent the perfluorosulfonic acids. Surrogate matrix spike recoveries within method acceptance criteria of 100±30% confirm that "unknown" components in the sample matrix do not significantly interfere with the preparation and analysis of the analytes of interest. The surrogate spike recoveries are included in section 4 of this report.

FMS Recovery =	(Sample Concentration of FMS – Average Concentration : Field Sample & Field Sample Dup.) *100%	6
TWIS Recovery =	Spike Concentration	J

PAGE 16 OF 37

3M_MN01596155

		Final Concentration (ng/mL)				
Location	Spike Level	PFBA	PFOA	PFBS	PFHS	PFOS
MW07, PW09, and PW10	FMS	2.00	1.98	1.98	1.98	1.98
MW13	FMS	5.00	4.94	4.95	4.95	4.95
MW110	FMS	20.0	19.8	19.8	1 9.8	19.8
MW16	FMS	50.0	49.4	49.5	49.5	49.5
MW101, MW104, MW105, and MW108	FMS	100	98.8	99.0	99.0	99.0
MW12 and MW14R	FMS	500	494	495	495	495
	Low	2.00	1.98	1.98	1.98	1.98
Trip Blank	High	100	98.8	99.0	99.0	99.0

Table 9. Field Matrix Spike Concentrations

4 Data Summary and Discussion

The tables below summarize the sample results and field matrix spike recoveries for sampling locations as well as the Trip Blank. Each table provides the average concentration and the relative percent difference (%RPD) of the sample and sample duplicate. Results and average values are rounded to three significant figures. Percent relative difference (%RPD) values are rounded to two significant figures. Because of rounding, values vary slightly from those listed in the raw data. Field matrix spikes meeting the method acceptance criteria of ±30%, demonstrate that the method is appropriate for the given matrix.

These sampling locations have been analyzed repeatedly and the laboratory has historical field matrix spike data demonstrating that the method is applicable to the sample matrix. While the method indicates that the target analyte FMS samples should be spiked at approximately 0.5-10 times the expected analyte concentration in the sample, the target analytes for each sampling location were expected to cover a wide concentration range. Therefore, field matrix spike concentrations were selected based on the expected concentration of PFOA and/or PFOS. As a result, there are instances where the spike level exceeded the recommended upper limit of 10 times the analyte concentration. In these instances, the FMS recovery was reported and flagged as above 10 times the sample concentration.

For those analytes where the field matrix spike level was not appropriate as compared to the sample concentration, the surrogate recovery standards were used to assess method accuracy. All surrogate recovery standards and field matrix spike recoveries met method acceptance criteria (where applicable).

PAGE 17 OF 37

3M_MN01596156

Table 10. CGMN GW MW07 140716

		PFBA PFOA		A	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-16-001	CGMN-MW07-0-140716	3.16	NA	0.606	NA
ISO11-01-03-16-002	CGMN-MW07-DB-140716	2.93	NA	0.598	NA
ISO11-01-03-16-003	CGMN-MW07-FMS-140716	5.16	106	2.69	106
Average Concentration (ng/mL) ± %RPD		3.05 ng/ml	3.05 ng/mL ± 7.6%		L±1.3%

		PFB	PFBS		PFHS		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	
ISO11-01-03-16-001	CGMN-MW07-0-140716	0.0759	NA	0.0434	NA	0.237	NA	
ISO11-01-03-16-002	CGMN-MW07-DB-140716	0.0765	NA	0.0398	NA	0.236	NA	
ISO11-01-03-16-003	CGMN-MW07-FMS-140716	2.09	102	2.14	106	2.44	111	
Average Concentration (ng/mL) ± %RPD		0.0762 ng/m	L ± 0.79%	0.0416 ng/n	nL ± 8.7%	0.237 ng/ml	. ± 0.42%	

		¹³ C ₃ -PFBA	¹³ C₄-PFOA	¹³ C ₄ -PFOS
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery
ISO11-01-03-16-001	CGMN-MW07-0-140716	123	120	110
ISO11-01-03-16-002	CGMN-MW07-DB-140716	123	112	127
ISO11-01-03-16-003	CGMN-MW07-FMS-140716	105	115	111
Average Recovery (%) ± %RSD		117% ± 9.0%	116% ± 3.5%	116% ± 8.1%

NA = Not Applicable Samples were diluted 1:1 and analyzed by internal standard calibration.

PAGE 18 OF 37

Table 11. CGMN GW MW12 140717

		PFBA		PFOA	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-16-004	CGMN-MW12-0-140717	157	NA	395	NA
ISO11-01-03-16-005	CGMN-MW12-DB-140717	150	NA	409	NA
ISO11-01-03-16-006	CGMN-MW12-FMS-140717	669	103	1010	123
Average Concentration (ng/mL) ± %RPD		154 ng/mL	154 ng/mL ± 4.6%		. ± 3.5%

		PFE	PFBS		PFHS		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	
ISO11-01-03-16-004	CGMN-MW12-0-140717	49.3	NA	7.87	NA	94.2	NA	
ISO11-01-03-16-005	CGMN-MW12-DB-140717	51.4	NA	8.34	NA	99.5	NA	
ISO11-01-03-16-006	CGMN-MW12-FMS-140717	583	108	549	109 ⁽¹⁾	700	122	
Average Concentration (ng/mL) ± %RPD		50.4 ng/m	L ± 4.2%	8.11 ng/m	L ± 5.8%	96.9 ng/mL	± 5.5%	

		¹³ C ₃ -PFBA	¹³ C₄-PFOA	¹³C₄-PFOS
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery
ISO11-01-03-16-004	CGMN-MW12-0-140717	101	99.7	101
ISO11-01-03-16-004	CGMN-MW12-0-140717	101	99.7 107	106
ISO11-01-03-16-006	CGMN-MW12-FMS-140717	105	103	103
Averag	103%±2.2%	103% ± 3.6%	103% ± 2.2%	

NA = Not Applicable Samples were diluted 1:100 and analyzed by external standard calibration. (1) FMS concentration greater than 10 times the sample concentration.

PAGE 19 OF 37

Table 12. CGMN GW MW13 140716

		PFB	A	PFC	A
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-16-007	CGMN-MW13-0-140716	7.86	NA	13.9	NA
ISO11-01-03-16-008	CGMN-MW13-DB-140716	8.29	NA	14.8	NA
ISO11-01-03-16-009	CGMN-MW13-FMS-140716	14.0	119	19.1	NC
Average Co	oncentration (ng/mL) ± %RPD	8.08 ng/ml	L ± 5.3%	14.4 ng/ml	L±6.3%

		PFB	PFBS		PFHS		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	
ISO11-01-03-16-007	CGMN-MW13-0-140716	0.970	NA	0.700	NA	4.37	NA	
ISO11-01-03-16-008	CGMN-MW13-DB-140716	0.975	NA	0.726	NA	4.58	NA	
ISO11-01-03-16-009	CGMN-MW13-FMS-140716	6.06	103	6.26	112	9.62	104	
Average Co	oncentration (ng/mL) ± %RPD	0.973 ng/ml	L ± 0.51%	0.713 ng/m	L ± 3.6%	4.48 ng/mL	± 4.7%	

			¹³ C₄-PFOA	¹³ C ₄ -PFOS
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery
ISO11-01-03-16-007	CGMN-MW13-0-140716	117	115	104
ISO11-01-03-16-008	CGMN-MW13-DB-140716	116	117	111
ISO11-01-03-16-009	CGMN-MW13-FMS-140716	115	106	105
Averag	116% ± 0.87%	113% ± 5.2%	107% ± 3.5%	

NA = Not Applicable NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration. Samples were diluted 1:1 and analyzed by internal standard calibration.

PAGE 20 OF 37

Table 13. CGMN GW MW14R 140716

		PFB	PFBA		A
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-16-010	CGMN-MW14R-0-140716	685	NA	430	NA
ISO11-01-03-16-011	CGMN-MW14R-DB-140716	657	NA	421	NA
ISO11-01-03-16-012	CGMN-MW14R-FMS-140716	1190	104	962	109
Average Co	encentration (ng/mL) ± %RPD	671 ng/ml	± 4.2%	426 ng/ml	. ± 2.1%

		PFE	PFBS		PFHS		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	
ISO11-01-03-16-010	CGMN-MW14R-0-140716	29.8	NA	20.7	NA	156	NA	
ISO11-01-03-16-011	CGMN-MW14R-DB-140716	29.3	NA	19.4	NA	159	NA	
ISO11-01-03-16-012	CGMN-MW14R-FMS-140716	549	105 ⁽¹⁾	535	104 (1)	666	103	
Average Co	oncentration (ng/mL) ± %RPD	29.6 ng/m	L ± 1.7%	20.1 ng/m	L±6.5%	158 ng/mL	± 1.9%	

		¹³ C ₃ -PFBA	¹³ C₄-PFOA	¹³ C₄-PFOS
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery
		/onecovery	/onecovery	/@Recovery
ISO11-01-03-16-010	CGMN-MW14R-0-140716	109	105	106
ISO11-01-03-16-011	CGMN-MW14R-DB-140716	102	103	100
ISO11-01-03-16-012	CGMN-MW14R-FMS-140716	104	101	103
Averag	e Recovery (%) ± %RSD	105% ± 3.5%	103% ± 1.9%	103% ± 2.7%

NA = Not Applicable Samples were diluted 1:100 and analyzed by internal standard calibration. (1) FMS concentration greater than 10 times the sample concentration.

PAGE 21 OF 37

Table 14. CGMN GW MW16 140716

		PFB	PFBA		A
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-16-013	CGMN-MW16-0-140716	46.7	NA	99.1	NA
ISO11-01-03-16-014	CGMN-MW16-DB-140716	44.7	NA	97.4	NA
ISO11-01-03-16-015	CGMN-MW16-FMS-140716	103	115	161	127
Average Co	oncentration (ng/mL) ± %RPD	45.7 ng/ml	_ ± 4.4%	98.3 ng/m	L ± 17%

		PFB	PFBS		PFHS		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	
ISO11-01-03-16-013	CGMN-MW16-0-140716	37.4	NA	5.39	NA	57.8	NA	
ISO11-01-03-16-014	CGMN-MW16-DB-140716	38.3	NA	5.52	NA	56.1	NA	
ISO11-01-03-16-015	CGMN-MW16-FMS-140716	92.8	111	63.2	117	119	125	
Average Co	oncentration (ng/mL) ± %RPD	37.9 ng/ml	L ± 2.4%	5.46 ng/ml	L ± 2.4%	57.0 ng/mL	± 3.0%	

		¹³ C ₃ -PFBA	¹³ C₄-PFOA	¹³ C₄-PFOS
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery
	•			
ISO11-01-03-16-013	CGMN-MW16-0-140716	106	110	115
ISO11-01-03-16-014	CGMN-MW16-DB-140716	94.8	116	109
ISO11-01-03-16-015	CGMN-MW16-FMS-140716	123	120	98.3
Averag	e Recovery (%) ± %RSD	108% ± 13%	115% ± 4.4%	107% ± 7.9%

NA = Not Applicable NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration. Samples were diluted 1:1 and analyzed by external standard calibration.

PAGE 22 OF 37

Table 15. CGMN GW MW101 140717

		PFBA		PFC	A
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-16-016	CGMN-MW101-0-140717	1460	NA	83.5	NA
ISO11-01-03-16-017	CGMN-MW101-DB-140717	1450	NA	84.2	NA
ISO11-01-03-16-018	CGMN-MW101-FMS-140717	1610	NC	177	94.3
Average Co	oncentration (ng/mL) ± %RPD	1460 ng/mL	. ± 0.69%	83.9 ng/mL	. ± 0.83%

		PFE	PFBS		PFHS		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	
ISO11-01-03-16-016	CGMN-MW101-0-140717	29.5	NA	483	NA	191	NA	
ISO11-01-03-16-017	CGMN-MW101-DB-140717	29.0	NA	477	NA	194	NA	
ISO11-01-03-16-018	CGMN-MW101-FMS-140717	128	99.7	574	NG	281	89.4	
Average Co	oncentration (ng/mL) ± %RPD	29.3 ng/m	L ± 1.7%	480 ng/ml	. ± 1.3%	193 ng/mL :	±1.6%	

		¹³ C ₃ -PFBA	¹³ C₄-PFOA	¹³ C₄-PFOS
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery
	· ·	· · · ·		
ISO11-01-03-16-016	CGMN-MW101-0-140717	105	104	106
ISO11-01-03-16-017	CGMN-MW101-DB-140717	106	103	105
ISO11-01-03-16-018	CGMN-MW101-FMS-140717	109	105	108
Averag	106% ± 2.0%	104% ± 0.96%	106% ± 1.5%	

NA = Not Applicable NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration. Samples were diluted 1:100 and analyzed by external standard calibration.

PAGE 23 OF 37

Table 16. CGMN GW MW104 140717

			A	PFOA	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-16-019	CGMN-MW104-0-140717	47.4	NA	74.4	NA
ISO11-01-03-16-020	CGMN-MW104-DB-140717	48.4	NA	78.5	NA
ISO11-01-03-16-021	CGMN-MW104-FMS-140717	143	95.1	176	101
Average Concentration (ng/mL) ± %RPD		47.9 ng/ml	_ ± 2.1%	76.5 ng/ml	L ± 5.4%

		PFE	PFBS		PFHS		6
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-16-019	CGMN-MW104-0-140717	8.62	NA	8.90	NA	228	NA
ISO11-01-03-16-020	CGMN-MW104-DB-140717	8.74	NA	8.99	NA	238	NA
ISO11-01-03-16-021	CGMN-MW104-FMS-140717	106	98.3 ⁽¹⁾	105	97.0 ⁽¹⁾	328	NC
Average Concentration (ng/mL) ± %RPD		8.68 ng/m	L ± 1.4%	8.95 ng/m	L ± 1.0%	233 ng/mL	± 4.3%

		¹³ C ₃ -PFBA	¹³ C₄-PFOA	¹³ C₄-PFOS
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery
	•			
ISO11-01-03-16-019	CGMN-MW104-0-140717	104	101	104
ISO11-01-03-16-020	CGMN-MW104-DB-140717	107	104	104
ISO11-01-03-16-021	CGMN-MW104-FMS-140717	105	106	104
Averag	105% ± 1.5%	104% ± 2.4%	104% ± 0.35%	

NA = Not Applicable NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration. Samples were diluted 1:100 and analyzed by external standard calibration. (1) FMS concentration greater than 10 times the sample concentration.

PAGE 24 OF 37

Table 17. CGMN GW MW105 140717

		PFBA PFOA		A	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-16-022	CGMN-MW105-0-140717	40.9	NA	27.3	NA
ISO11-01-03-16-023	CGMN-MW105-DB-140717	37.4	NA	28.0	NA
ISO11-01-03-16-024	CGMN-MW105-FMS-140717	141	102	128	102
Average Concentration (ng/mL) ± %RPD		39.2 ng/ml	_ ± 8.9%	27.7 ng/ml	L ± 2.5%

		PFB	PFBS		PFHS		os
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-16-022	CGMN-MW105-0-140717	4.87	NA	6.34	NA	37.5	NA
ISO11-01-03-16-023	CGMN-MW105-DB-140717	4.91	NA	6.96	NA	34.9	NA
ISO11-01-03-16-024	CGMN-MW105-FMS-140717	106	102 ⁽¹⁾	103	97.3 ⁽¹⁾	137	102
Average Concentration (ng/mL) ± %RPD		4.89 ng/mL	± 0.82%	6.65 ng/m	L ± 9.3%	36.2 ng/m	L ± 7.2%

		¹³ C ₃ -PFBA	¹³ C ₄ -PFOA	¹³ C ₄ -PFOS
3M LIMS ID	Description	%Recovery	%Recoverv	%Recovery
	Description	76Recovery	76Recovery	76Recovery
ISO11-01-03-16-022	CGMN-MW105-0-140717	103	101	103
ISO11-01-03-16-023	CGMN-MW105-DB-140717	106	105	104
ISO11-01-03-16-024	CGMN-MW105-FMS-140717	108	107	108
Averag	105% ± 2.4%	105% ± 2.9%	105% ± 2.3%	

NA = Not Applicable Samples were diluted 1:100 and analyzed by external standard calibration. (1) FMS concentration greater than 10 times the sample concentration.

PAGE 25 OF 37

Table 18. CGMN GW MW108 140717

		PFB	A	PFOA	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-16-025	CGMN-MW108-0-140717	224	NA	526	NA
ISO11-01-03-16-026	CGMN-MW108-DB-140717	219	NA	518	NA
ISO11-01-03-16-027	CGMN-MW108-FMS-140717	320	NC	631	NC
Average Concentration (ng/mL) ± %RPD		222 ng/mL	± 2.3%	522 ng/ml	. ± 1.5%

		PFE	s	PFF	IS	PFC	os
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-16-025	CGMN-MW108-0-140717	60.5	NA	11.4	NA	58.2	NA
ISO11-01-03-16-026	CGMN-MW108-DB-140717	60.9	NA	11.1	NA	57.7	NA
ISO11-01-03-16-027	CGMN-MW108-FMS-140717	159	99.3	107	96.7	155	98.0
Average Concentration (ng/mL) ± %RPD		60.7 ng/mL	± 0.66%	11.3 ng/m	L ± 2.7%	58.0 ng/ml	_ ± 0.86%

		¹³ C ₃ -PFBA	¹³ C₄-PFOA	¹³ C₄-PFOS
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery
ISO11-01-03-16-025	CGMN-MW108-0-140717	112	107	105
ISO11-01-03-16-026	CGMN-MW108-DB-140717	104	103	103
ISO11-01-03-16-027	CGMN-MW108-FMS-140717	106	107	104
Averag	107%±3.9%	106% ± 2.2%	104% ± 0.90%	

NA = Not Applicable NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration. Samples were diluted 1:100 and analyzed by external standard calibration.

PAGE 26 OF 37

Table 19. CGMN GW MW110 140716

		PFB	PFBA		A
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-16-028	CGMN-MW110-0-140716	187	NA	344	NA
ISO11-01-03-16-029	CGMN-MW110-DB-140716	183	NA	435	NA
ISO11-01-03-16-030	CGMN-MW110-FMS-140716	206	NC	390	NC
Average Co	encentration (ng/mL) ± %RPD	185 ng/ml	± 2.2%	390 ng/mL	±23% (1)

		PFE	PFBS		PFHS		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	
ISO11-01-03-16-028	CGMN-MW110-0-140716	81.1	NA	21.4	NA	16.4	NA	
ISO11-01-03-16-029	CGMN-MW110-DB-140716	83.4	NA	26.7	NA	14.4	NA	
ISO11-01-03-16-030	CGMN-MW110-FMS-140716	99.9	NC	43.4	97.7	32.9	88.4	
Average Concentration (ng/mL) ± %RPD		82.3 ng/m	L ± 2.8%	24.1 ng/mL	± 22% ⁽¹⁾	15.4 ng/m	iL ± 13%	

		¹³ C₃-PFBA	¹³ C₄-PFOA	¹³ C₄-PFOS
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery
ISO11-01-03-16-028	CGMN-MW110-0-140716	102	94.0	100
ISO11-01-03-16-029	CGMN-MW110-DB-140716	105	95.3	98.8
ISO11-01-03-16-030	CGMN-MW110-FMS-140716	103	98.2	99.8
Averag	103% ± 1.5%	95.8% ± 2.2%	99.7% ± 0.79%	

NA = Not Applicable
NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration.
Samples were diluted 1:100 and analyzed by external standard calibration.
(1) Sample/sample duplicate RPD did not meet acceptance criteria of ≤20%.

PAGE 27 OF 37

Table 20. CGMN GW PW09 140717

		PFB	PFBA		A
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-16-032	CGMN-PW09-0-140717	4.32	NA	1.17	NA
ISO11-01-03-16-033	CGMN-PW09-DB-140717	4.32	NA	1.15	NA
ISO11-01-03-16-034	CGMN-PW09-FMS-140717	6.69	NC	3.28	107
Average Co	oncentration (ng/mL) ± %RPD	4.32 ng/ml	L ± 0.0%	1.16 ng/ml	L±1.7%

		PFE	PFBS		PFHS		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	
ISO11-01-03-16-032	CGMN-PW09-0-140717	0.152	NA	0.0810	NA	1.79	NA	
ISO11-01-03-16-033	CGMN-PW09-DB-140717	0.158	NA	0.0806	NA	1.78	NA	
ISO11-01-03-16-034	CGMN-PW09-FMS-140717	2.06	96.2 ⁽¹⁾	2.26	110 (1)	3.84	104	
Average Co	oncentration (ng/mL) ± %RPD	0.155 ng/m	ıL ± 3.9%	0.0808 ng/m	L ± 0.50%	1.79 ng/mL :	± 0.56%	

		¹³ C ₃ -PFBA	¹³ C₄-PFOA	¹³ C ₄ -PFOS
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery
ISO11-01-03-16-032	CGMN-PW09-0-140717	90.6	115	108
ISO11-01-03-16-033	CGMN-PW09-DB-140717	108	112	115
ISO11-01-03-16-034	CGMN-PW09-FMS-140717	112	119	108
Averag	e Recovery (%) ± %RSD	103% ± 11%	115% ± 3.0%	110% ± 3.8%

NA = Not Applicable NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration. Samples were diluted 1:1 and analyzed by internal standard calibration. (1) FMS concentration greater than 10 times the sample concentration.

PAGE 28 OF 37

Table 21. CGMN GW PW10 140717

		PFB	3A	PFOA	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-16-034	CGMN-PW10-0-140717	4.79	NA	0.479	NA
ISO11-01-03-16-035	CGMN-PW10-DB-140717	5.01	NA	0.489	NA
ISO11-01-03-16-036	CGMN-PW10-FMS-140717	7.44	NC	2.61	108
Average Concentration (ng/mL) ± %RPD		4.90 ng/ml	4.90 ng/mL ± 4.5%		L ± 2.1%

		PFBS		PFHS		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-16-034	CGMN-PW10-0-140717	0.522	NA	0.101	NA	0.498	NA
ISO11-01-03-16-035	CGMN-PW10-DB-140717	0.558	NA	0.106	NA	0.507	NA
ISO11-01-03-16-036	CGMN-PW10-FMS-140717	2.53	101	2.32	112 ⁽¹⁾	2.81	117
Average Concentration (ng/mL) ± %RPD		0.540 ng/m	L±6.7%	0.104 ng/m	L±4.8%	0.503 ng/n	nL±1.8%

		¹³ C₃-PFBA	¹³ C ₄ -PFOA	¹³ C ₄ -PFOS
3M LIMS ID	Deseriation	N/Dearmann	% Deserves	%Daaa
	Description	%Recovery	%Recovery	%Recovery
ISO11-01-03-16-034	CGMN-PW10-0-140717	106	114	117
ISO11-01-03-16-035	CGMN-PW10-DB-140717	112	120	109
ISO11-01-03-16-036	CGMN-PW10-FMS-140717	92.0	108	112
Averag	e Recovery (%) ± %RSD	103% ± 9.7%	114% ± 5.3%	113% ± 3.8%

NA = Not Applicablo NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration. Samples were diluted 1:1 and analyzed by internal standard calibration. (1) FMS concentration greater than 10 times the sample concentration.

PAGE 29 OF 37

Table 22. CGMN GW MW13-RB 140716 and TRIP BLANKS

	-	PFBA		PFOA	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-16-037	CGMN-GW-MW13-RB-140716	<0.0500	NA	<0.0240	NA
ISO11-01-03-16-038	CGMN-GW-TRIP-0-140715	<0.0500	NA	<0.0240	NA
ISO11-01-03-16-039	CGMN-GW-TRIP-LS-140715	1.91	95.5	2.14	108
ISO11-01-03-16-040	CGMN-GW-TRIP-HS-140715	97.7	97.7	96.8	98.0

		PFBS		PFHS		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-16-037	CGMN-GW-MW13-RB-140716	<0.0250	NA	<0.0250	NA	0.0388	NA
ISO11-01-03-16-038	CGMN-GW-TRIP-0-140715	<0.0250	NA	<0.0250	NA	<0.0232	NA
ISO11-01-03-16-039	CGMN-GW-TRIP-LS-140715	1.98	100	2.22	112	2.10	106
ISO11-01-03-16-040	CGMN-GW-TRIP-HS-140715	101	102	97.7	98.7	98.7	99.7

		¹³ C ₃ -PFBA	¹³ C ₄ -PFOA	¹³ C ₄ -PFOS
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery
		1		
ISO11-01-03-16-037 ISO11-01-03-16-038	CGMN-GW-MW13-RB-140716 CGMN-GW-TRIP-0-140715	96.4 90.9	116 115	116 114
ISO11-01-03-16-039	CGMN-GW-TRIPLS-140715	92.3	113	102
ISO11-01-03-16-040	CGMN-GW-TRIP-HS-140715	107	101	104

NA = Not Applicable Samples were diluted 1:1 and analyzed by internal standard calibration with the exception of the TRIP HS, which was diluted 1:100 and analyzed by external standard calibration.

PAGE 30 OF 37

5 Conclusion

Laboratory control spikes were used to determine the analytical method accuracy and precision for all analytes. The accuracy and precision were then used to estimate the method uncertainty for the results. Field matrix spike recoveries demonstrated that the analytical method was appropriate for the given sample matrix except where noted. Analysis was completed using 3M Environmental Laboratory method ETS-8-044.1 "Method of Analysis for the Determination of Perfluorinated Compounds in Water by LC/MS/MS; Direct Injection Analysis". Analytical results are reported in Tables 1 and 10-22 of this report.

6 Data / Sample Retention

All remaining sample and associated project data (hardcopy and electronic) will be archived according to 3M Environmental Laboratory standard operating procedures.

7 Attachments

Appendix A: Target Analyte Historical Trend Data for Cottage Grove Monitoring Wells MW07, MW12, MW13, MW16, MW101, MW104, MW105, MW108, MW110, PW09, and PW10.

8 Signatures

Digitally signed by Susan T. Wolf DN. c=US. st=MN, I=St. Paul, ou=3M Environmental Laboratory - authenticated by LRA, email=stwotf@mmm.com, o=3M, cn=Susan T. Wolf Reason: I have reviewed this cocument Date: 2014.08.08 10:42 31 -0500'

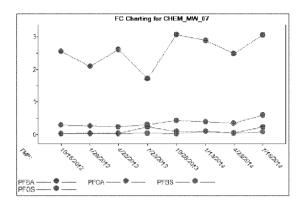
Susan T. Wolf, 3M Principal Analytical Investigator

Digitally signed by William K. Reagen DN: c=US, st=NN, I=St. Paul, o.e=Laboratory Director, ou=3M. Environmental Laboratory - authenticated by LRA, en:al =wkreagen@nmm.com, o=3M. cn=William K. Reagen Reason: I am approving this document Date: 2014.08.11 10:37:18 -05'00'

William K. Reagen, Ph.D., 3M Environmental Laboratory Technical Director

The 3M Environmental Laboratory's Quality Assurance Unit has audited the data and report for this project.

Matt

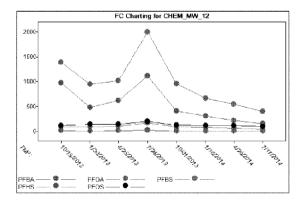

Digitally signed by Mathew D. Natiko-Stewart DN: etd3; steMN; IeS1; Paul, ou=Queiry Assurance Unit, ou=3M Environmentia: Laboratory - auth enticated by URA, email-mattewart2@mmm.com, o-3M, on-Matthew D. Natiko-@await Reason_pagee to the terms defined by the placement of my signature on this Jocument Date: 2014/28.12 02:43638 - 4500

Quality Assurance Representative

This test report shall not be reproduced except in full, without written approval of the 3M Environmental Laboratory.

PAGE 31 OF 37

3M_MN01596170

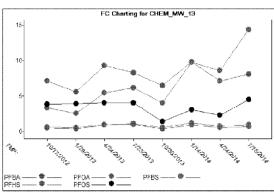


Cottage Grove MW07 - units are ng/mL

MW07	10/15/2012	1/29/2013	4/22/2013	7/23/2013	10/28/2013	1/13/2014	4/23/2014	7/16/2014
PFBA	2.55	2.09	2.61	1.71	3.07	2.88	2.48	3.05
PFOA	0.298	0.259	0.240	0.303	0.428	0.390	0.344	0.602
PFBS	<0.0250	<0.0250	0.0268	0.0396	0.0291	<0.100	0.0360	0.0762
PFOS	0.0257	0.0439	0.0459	0.241	0.104	0.104	0.0493	0.237

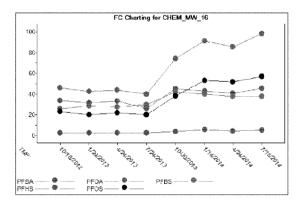
Samples were below the limit of quantitation for PFHS.

Cottage Grove MW12 - units are ng/mL



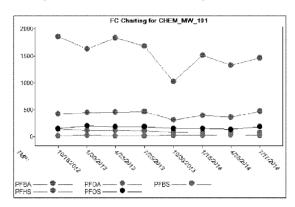
MW12	10/19/2012	1/30/2013	4/25/2013	7/24/2013	10/31/2013	1/16/2014	4/25/2014	7/17/2014
PFBA	975	484	622	1110	408	312	220	154
PFOA	1390	946	1020	2000	954	668	548	402
PFBS	94.3	91.4	105	175	87.7	82.1	68.9	50.4
PFHS	20.9	13.7	16.4	23.9	13.0	13.1	9.82	8.11
PFOS	122	143	145	204	131	121	117	96.9

PAGE 32 OF 37


3M_MN01596171

Cottage Grove MW13 - units are ng/mL

MW13	10/17/2012	1/29/2013	4/24/2013	7/23/2013	10/30/2013	1/14/2014	4/24/2014	7/16/2014
PFBA	7.10	5.60	9.34	8.30	6.48	9.80	7.14	8.08
PFOA	3.33	2.56	5.46	6.17	4.01	9.78	8.63	14.4
PFBS	0.619	0.56	0.972	1.07	0.571	1.20	0.752	0.973
PFHS	0.487	0.396	0.931	1.05	0.366	0.969	0.556	0.713
PFOS	3.85	3.92	4.05	4.02	1.40	3.08	2.33	4.48


Cottage Grove MW16 – units are ng/mL

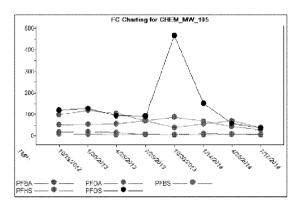
MW16	10/18/2012	1/29/2013	4/24/2013	7/24/2013	10/30/2013	1/14/2014	4/24/2014	7/16/2014
PFBA	33.6	31.5	33.2	26.3	45.0	42.9	40.7	45.7
PFOA	45.9	42.6	43.8	39.9	73.9	91.0	85.7	98.3
PFBS	25.7	28.3	27.5	29.6	42.1	40.0	37.9	37.9
PFHS	2.71	2.54	2.74	2.83	3.95	5.52	4.49	5.46
PFOS	23.1	20.2	21.8	20.1	38.2	53.1	51.9	57.0

PAGE 33 OF 37


3M_MN01596172

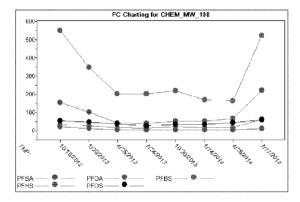
Cottage Grove MW101 - units are ng/mL

MW101	10/18/2012	1/30/2013	4/23/2013	7/25/2013	10/30/2013	1/15/2014	4/25/2014	7/17/2014
PFBA	1860	1630	1830	1680	1020	1510	1330	1460
PFOA	147	124	121	112	86.7	79.4	76.0	83.9
PFBS	23.9	25.2	19.5	24.0	25.5	25.4	37.8	29.3
PFHS	427	455	459	464	314	398	364	480
PFOS	154	206	188	189	158	159	135	193


Cottage Grove MW104 - units are ng/mL

MW104	10/18/2012	1/30/2013	4/25/2013	7/25/2013	10/30/2013	1/15/2014	4/25/2014	7/17/2014
PFBA	36.0	36.3	74.7	54.3	53.6	202	107	47.9
PFOA	42.0	44.8	60.7	74.7	72.5	35.1	82.1	76.5
PFBS	12.6	11.4	9.75	8.16	7.95	7.50	8.10	8.68
PFHS	8.69	9.07	13.4	11.8	10.1	14 .2	12.6	8.95
PFOS	127	201	185	176	165	4.25	234	233

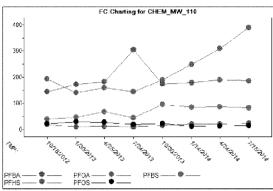
PAGE 34 OF 37


3M_MN01596173

Cottage Grove MW105 - units are ng/mL

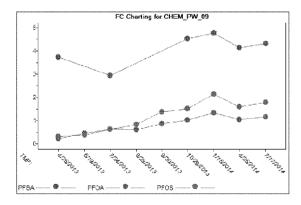
MW105	10/19/2012	1/30/2013	4/25/2013	7/25/2013	10/30/2013	1/14/2014	4/25/2014	7/17/2014
PFBA	52.7	54.4	57.0	71.6	38.9	55.6	71.0	39.2
PFOA	98.3	119	104	70.6	87.2	68.3	44.3	27.7
PFBS	9.46	8.03	5.72	6.49	4.98	6.15	7.68	4.89
PFHS	18.9	21.1	16.0	6.35	6.01	12.6	8.59	6.65
PFOS	120	129	95.0	92.3	467	152	58.7	36.2

Cottage Grove MW108 - units are ng/mL



MW108	10/18/2012	1/30/2013	4/25/2013	7/24/2013	10/30/2013	1/14/2014	4/25/2014	7/17/2014
PFBA	155	101	42.5	38.0	51.7	51.6	65.4	222
PFOA	550	348	201	202	218	169	164	522
PFBS	30.5	26.5	16.1	14.6	21.6	17.0	17.4	60.7
PFHS	20.7	11.1	4.95	4.94	4.47	4.13	3.58	11.3
PFOS	55.2	45.5	37.3	26.8	33.2	33.5	43.3	58.0

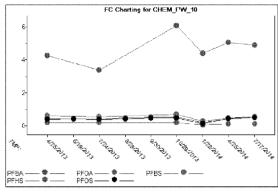
PAGE 35 OF 37


3M_MN01596174

Cottage Grove MW110 - units are ng/mL

MW110 10/18/2012 1/30/2013 4/25/2013 7/24/2013 10/30/2013 1/14/2014 4/24/2014 7/16/2014 PFBA 144 183 185 171 304 174 179 189 PFOA 193 141 160 144 190 248 310 390 PFBS 39.6 46.6 66.7 43.8 94.8 85.1 86.1 82.3 PFHS 11.8 19.4 17.6 10.3 9.41 15.3 20.9 24.1 PFOS 21.6 28.6 26.4 17.8 2**1**.1 12.**1** 12.5 15.4

Cottage Grove PW09 - units are ng/mL



PW09	4/25/2013	6/19/2013	7/24/2013	8/29/2013	9/30/2013	10/29/2013	1/15/2014	4/25/2014	7/17/2014
PFBA	3.72	NA	2.95	NA	NA	4.53	4.76	4.14	4.32
PFOA	0.223	0.462	0.624	0.605	0.873	1.02	1.33	1.05	1.16
PFOS	0.324	0.376	0.622	0.818	1.38	1.52	2.13	1.6	1.79

NA = Not Applicable; analyte not requested for the sampling event.

PAGE 36 OF 37

3M_MN01596175

Cottage Grove PW10 – units are ng/mL

NA	NA	6.09	4.40	5.07	4.90
0.471	0.528	0.524	0.212	0.421	0.484
NA	NA	0.703	0.261	0.471	0.540
NA	NA	0.193	0.0485	0.110	0.104
	NA	NA NA	NA NA 0.703	NA NA 0.703 0.261	NA NA 0.703 0.261 0.471

0.465

0.458

0.124

0.437

0.503

0.415

NA = Not Applicable; analyte not requested for the sampling event.

0.401

0.38

0.396

PFOS

PAGE 37 OF 37

OCTOBER 2014

3M_MN01596177

Final Report

Analysis of PFBA, PFOA, PFBS, PFHS, and PFOS in Cottage Grove Groundwater

4th Quarter 2014 Sampling

Laboratory Request Number: ISO11-01-03-18

Report Date - Date of Last Signature

Testing Laboratory

3M EHS Operations 3M Environmental Laboratory Building 260-5N-17 Maplewood, MN 55144-1000

Requester

Gary Hohenstein 3M EHS Operations 3M Building 224-5W-03 Saint Paul, MN 55144-1000 Phone: (651) 737-3570

The testing reported herein meet the requirements of ANSI/ISO/IEC 17025:2005 "General Requirements for the Competence of Testing and Calibration Laboratories", in accordance with A2LA Certificate # 2052.01. Additionally, the laboratory's quality system has been audited and was determined to be in conformance with the EPA GLPs (40 CFR 792) by an independent A2LA assessment.

PAGE 1 OF 34

3M_MN01596178

3M Environmental Laboratory

3M Environmental Laboratory Technical Director: William K. Reagen, Ph.D. 3M Principal Analytical Investigator: Susan Wolf Report Author: Kevin Eich

Analytical Report ISO11-01-03-18

Analysis of PFBA, PFOA, PFBS, PFHS, and PFOS in Cottage Grove Groundwater 4th Quarter 2014 Sampling

Report Date: Date of Last Signature

1 Introduction/Summary

The 3M Environmental Laboratory prepared and analyzed groundwater samples collected by Weston Solutions personnel at the 3M Cottage Grove facility. Samples were collected on October 28-30, 2014. Samples were returned to the 3M Environmental Laboratory on October 30, 2014 on ice for the analysis of Perfluorobutanoic acid (PFBA), Perfluoroctanoic acid (PFOA), Perfluorobutane sulfonate (PFBS), Perfluorobexane sulfonate (PFHS) and Perfluoroctane sulfonate (PFOS) under laboratory project number ISO11-01-03-18.

The 3M Environmental Laboratory prepared sample containers for twelve sampling locations. Each sample set consisted of a field sample, field sample duplicate, and a target analyte field matrix spike. Each empty container was marked with a "fill to here" line that corresponded to a final volume of 200 mL. Containers reserved for field matrix spikes were fortified with an appropriate matrix spike solution containing the target analytes prior to being sent to the field for sample collection. Select sample bottles were fortified with internal standards and surrogate recovery standards prior to being sent to the field for sample collection.

Samples were prepared and analyzed for PFBA, PFOA, PFBS, PFHS, and PFOS using method ETS-8-044.1 "Method of Analysis for the Determination of Perfluorinated Compounds in Water by LC/MS/MS; Direct Injection Analysis". Internal standards were used to aid in the data quality objectives for the analysis of select samples, were applicable.

Table 1 summarizes the sample results using the analytical method identified above. All results for quality control samples prepared and analyzed with the samples will be reported and discussed elsewhere in this report.

The testing reported herein meet the requirements of ANSI/ISO/IEC 17025:2005 "General Requirements for the Competence of Testing and Calibration Laboratories", in accordance with A2LA Certificate # 2052.01. Additionally, the laboratory's quality system has been audited and was determined to be in conformance with the EPA GLPs (40 CFR 792) by an independent A2LA assessment.

PAGE 2 OF 34

3M_MN01596179

Table 1. Sample Results Summary ⁽¹⁾

			Conc	entration (ng	/mL)	
3M LIMS ID	Sample Description	PFBA	PFOA	PFBS	PFHS	PFOS
ISO11-01-03-18-001	CGMN-GW-MW07-0-141028	3.15	0.615	0.0762	0.0511	0.194
ISO11-01-03-18-002	CGMN-GW-MW07-DB-141028	2.87	0.547	0.0639	0.0495	0.187
	Average	3.01	0.581	0.0701	0.0503	0.191
	%RPD Sample/Sample Dup	9.3	12	18	3.2	3.7
ISO11-01-03-18-004	CGMN-GW-MW12-0-141030	126	345	45.8	7.79	92.0
ISO11-01-03-18-005	CGMN-GW-MW12-DB-141030	128	350	46.4	7.76	93.0
	Average	127 (2)	348 (2)	46.1 ⁽²⁾	7.78 (2)	92.5 ⁽²⁾
	%RPD Sample/Sample Dup	1.6	1.4	1.3	0.39	1.1
ISO11-01-03-18-007	CGMN-GW-MW13-0-141028	9.52	9.76	1.07	0.712	4.83
ISO11-01-03-18-008	CGMN-GW-MW13-DB-141028	9.76	10.3	1.10	0.727	4.94
	Average	9.64	10.0	1.09	0.720	4.89
	%RPD Sample/Sample Dup	2.5	5.4	2.8	2.1	2.3
ISO11-01-03-18-010	CGMN-GW-MW14R-0-141029	570	355	38.7	16.5	85.2
ISO11-01-03-18-011	CGMN-GW-MW14R-DB-141029	569	351	37.4	16.7	80.0
	Average	570 ⁽²⁾	353 (2)	38.1 ⁽²⁾	16.6 ⁽²⁾	82.6 (2)
	%RPD Sample/Sample Dup	0.18	1.1	3.4	1.2	6.3
ISO11-01-03-18-013	CGMN-GW-MW16-0-141028	38.2	73.7	32.8	4.45	41.7
ISO11-01-03-18-014	CGMN-GW-MW16-DB-141028	39.6	77.8	35.0	4.71	43.4
	Average	38.9	75.8	33.9	4.58	42.6
	%RPD Sample/Sample Dup	3.6	5.4	6.5	5.7	4.0
ISO11-01-03-18-016	CGMN-GW-MW101-0-141029	1410	75.2	29.6	460	165
ISO11-01-03-18-017	CGMN-GW-MW101-DB-141029	1400	74.4	29.6	443	174
	Average	1410 ⁽²⁾	74.8 (2)	29.6 ⁽²⁾	452 ⁽²⁾	1 70 ⁽²⁾
	%RPD Sample/Sample Dup	0.71	1.1	0.0	3.8	5.3
ISO11-01-03-18-019	CGMN-GW-MW104-0-141029	31.0	50.3	7.73	5.81	176
ISO11-01-03-18-020	CGMN-GW-MW104-DB-141029	30.8	49.7	7.71	6.67	177
	Average	30.9 ⁽²⁾	50.0 ⁽²⁾	7.72 (2)	6.24 ⁽²⁾	177 (2)
	%RPD Sample/Sample Dup	0.65	1.2	0.26	14	0.57
ISO11-01-03-18-022	CGMN-GW-MW105-0-141029	45.6	93.8	3.88	18.7	73.9
ISO11-01-03-18-023	CGMN-GW-MW105-DB-141029	47.0	91.8	4.13	19.0	73.0
	Average	46.3 (2)	92.8 (2)	4.01 ⁽²⁾	18.9 (2)	73.5 ⁽²⁾
	%RPD Sample/Sample Dup	3.0	2.2	6.2	1.6	1.2
ISO11-01-03-18-025	CGMN-GW-MW108-0-141029	88.1	268	23.0	8.20	42.3
ISO11-01-03-18-026	CGMN-GW-MW108-DB-141029	85.9	267	22.4	8.79	41.6
	Average	87.0 (2)	268 (2)	22.7 (2)	8.50 (2)	42.0 (2)
	%RPD Sample/Sample Dup	2.5	0.37	2.6	6.9	1.7

(1) Sample set was analyzed by internal standard calibration, except where noted. The analytical method uncertainties associated with the reported results by internal standard calibration are as follows: PFBA ± 14%, PFOA ± 22%, PFBS ± 16%, PFHS ± 12%, and PFOS ± 16%.

(2) Sample set was analyzed by external standard calibration. The analytical method uncertainties associated with the reported results by external standard calibration are as follows: PFBA ± 24%, PFOA ± 14%, PFBS ± 8.6%, PFHS ± 11%, and PFOS ± 15%.

PAGE 3 OF 34

3M_MN01596180

			Conc	entration (ng	/mL)	
3M LIMS ID	Sample Description	PFBA	PFOA	PFBS	PFHS	PFOS
ISO11-01-03-18-028	CGMN-GW-MW110-0-141028	290	415	57.9	23.4	12.9
ISO11-01-03-18-029	CGMN-GW-MW110-DB-141028	297	419	57.3	23.6	12.8
	Average	294 ⁽²⁾	417 ⁽²⁾	57.6 ⁽²⁾	23.5 (2)	12.9 ⁽²⁾
	%RPD Sample/Sample Dup	2.4	0.96	1.0	0.85	0.78
ISO11-01-03-18-031	CGMN-GW-PW09-0-141030	3.84	0.721	0.101	0.0560	0.919
ISO11-01-03-18-032	CGMN-GW-PW09-DB-141030	3.90	0.681	0.110	0.0522	0.757
	Average	3.87	0.701	0.106	0.0541	0.838
	%RPD Sample/Sample Dup	1.6	5.7	8.5	7.0	19
ISO11-01-03-18-034	CGMN-GW-PW10-0-141030	4.48	0.379	0.412	0.0795	0.345
ISO11-01-03-18-035	CGMN-GW-PW10-DB-141030	4.38	0.372	0.387	0.0759	0.329
	Average	4.43	0.376	0.400	0.0777	0.337
	%RPD Sample/Sample Dup	2.3	1.9	6.3	4.6	4.7

Table 1 continued. Sample Results Summary (1)

(1) Sample set was analyzed by internal standard calibration, except where noted. The analytical method uncertainties associated with the reported results by internal standard calibration are as follows: PFBA ± 14%, PFOA ± 22%, PFBS ± 16%, PFHS ± 12%, and PFOS ± 16%.

(2) Sample set was analyzed by external standard calibration. The analytical method uncertainties associated with the reported results by external standard calibration are as follows: PFBA ± 24%, PFOA ± 14%, PFBS ± 8.6%, PFHS ± 11%, and PFOS ± 15%.

2 Methods - Analytical and Preparatory

2.1 Methods

Analysis was completed following 3M Environmental Laboratory method ETS-8-044.1 "Method of Analysis for the Determination of Perfluorinated Compounds in Water by LC/MS/MS; Direct Injection Analysis".

Table 2. Target Analytes

Target Analytes	Acronym	Reference Material Structure
Perfluorobutanoic Acid (C4 Acid)	PFBA	Linear
Perfluorooctanoic Acid (C8 Acid)	PFOA	Linear + Branched
Perfluorobutanesulfonate (C4 Sulfonate)	PFBS	Linear
Perfluorohexanesulfonate (C6 Sulfonate)	PFHS	Linear
Perfluorooctanesulfonate (C8 Sulfonate)	PFOS	Linear + Branched

2.2 Sample Collection

Samples were collected on October 28-30, 2014 in Nalgene™ (high-density polyethylene) bottles prepared at the 3M Environmental Laboratory. Prior to sample collection, bottles designated for field matrix spikes were spiked in the laboratory with a known volume of an appropriate matrix spiking solution containing the analytes of interest. Collected sample bottles were returned to the laboratory on ice on October 30, 2014.

PAGE 4 OF 34

3M_MN01596181

2.3 Sample Preparation

Sample concentrations were expected to range from <0.025 ng/mL to >1000 ng/mL. Sampling locations that were expected to have concentration <100 ng/mL were analyzed by internal standard calibration analysis. Sampling locations that were expected to have concentration >100 ng/mL were analyzed by external standard calibration analysis. The following sample preparation procedures were followed for each type of analysis.

Internal standard calibration analysis: Samples analyzed by internal standard calibration were prepared by removing a 0.4 mL aliquot of the well mixed sample and diluting it with 0.4 mL of methanol (dilution factor of 2).

During the preparation of the laboratory control samples, an aliquot of a separate internal standard spiking solution was added to the laboratory control samples (nominal concentration of 1 ng/mL). The sample bottles were spiked with an internal standard mix at a nominal concentration of 1 ng/mL prior to being sent to the field for sample collection. The laboratory control samples were then diluted with methanol in the same manner as the samples.

External standard calibration analysis: Samples analyzed by external standard calibration required dilution prior to analysis. Samples were prepared by diluting 0.1 mL of a well-mixed sample with 9.9 mL of methanol (dilution factor of 100). An aliquot of surrogate spiking solution was added to the diluted samples at a nominal concentration of 1 ng/mL.

2.4 Analysis

All samples and quality control samples were analyzed for five target analytes using high performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS). Pertinent instrument parameters, the liquid chromatography gradient program, and the specific mass transitions analyzed are described in the tables below.

Due to the nature of the sample, the wide range of concentrations found in the sample, and the environmental occurrence of multiple isomers of the laboratory's analytes of interest, the software used for processing the analytical results is not able to consistently integrate the analytical peak, manual integration of the analytical peak is necessary. All manual integrations are performed following the procedures outlined in method ETS-12-010. The consistency of the laboratory's integration is ensured through the training of laboratory personnel, the peer review process required for all manual integrations, the review of manual integrations by the QAU, and where necessary the review of manual integrations by laboratory management.

Instrument Name	ETS Buster
Liquid Chromatograph	Agilent 1100
Analysis Method	ETS-8-044.1
Analysis Date	11/18/14 and 11/20/14
Guard column	Betasil C18 (4.6 mm X 100 mm), 5 μ
Analytical column	Betasil C18 (4.6 mm X 100 mm), 5 μ
Injection Volume	10 μ L , 30 μL
Mass Spectrometer	AB Sciex Triple Quad 4000
Ion Source	Turbo Spray
Polarity	Negative
Software	Analyst 1.6.2

Table 3. Instrument Parameters.

PAGE 5 OF 34

3M_MN01596182

ETS-8-044.1 Analysis					
Step Number	Total Time (min)	Flow Rate (μL/min)	Percent A (Methanol)	Percent B (2 mM ammonium acetate)	
0	0.00	750	3.0	97.0	
1	0.50	750	3.0	97.0	
2	4.00	750	30.0	70.0	
3	6.00	750	30.0	70.0	
4	11.0	750	80.0	20.0	
5	13.0	750	80.0	20.0	
6	13.5	750	90.0	10.0	
7	16.0	750	90 .0	10.0	
8	16.5	750	3.0	97.0	
9	19.0	750	3.0	97.0	

Table 4. Liquid Chromatography Gradient Program.

Table 5. Mass Transitions

Analyte	Mass Transition Q1/Q3	Internal Standard (1)	Mass Transition Q1/Q3	
PFBA	213/169	[¹³ C ₄]-PFBA	217/172	
	413/369			
PFOA	413/219	[¹³ C ₈]-PFOA	421/3 7 6	
	413/169			
DEDO	299/80		000/04	
PFBS 299/99	299/99	[¹⁸ O ₂]-PFBS	303/84	
DEUO	399/99		402/80	
PFHS	399/80	[¹³ C₃]-PFHS		
	499/99			
PFOS	499/80	[¹³ C ₈]PFOS	507/80	
	499/130			
[¹³ C ₃]-PFBA	216/172	[¹³ C₄]-PFBA	217/172	
[¹³ C ₄]-PFOA	417/372	[¹³ C ₈]-PFOA	421/376	
[¹³ C₄]-PFOS	503/80	[¹³ C ₈]-PFOS	507/80	

(1) Internal standard was not used for the samples analyzed by solvent dilution external standard calibration.

3 Data Analysis

3.1 Calibration

Solvent dilution analysis using internal standard calibration: Samples were analyzed for all analytes against a matrix-matched stable isotope internal standard calibration curve. Calibration standards were prepared by spiking known amounts of stock solutions into 50 mL of 50:50 methanol:laboratory reagent water. The calibration standards contained an internal standard mix at a nominal concentration of 0.5 ng/mL. Calibration standards ranging from 0.0125 ng/mL to 100 ng/mL (nominal) were analyzed (0.0125 ng/mL to 10 ng/mL (nominal) for the SRSs). A quadratic, 1/x weighted, calibration curve of the ratio of the standard peak area counts over the internal standard concentrations using the peak area ratios and the resultant calibration curve confirmed accuracy of each curve point.

PAGE 6 OF 34

3M_MN01596183

Solvent dilution analysis using external standard calibration: Samples were analyzed against an external standard calibration curve. Calibration standards were prepared by spiking known amounts of the stock solution into 50 mL of 90:10 methanol: laboratory Milli-Q[™] water. Calibration standards ranging from 0.02 ng/mL to 50 ng/mL (nominal) were analyzed. A quadratic, 1/x weighted, calibration curve of the standard peak area counts was used to fit the data for each analyte. Low or high points were disabled to meet method criteria. The data were not forced through zero during the fitting process. Calculating the standard concentrations using the peak area counts and the resultant calibration curve confirmed accuracy of each curve point.

For both methods of analysis, each curve point was quantitated using the overall calibration curve and reviewed for accuracy. Method calibration accuracy requirements of $100\pm25\%$ ($100\pm30\%$ for the lowest curve point) were met for all analytes. The correlation coefficient (r) was greater than 0.995 for all analytes.

3.2 System Suitability

A calibration standard was analyzed four times at the beginning of the analytical sequence to demonstrate overall system suitability. The acceptance criteria for system suitability samples of less than or equal to 5% relative standard deviation (RSD) for peak are counts or peak area ratio and retention time criteria of less than or equal to 2% RSD were met for all analytes.

3.3 Limit of Quantitation (LOQ)

The LOQ as defined in method ETS-8-044.1 is the lowest non-zero calibration standard in the curve that meets linearity and accuracy requirements and for which the area counts are at least twice those of the appropriate blanks. The LOQs associated with the sample analysis are listed in the Table 6 below.

Table	6. L	OQ
-------	------	----

Analyte	LOQ, ng/mL ⁽¹⁾ 11/18/14 Analysis	LOQ, ng/mL ⁽²⁾ 11/20/14 Analysis
PFBA	0.0250	2.00
PFOA	0.0240	1.92
PFBS	0.0250	2.00
PFHS	0.0250	2.00
PFOS	0.0232	1.85

(1) A dilution factor of 2 was applied to the LOQ.

(2) A dilution factor of 100 was applied to the LOQ.

3.4 Continuing Calibration

During the course of the analytical sequence, several continuing calibration verification samples (CCVs) were analyzed to confirm that the instrument response and the initial calibration curve were still in control. All reported results were bracketed by CCVs that met method acceptance criteria of 100%±25%.

3.5 Blanks

Three types of blanks were prepared and analyzed with the samples: method/solvent blanks, field/trip blanks, and sampling equipment blanks. Each blank result was reviewed and used to evaluate method performance. The method/solvent blanks were used to determine the LOQ for each analyte.

PAGE 7 OF 34

3M_MN01596184

3.6 Lab Control Spikes (LCSs)

Low, mid, and high lab control spikes were prepared for the target analytes and analyzed in triplicate. LCSs prepared for internal standard calibration analysis were prepared by spiking known amounts of the analytes into 10 mL of laboratory reagent water to produce the desired concentration. The LCSs were then diluted in the same manner as the samples. LCSs prepared for external standard calibration analysis were prepared by spiking known amounts of the analytes into 1.0 mL of laboratory reagent water and 9.0 mL of methanol to produce the desired concentration. Method ETS-8-044.1 states that the average recovery of LCSs at each spiking level must be within 80%-120% with a RSD ≤20%. All LCS samples met criteria.

All LCS samples were used in the determination of the analytical method uncertainty in section 3.7 of the report.

The following calculations were used to generate data in Table 7.

LCS Percent F	Recovery =	Calculat	ed Concentration	- * 100%
L				
LCS% RSD =	standard (deviation	LCS replicates .	100%
100/0100 =	aver	age LCS	recovery	10076

Table 7. Laboratory Control Spike Results.

ETS-8-044.1						
Internal standard calibration						
Analyzed 11/18/14		PFBA		PFO	A (Linear + Branched)	
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-141118-1	0.198	0.181	91.6	0.190	0.189	99.2
LCS-141118-2	0.198	0.172	86.8	0.190	0.184	96.6
LCS-141118-3	0.198	0.187	94.5	0.190	0.191	100
Average ± %RSD		91.0% ± 4.3%		98.6% ± 1.8%		
LCS-141118-4	9.91	9.72	98.1	9.50	8.90	93.6
LCS-141118-5	9.91	9.81	98.9	9.50	8.97	94.4
LCS-141118-6	9.91	9.63	97.1	9.50	8.85	93.2
Average ± %RSD		98.0% ± 0.92%			93.7% ± 0.65%	
LCS-141118-7	1 57	149	94.9	150	126	83.8
LCS-141118-8	157	144	91.7	150	127	84.5
LCS-141118-9	157	142	90.8	150	124	82.9
Average ± %RSD		92.5% ± 2.3%			83.7% ± 0.96%	

PAGE 8 OF 34

ETS-8-044.1 Internal standard calibration						
Analyzed 11/18/14		PFBS			PFHS	
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-141118-1	0.198	0.211	107	0.198	0.211	107
LCS-141118-2	0.198	0.220	111	0.198	0.208	105
LCS-141118-3	0.198	0.220	111	0.198	0.207	104
Average ± %RSD		110% ± 2.1%			105% ± 1.5%	
LCS-141118-4	9.92	10.2	102	9.92	9.21	92.8
LCS-141118-5	9.92	10.3	104	9.92	9.48	95.5
LCS-141118-6	9.92	10.2	102	9.92	9.18	92.6
Average ± %RSD		103% ± 1.1%			93.6% ± 1.7%	
LCS-141118-7	157	155	99.0	157	153	97.6
LCS-141118-8	157	148	94.3	157	147	93.6
LCS-141118-9	157	147	93.4	157	147	93.6
Average ± %RSD		95.6% ± 3.1%			94.9% ± 2.4%	

ETS-8-044.1 Internal standard calibration			
Analyzed 11/18/14	PFOS	(Linear + Branch	ed)
	Spiked	Calculated	
Lab ID	Concentration (ng/mL)	Concentration (ng/mL)	%Recovery
LCS-141118-1	0.184	0.176	95.8
LCS-141118-2	0.184	0.176	95.6
LCS-141118-3	0.184	0.180	98.1
Average ± %RSD		96.5% ± 1.4%	
LCS-141118-4	9.20	8.40	91.3
LCS-141118-5	9.20	8.64	94.0
LCS-141118-6	9.20	8.18	88.9
Average ± %RSD		91.4% ± 2.8%	
LCS-141118-7	145	133	92.0
LCS-141118-8	145	124	85.3
LCS-141118-9	145	126	86.6
Average ± %RSD		88.0% ± 4.0%	

PAGE 9 OF 34

3M_MN01596186

ETS-8-044.1						
Internal standard calibration						
Analyzed 11/18/14		¹³ C ₃ -PFBA			¹³ C ₄ -PFOA	
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-141118-1	0.197	0.208	105	0.198	0.207	105
LCS-141118-2	0.197	0.215	109	0.198	0.210	106
LCS-141118-3	0.197	0.218	110	0.198	0.212	107
Average ± %RSD		108% ± 2.4%			1 06% ± 0.94%	
LCS-141118-4	1.97	1,94	98.7	1.98	1.96	99.1
LCS-141118-5	1.97	1.90	96.6	1.98	1.90	96.0
LCS-141118-6	1.97	1.94	98.6	1.98	1.92	96.7
Average ± %RSD		98.0% ± 1.2%			97.3% ± 1.7%	

ETS-8-044.1 Internal standard calibration		¹³ C₄-PFOS	
Analyzed 11/18/14	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-141118-1	0.189	0.188	99.5
LCS-141118-2	0.189	0.196	104
LCS-141118-3	0.189	0.212	112
Average ± %RSD		105% ± 6.0%	
LCS-141118-4	1.90	1.89	99.6
LCS-141118-5	1.90	1.89	99.7
LCS-141118-6	1.90	1.85	97.2
Average ± %RSD		98.8% ± 1.4%	

PAGE 10 OF 34

3M_MN01596187

ETS-8-044.1						
External standard calibration						
Analyzed 11/20/14		PFBA		PFO	A (Linear + Branched)	
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-141120-1	20.2	21.6	107	19.9	19.3	97.1
LCS-141120-2	20.2	21.0	104	19.9	19.0	95.3
LCS-141120-3	20.2	19.9	98.6	19.9	18.7	94.1
Average ± %RSD		103% ± 4.1%		95.5% ± 1.6%		
LCS-141120-4	502	488	97.1	496	480	96.8
LCS-141120-5	502	487	97.0	496	481	96.9
LCS-141120-6	502	505	101	496	493	99.4
Average ± %RSD		98.4% ± 2.3%			97.7% ± 1.5%	
LCS-141120-7	4040	4160	103	3980	3620	90.8
LCS-141120-8	4040	4080	101	3980	3460	86.9
LCS-141120-9	4040	4090	101	3980	3600	90.4
Average ± %RSD	102% ± 1.1%			89.4% ± 2.4%		

ETS-8-044.1						
External standard calibration						
Analyzed 11/20/14		PFBS			PFHS	
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-141120-1	19.8	21.3	108	20.0	22.0	110
LCS-141120-2	19.8	21.2	107	20.0	20.6	103
LCS-141120-3	19.8	21.0	106	20.0	20.6	103
Average ± %RSD		107% ± 0.93%		105% ± 3.8%		
LCS-141120-4	494	495	100	498	498	99.9
LCS-141120-5	494	492	99.6	498	512	103
LCS-141120-6	494	503	102	498	513	103
Average ± %RSD		101% ± 1.3%			102% ± 1.8%	
LCS-141120-7	3970	4090	103	4000	4480	112
LCS-141120-8	3970	3940	99.3	4000	4400	110
LCS-141120-9	3970	3960	99.7	4000	4470	112
Average ± %RSD		101% ± 2.0%			111% ± 1.0%	

PAGE 11 OF 34

ETS-8-044.1 External standard calibration Analyzed 11/20/14	PFOS) (Linear + Branch	ed)
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-141120-1	19.9	16.6	83.7
LCS-141120-2	19.9	16.2	81.2
LCS-141120-3	19.9	15.5	78.0
Average ± %RSD		81.0% ± 3.5%	
LCS-141120-4	496	442	89.1
LCS-141120-5	496	440	88.7
LCS-141120-6	496	469	94.6
Average ± %RSD		90.8% ± 3.6%	
LCS-141120-7	3980	3990	100
LCS-141120-8	3980	3930	98.6
LCS-141120-9	3980	3940	98.8
Average ± %RSD		99.1% ± 0.76%	

ETS-8-044.1						
External standard calibration						
Analyzed 11/20/14		¹³ C ₃ -PFBA			¹³ C ₄ -PFOA	
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-141120-1	19.9	22.8	115	19.9	23.2	117
LCS-141120-2	19.9	23.2	117	19.9	23.4	117
LCS-141120-3	19.9	22.6	113	19.9	22.9	115
Average ± %RSD		115% ± 1.7%			116% ± 1.0%	
LCS-141120-4	199	216	109	199	221	111
LCS-141120-5	199	215	108	199	213	107
LCS-141120-6	199	215	108	199	209	105
Average ± %RSD		108% ± 0.53%			108% ± 2.8%	

PAGE 12 OF 34

3M_MN01596189

ETS-8-044.1			
External standard calibration			
Analyzed 11/20/14		¹³ C ₄ -PFOS	
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-141120-1	19.1	22.6	118
LCS-141120-2	19.1	21.0	110
LCS-141120-3	19.1	22.5	118
Average ± %RSD		115% ± 4.0%	
LCS-141120-4	191	205	107
LCS-141120-5	191	201	105
LCS-141120-6	191	204	107
Average ± %RSD		106% ± 1.1%	

3.7 Analytical Method Uncertainty

Analytical uncertainty is based on historical QC data that is control charted and used to evaluate method accuracy and precision. The method uncertainty is calculated following ETS-12-012.2. The standard deviation is calculated for the set of accuracy results (in %) obtained for the QC samples. For method ETS-8-044.1, the most recent fifty QC samples were used. The expanded uncertainty is calculated by multiplying the standard deviation by a factor of 2, which corresponds to a confidence level of 95%.

Table 8. Analytical Method Uncertainty.

Analyte	Calibration	Standard Deviation (%)	Method Uncertainty
PFBA	Internal	6.78	±14%
PFOA	Internal	10.8	±22%
PFBS	Internal	7.91	±16%
PFHS	Internal	6.13	±12%
PFOS	Internal	8.24	±16%
PFBA	External	12.1	±24%
PFOA	External	7.23	±14%
PFBS	External	4.31	±8.6%
PFHS	External	5.39	±11%
PFOS	External	7.55	±15%

3.8 Field Matrix Spikes (FMS)

A target analyte field matrix spike sample was collected at each sampling point to verify that the analytical method is applicable for the collected matrix. Field matrix spikes are generated by adding a measured volume of field sample to a container spiked by the laboratory with the target analytes prior to shipping sample containers for sample collection. Field matrix spikes must be at least 50% of the analyte concentration to be considered an appropriate spike level. Field matrix spike recoveries within method acceptance criteria of 100±30% confirm that "unknown" components in the sample matrix do not significantly interfere with the preparation and analysis of the analytes of interest. The standards used for the preparation of the field matrix spiking solutions contained reference materials comprised of both linear and branched isomers for PFOS and only the linear isomer for PFOA. Field matrix spikes are presented in section 4 of this report.

PAGE 13 OF 34

3M_MN01596190

In addition to target analyte field matrix spikes, each sample contained stable isotope surrogate recovery spikes of ${}^{13}C_3$ -PFBA, ${}^{13}C_4$ -PFOA, and ${}^{13}C_4$ -PFOS, which were added at a nominal concentration of 0.1 ng/mL to select sample bottles prior to sample collection or at a nominal concentration of 1 ng/mL following sample collection. The ${}^{13}C_3$ -PFBA and ${}^{13}C_4$ -PFOA were selected to represent perfluorocarboxylic acids. The ${}^{13}C_4$ -labeled PFOS was selected to represent the perfluorosulfonic acids. Surrogate matrix spike recoveries within method acceptance criteria of 100±30% confirm that "unknown" components in the sample matrix do not significantly interfere with the preparation and analysis of the analytes of interest. The surrogate spike recoveries are included in section 4 of this report.

FM SRecovery -	(Sample Concentration of FMS-Average Concentration : Field Sample & Field Sample Dup.) *100%
rwskewery =	Spike Concentration

Table 9.	Field	Matrix	Spike	Concentrations
----------	-------	--------	-------	----------------

		Final Concentration (ng/mL)				
Location	Spike Level	PFBA	PFOA	PFBS	PFHS	PFOS
MW07, PW09, and PW10	FMS	2.02	1.99	1.98	2.00	1.99
MW13	FMS	10.1	9.96	9.92	10.0	9.96
MW110	FMS	20.2	19.9	19.8	20.0	19.9
MW16 and MW105	FMS	50.5	49.8	49.6	50.0	49.8
MW101, MW104, and MW108	FMS	101	99.6	99.2	100	99.6
MW12 and MW14R	FMS	252	249	248	251	249
	Low	2.02	1.99	1.98	2.00	1.99
Trip Blank	High	101	99.6	99.2	100	99.6

4 Data Summary and Discussion

The tables below summarize the sample results and field matrix spike recoveries for sampling locations as well as the Trip Blank. Each table provides the average concentration and the relative percent difference (%RPD) of the sample and sample duplicate. Results and average values are rounded to three significant figures. Percent relative difference (%RPD) values are rounded to two significant figures. Because of rounding, values vary slightly from those listed in the raw data. Field matrix spikes meeting the method acceptance criteria of ±30%, demonstrate that the method is appropriate for the given matrix.

For those analytes where the field matrix spike level was not appropriate as compared to the sample concentration, the surrogate recovery standards were used to assess method accuracy. All surrogate recovery standards and field matrix spike recoveries met method acceptance criteria (where applicable).

PAGE 14 OF 34

3M_MN01596191

Table 10. CGMN GW MW07 141028

		PFE	A	PFOA	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-18-001	CGMN-GW-MW07-0-141028	3.15	NA	0.615	NA
ISO11-01-03-18-002	CGMN-GW-MW07-DB-141028	2.87	NA	0.547	NA
ISO11-01-03-18-003	CGMN-GW-MW07-FMS-141028	4.95	96.0	2.50	96.3
Average Concentration (ng/mL) ± %RPD		3.01 ng/mi	L ± 9.3%	0.581 ng/n	1L ± 12%

		PFB	PFBS		PFHS		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	
ISO11-01-03-18-001	CGMN-GW-MW07-0-141028	0.0762	NA	0.0511	NA	0.194	NA	
ISO11-01-03-18-002	CGMN-GW-MW07-DB-141028	0.0639	NA	0.0495	NA	0.187	NA	
ISO11-01-03-18-003	CGMN-GW-MW07-FMS-141028	1.98	96.3	2.00	97.5	ŕ.99	90.3	
Average Concentration (ng/mL) ± %RPD		0.0701 ng/n	nL ± 18%	0.0503 ng/n	nL ± 3.2%	0.191 ng/m	L ± 3.7%	

		¹³ C ₃ -PFBA	¹³ C ₄ -PFOA	¹³ C ₄ -PFOS
3M LIMS ID	Description	%Recoverv	%Recovery	%Recovery
ISO11-01-03-18-001	CGMN-GW-MW07-0-141028	120	116	115
ISO11-01-03-18-002	CGMN-GW-MW07-DB-141028	103	97.3	108
ISO11-01-03-18-003	CGMN-GW-MW07-FMS-141028	103	103	102
Average Recovery (%) ± %RSD		108% ± 9.1%	105% ± 9.1%	108% ± 6.1%

NA = Not Applicable Samples were diluted 1:1 and analyzed by internal standard calibration.

PAGE 15 OF 34

Table 11. CGMN GW MW12 141030

		PFBA		PFOA	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-18-004	CGMN-GW-MW12-0-141030	126	NA	345	NA
ISO11-01-03-18-005	CGMN-GW-MW12-DB-141030	128	NA	350	NA
ISO11-01-03-18-006	CGMN-GW-MW12-FMS-141030	367	95.4	576	91.8
Average Co	ncentration (ng/mL) ± %RPD	127 ng/ml	_ ± 1.6%	348 ng/ml	_ ± 1.4%

			PFBS		PFHS		PFOS	
3MI LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	
ISO11-01-03-18-004	CGMN-GW-MW12-0-141030	45.8	NA	7.79	NA	92.0	NA	
ISO11-01-03-18-005	CGMN-GW-MW12-DB-141030	46.4	NA	7.76	NA	93.0	NA.	
ISO11-01-03-18-006	CGMN-GW-MW12-FMS-141030	292	99.2	250	96.5	322	92.2	
Average Co	encentration (ng/mL) ± %RPD	46.1 ng/m	L ± 1.3%	7.78 ng/mL	± 0.39%	92.5 ng/mL	± 1.1%	

		¹³ C ₃ -PFBA	¹³ C₄-PFOA	⁰C₄₽FOS
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery
ISO11-01-03-18-004	CGMN-GW-MW12-0-141030	118	113	113
ISO11-01-03-18-005	CGMN-GW-MW12-DB-141030	111	109	115
ISO11-01-03-18-006	CGMN-GW-MW12-FMS-141030	101	97.7	97.4
Avera	ge Recovery (%) ± %RSD	110% ± 7.9%	107% ± 7.6%	109% ± 9.0%

NA = Not Applicable Samples were diluted 1:100 and analyzed by external standard calibration.

PAGE 16 OF 34

Table 12. CGMN GW MW13 141028

		PFE	PFBA		A
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-18-007	CGMN-GW-MW13-0-141028	9.52	NA	9.76	NA
ISO11-01-03-18-008	CGMN-GW-MW13-DB-141028	9.76	NA	10.3	NA
ISO11-01-03-18-009	CGMN-GW-MW13-FMS-141028	19.4	96.6	19.0	90.1
Average Co	ncentration (ng/mL) ± %RPD	9.64 ng/m	L ± 2.5%	10.0 ng/m	L ± 5.4%

			PFBS		PFHS		5
3MI LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-18-007	CGMN-GW-MW13-0-141028	1.07	NA	0.712	NA	4.83	NA
ISO11-01-03-18-008	CGMN-GW-MW13-DB-141028	1.10	NA	0.727	NA	4.94	NA.
ISO11-01-03-18-009	CGMN-GW-MW13-FMS-141028	10.9	98.9	10.0	92.8	14.0	91.5
Average Co	encentration (ng/mL) ± %RPD	1.09 ng/m	L ± 2.8%	0.720 ng/m	L±2.1%	4.89 ng/mL	± 2.3%

		¹³ C ₃ -PFBA	¹³ C₄-PFOA	¹³ C ₄ -PFOS
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery
ISO11-01-03-18-007	CGMN-GW-MW13-0-141028	104	99.8	103
ISO11-01-03-18-008	CGMN-GW-MW13-DB-141028	99.0	103	99.9
ISO11-01-03-18-009	CGMN-GW-MW13-FMS-141028	101	102	108
Avera	ge Recovery (%) ± %RSD	101% ± 2.3%	102% ± 1.6%	103% ± 3.9%

NA = Not Applicable Samples were diluted 1:1 and analyzed by internal standard calibration.

PAGE 17 OF 34

Table 13. CGMN GW MW14R 141029

			3A	PFOA	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-18-010	CGMN-GW-MW14R-0-141029	570	NA	355	NA
ISO11-01-03-18-011	CGMN-GW-MW14R-DB-141029	569	NA	351	NA
ISO11-01-03-18-012	CGMN-GW-MW14R-FMS-141029	823	NC	597	98.0
Average Co	encentration (ng/mL) ± %RPD	570 ng/mL	.±0.18%	353 ng/ml	_ ± 1.1%

			PFBS		PFHS		5
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-18-010	CGMN-GW-MW14R-0-141029	38.7	NA	16.5	NA	85.2	NA
ISO11-01-03-18-011	CGMN-GW-MW14R-DB-141029	37.4	NA	16.7	NA	80.0	NA
ISO11-01-03-18-012	CGMN-GW-MW14R-FMS-141029	282	98.4	273	102	318	94.5
Average Co	ncentration (ng/mL) ± %RPD	38.1 ng/ml	L ± 3.4%	16.6 ng/ml	± 1.2%	82.6 ng/mL	± 6.3%

		¹³ C ₃ -PFBA	¹³ C₄-PFOA	¹³ C ₄ -PFOS
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery
ISO11-01-03-18-010	CGMN-GW-MW14R-0-141029	111	112	109
ISO11-01-03-18-011	CGMN-GW-MW14R-DB-141029	109	108	108
ISO11-01-03-18-012	CGMN-GW-MW14R-FMS-141029	120	117	113
Averaç	e Recovery (%) ± %RSD	113%±5.2%	113% ± 4.0%	110% ± 2.5%

NA = Not Applicable NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration. Samples were diluted 1:100 and analyzed by external standard calibration.

PAGE 18 OF 34

Table 14. CGMN GW MW16 141028

			BA	PFOA	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-18-013	CGMN-GW-MW16-0-141028	38.2	NA	73.7	NA
ISO11-01-03-18-014	CGMN-GW-MW16-DB-141028	39.6	NA	77.8	NA
ISO11-01-03-18-015	CGMN-GW-MW16-FMS-141028	84.2	89.7	111	70.8
Average Co	ncentration (ng/mL) ± %RPD	38.9 ng/m	L ± 3.6%	75.8 ng/m	L ± 5.4%

			PFBS		PFHS		5
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-18-013	CGMN-GW-MW16-0-141028	32.8	NA	4.45	NA	41.7	NA
ISO11-01-03-18-014	CGMN-GW-MW16-DB-141028	35.0	NA	4.71	NA	43.4	NA.
ISO11-01-03-18-015	CGMN-GW-MW16-FMS-141028	78.4	89.7	50.5	91.8	83.1	81.4
Average Co	ncentration (ng/mL) ± %RPD	33.9 ng/m	L ± 6.5%	4.58 ng/ml	± 5.7%	42.6 ng/mL	± 4.0%

		¹³ C ₃ -PFBA	¹³ C₄-PFOA	¹³ C₄-PFOS
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery
ISO11-01-03-18-013	CGMN-GW-MW16-0-141028	102	103	100
ISO11-01-03-18-014	CGMN-GW-MW16-DB-141028	102	101	101
ISO11-01-03-18-015	CGMN-GW-MW16-FMS-141028	104	100	103
Avera	ge Recovery (%) ± %RSD	102%±1.1%	101% ± 1.5%	101% ± 1.3%

NA = Not Applicable Samples were diluted 1:1 and analyzed by internal standard calibration.

PAGE 19 OF 34

Table 15. CGMN GW MW101 141029

			3A	PFOA	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-18-016	CGMN-GW-MW101-0-141029	1410	NA	75.2	NA
ISO11-01-03-18-017	CGMN-GW-MW101-DB-141029	1400	NA	74.4	NA
ISO11-01-03-18-018	CGMN-GW-MW101-FMS-141029	1480	NC	172	97.6
Average Co	encentration (ng/mL) ± %RPD	1410 ng/ml	_±0.71%	74.8 ng/m	L±1.1%

		PFE	PFBS		PFHS		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	
ISO11-01-03-18-016	CGMN-GW-MW101-0-141029	29.6	NA	460	NA	165	NA	
ISO11-01-03-18-017	CGMN-GW-MW101-DB-141029	29.6	NA	443	NA	1 74	NA	
ISO11-01-03-18-018	CGMN-GW-MW101-FMS-141029	129	100	558	NC	259	89.9	
Average Co	encentration (ng/mL) ± %RPD	29.6 ng/m	L ± 0.0%	452 ng/ml	. ± 3.8%	170 ng/mL :	£ 5.3%	

		¹³ C ₃ -PFBA	¹³ C₄-PFOA	¹³C₄-₽FOS
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery
ISO11-01-03-18-016	CGMN-GW-MW101-0-141029	106	107	105
ISO11-01-03-18-017	CGMN-GW-MW101-DB-141029	110	110	112
ISO11-01-03-18-018	CGMN-GW-MW101-FMS-141029	108	108	111
Avera	ge Recovery (%) ± %RSD	108% ± 1.9%	109% ± 1.4%	109% ± 3.7%

NA = Not Applicable NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration. Samples were diluted 1:100 and analyzed by external standard calibration.

PAGE 20 OF 34

Table 16. CGMN GW MW104 141029

			3A	PFOA	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-18-019	CGMN-GW-MW104-0-141029	31.0	NA	50.3	NA
ISO11-01-03-18-020	CGMN-GW-MW104-DB-141029	30.8	NA	49.7	NA
ISO11-01-03-18-021	CGMN-GW-MW104-FMS-141029	125	93.2	145	95.4
Average Co	oncentration (ng/mL) ± %RPD	30.9 ng/mL	± 0.65%	50.0 ng/m	L±1.2%

			PFBS		PFHS		3
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-18-019	CGMN-GW-MW104-0-141029	7.73	NA	5.81	NA	176	NA
ISO11-01-03-18-020	CGMN-GW-MW104-DB-141029	7.71	NA	6.67	NA	177	NA
ISO11-01-03-18-021	CGMN-GW-MW104-FMS-141029	102	95.0	103	96.8	271	94.9
Average Co	oncentration (ng/mL) ± %RPD	7.72 ng/ml	± 0.26%	6.24 ng/m	L±14%	177 ng/mL :	± 0.57%

		¹³ C ₃ -PFBA	¹³ C ₄ -PFOA	¹³ C₄-PFOS
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery
ISO11-01-03-18-019	CGMN-GW-MW104-0-141029	112	112	111
ISO11-01-03-18-020	CGMN-GW-MW104-DB-141029	117	119	114
ISO11-01-03-18-021	CGMN-GW-MW104-FMS-141029	115	115	113
Avera	ge Recovery (%) ± %RSD	114% ± 2.2%	116% ± 3.0%	113% ± 1.4%

NA = Not Applicable Samples were diluted 1:100 and analyzed by external standard calibration.

PAGE 21 OF 34

Table 17. CGMN GW MW105 141029

		PFE	A	PFOA	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-18-022	CGMN-GW-MW105-0-141029	45.6	NA	93.8	NA
ISO11-01-03-18-023	CGMN-GW-MW105-DB-141029	47.0	NA	91.8	NA
ISO11-01-03-18-024	CGMN-GW-MW105-FMS-141029	94.3	95.0	140	94.8
Average Co	oncentration (ng/mL) ± %RPD	46.3 ng/m	L±3.0%	92.8 ng/m	_ ± 2.2%

		PFE	PFBS		PFHS		DS
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-18-022	CGMN-GW-MW105-0-141029	3.88	NA	18.7	NA	73.9	NA
ISO11-01-03-18-023	CGMN-GW-MW105-DB-141029	4.13	NA	19.0	NA	73.0	NA
ISO11-01-03-18-024	CGMN-GW-MW105-FMS-141029	53.2	99.2	66.8	95.9	117	87.4
Average Concentration (ng/mL) ± %RPD		4.01 ng/m	L ± 6.2%	18.9 ng/m	L±1.6%	73.5 ng/m	L±1.2%

		¹³ C ₃ -PFBA	¹³ C ₄ -PFOA	¹³ C ₄ -PFOS
3M LIMS ID	Description	%Recoverv	%Recoverv	%Recovery
ISO11-01-03-18-022	CGMN-GW-MW105-0-141029	111	108	110
ISO11-01-03-18-023	CGMN-GW-MW105-DB-141029	115	112	111
ISO11-01-03-18-024	CGMN-GW-MW105-FMS-141029	112	112	111
Averag	e Recovery (%) ± %RSD	112% ± 1.9%	111% ± 2.1%	111% ± 0.55%

 $\ensuremath{\mathsf{NA}}\xspace = \ensuremath{\mathsf{Not}}\xspace = \ensuremath{\mathsf{N$

PAGE 22 OF 34

Table 18. CGMN GW MW108 141029

		PFE	A	PFOA	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-18-025	CGMN-GW-MW108-0-141029	88.1	NA	268	NA
ISO11-01-03-18-026	CGMN-GW-MW108-DB-141029	85.9	NA	267	NA
ISO11-01-03-18-027	CGMN-GW-MW108-FMS-141029	181	93.1	352	NC
Average Co	encentration (ng/mL) ± %RPD	87.0 ng/m	L ± 2.5%	268 ng/mL	± 0.37%

		PFE	PFBS		PFHS		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	
ISO11-01-03-18-025	CGMN-GW-MW108-0-141029	23.0	NA	8.20	NA	42.3	NA	
ISO11-01-03-18-026	CGMN-GW-MW108-DB-141029	22.4	NA	8.79	NA	41.6	NA	
ISO11-01-03-18-027	CGMN-GW-MW108-FMS-141029	115	93.0	107	98.5	129	87.4	
Average Concentration (ng/mL) ± %RPD		22.7 ng/m	L ± 2.6%	8.50 ng/m	L±6.9%	42.0 ng/m	L±1.7%	

			¹³ C₄-PFOA	¹³C₄-₽FOS
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery
ISO11-01-03-18-025	CGMN-GW-MW108-0-141029	116	114	116
ISO11-01-03-18-026	CGMN-GW-MW108-DB-141029	112	110	108
ISO11-01-03-18-027	CGMN-GW-MW108-FMS-141029	110	110	111
Averaç	e Recovery (%) ± %RSD	112% ± 2.7%	112% ± 2.1%	112% ± 3.8%

NA = Not Applicable NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration. Samples were diluted 1:100 and analyzed by external standard calibration.

PAGE 23 OF 34

Table 19. CGMN GW MW110 141028

		PFBA		PFOA		
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	
ISO11-01-03-18-028	CGMN-GW-MW110-0-141028	290	NA	415	NA	
ISO11-01-03-18-029	CGMN-GW-MW110-DB-141028	297	NA	419	NA	
ISO11-01-03-18-030	CGMN-GW-MW110-FMS-141028	314	NC	426	NC	
Average Concentration (ng/mL) ± %RPD		294 ng/ml	294 ng/mL ± 2.4%		417 ng/mL ± 0.96%	

		PFBS		PFHS		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-18-028	CGMN-GW-MW110-0-141028	57.9	NA	23.4	NA	12.9	NA
ISO11-01-03-18-029	CGMN-GW-MW110-DB-141028	57.3	NA	23.6	NA	12.8	NA
ISO11-01-03-18-030	CGMN-GW-MW110-FMS-141028	75.5	NC	43.0	97.5	29.8	85.1
Average Concentration (ng/mL) ± %RPD		57.6 ng/mL ± 1.0%		23.5 ng/mL ± 0.85%		12.9 ng/mL ± 0.78%	

		¹³ C ₃ -PFBA	¹³ C₄-PFOA	¹³C₄-₽FOS
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery
ISO11-01-03-18-028	CGMN-GW-MW110-0-141028	109	107	108
ISO11-01-03-18-029	CGMN-GW-MW110-DB-141028	113	109	111
ISO11-01-03-18-030	CGMN-GW-MW110-FMS-141028	111	106	108
Avera	ge Recovery (%) ± %RSD	111%±1.8%	108% ± 1.4%	109% ± 1.7%

NA = Not Applicable NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration. Samples were diluted 1:100 and analyzed by external standard calibration.

PAGE 24 OF 34

Table 20. CGMN GW PW09 141030

		PFE	3A	PFOA		
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	
ISO11-01-03-18-031	CGMN-GW-PW09-0-141030	3.84	NA	0.721	NA	
ISO11-01-03-18-032	CGMN-GW-PW09-DB-141030	3.90	NA	0.681	NA	
ISO11-01-03-18-033	CGMN-GW-PW09-FMS-141030	5.85	98.0	2.57	93.8	
Average Co	3.87 ng/m	L±1.6%	0.701 ng/mL±5.7%			

		PFE	PFBS		PFHS		3	
3m lims id	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	
ISO11-01-03-18-031	CGMN-GW-PW09-0-141030	0.101	NA	0.0560	NA	0.919	NA	
ISO11-01-03-18-032	CGMN-GW-PW09-DB-141030	0.110	NA	0.0522	NA	0.757	NA.	
ISO11-01-03-18-033	CGMN-GW-PW09-FMS-141030	2.07	99.0	1.96	95.3	2.68	92.5	
Average Concentration (ng/mL) ± %RPD		0.106 ng/m	0.106 ng/mL ± 8.5%		0.0541 ng/mL ± 7.0%		0.838 ng/mL ± 19%	

		¹³ C ₃ -PFBA	¹³ C₄-PFOA	^B C₄-PFOS
3M LIMS ID	Description	%Recovery	%Recoverv	%Recovery
	Description	70rcecovery	76Recovery	7arkecovery
ISO11-01-03-18-031	CGMN-GW-PW09-0-141030	107	110	103
ISO11-01-03-18-032	CGMN-GW-PW09-DB-141030	105	103	112
ISO11-01-03-18-033	CGMN-GW-PW09-FMS-141030	102	102	102
Avera	e Recovery (%) ± %RSD	104% ± 2.4% 105% ± 4.2% 106%		

NA = Not Applicable Samples were diluted 1:1 and analyzed by internal standard calibration.

PAGE 25 OF 34

Table 21. CGMN GW PW10 141030

	PFE	A	PFOA		
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-18-034	CGMN-GW-PW10-0-141030	4.48	NA	0.379	NA
ISO11-01-03-18-035	CGMN-GW-PW10-DB-141030	4.38	NA	0.372	NA
ISO11-01-03-18-036	CGMN-GW-PW10-FMS-141030	6.66	NC	2.21	92.1
Average Co	4.43 ng/mi	L ± 2.3%	0.376 ng/mL ± 1.9%		

		PFE	PFBS		PFHS		PFOS	
3M LIMS ID Description		Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	
ISO11-01-03-18-034	CGMN-GW-PW10-0-141030	0.412	NA	0.0795	NA	0.345	NA	
ISO11-01-03-18-035	CGMN-GW-PW10-DB-141030	0.387	NA	0.0759	NA	0.329	NA	
ISO11-01-03-18-036	CGMN-GW-PW10-FMS-141030	2.34	97.8	1.99	95.6	2.16	91.5	
Average Co	oncentration (ng/mL) ± %RPD	0.400 ng/m	L ± 6.3% 0.0777 ng/mL ± 4.6% 0.337 ng/mL ± 4		nL±4.7%			

				¹³ C ₄ -PFOS
3M LIMS ID	Description	%Recovery	%Recoverv	%Recovery
ISO11-01-03-18-034	CGMN-GW-PW10-0-141030	106	100	102
ISO11-01-03-18-035	CGMN-GW-PW10-DB-141030	106	107	92.1
ISO11-01-03-18-036	CGMN-GW-PW10-FMS-141030	109	103	111
Avera	ae Recovery (%) ± %RSD	107% ± 1.6%	103% ± 3.4%	102% ± 9.3%

NA = Not Applicable NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration. Samples were diluted 1:1 and analyzed by internal standard calibration.

PAGE 26 OF 34

Table 22. CGMN GW MW108-RB 141029 and TRIP BLANKS

			3A	PFOA		
3M LIMS ID Description		Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	
ISO11-01-03-18-037	CGMN-GW-RB-MW108-0-141029	0.0385	NA	0.0319	NA	
ISO11-01-03-18-038	CGMN-GW-TRIP-0-141028	<0.0250	NA	<0.0240	NA	
ISO11-01-03-18-039	CGMN-GW-TRIP-LS-141028	2.00	99.0	1.84	92.4	
ISO11-01-03-18-040	CGMN-GW-TRIP-HS-141028	89.7	88.8	94.0	94.4	

		PFE	s	PFHS		PFOS	
3M LIMS ID Description		Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-18-037	CGMN-GW-RB-MW108-0-141029	<0.0250	NA	<0.0250	NA	0.0290	NA
ISO11-01-03-18-038	CGMN-GW-TRIP-0-141028	<0.0250	NA	<0.0250	NA	<0.0232	NA
ISO11-01-03-18-039	CGMN-GW-TRIP-LS-141028	1.91	96.3	1.82	91.0	1.69	84.8
ISO11-01-03-18-040	CGMN-GW-TRIP-HS-141028	92.4	93.1	98.4	98.4	91.8	92.2

	¥	¹³ C ₃ -PFBA	¹³ C ₄ -PFOA	^B C ₄ -PFOS
3M LIMS ID	Description	%Recovery	%Recovery	%Recovery
ISO11-01-03-18-037	CGMN-GW-RB-MW108-0-141029	106	102	105
ISO11-01-03-18-038	CGMN-GW-TRIP-0-141028	105	103	114
ISO11-01-03-18-039	CGMN-GW-TRIP-LS-141028	106	101	104
ISO11-01-03-18-040	CGMN-GW-TRIP-HS-141028	116	112	112

NA = Not Applicable Samples were diluted 1:1 and analyzed by internal standard calibration with the exception of the TRIP HS, which was diluted 1:100 and analyzed by external standard calibration.

PAGE 27 OF 34

5 Conclusion

Laboratory control spikes were used to determine the analytical method accuracy and precision for all analytes. The accuracy and precision were then used to estimate the method uncertainty for the results. Field matrix spike recoveries demonstrated that the analytical method was appropriate for the given sample matrix except where noted. Analysis was completed using 3M Environmental Laboratory method ETS-8-044.1 "Method of Analysis for the Determination of Perfluorinated Compounds in Water by LC/MS/MS; Direct Injection Analysis". Analytical results are reported in Tables 1 and 10-22 of this report.

6 Data / Sample Retention

All remaining sample and associated project data (hardcopy and electronic) will be archived according to 3M Environmental Laboratory standard operating procedures.

7 Attachments

Appendix A: Target Analyte Historical Trend Data for Cottage Grove Monitoring Wells MW07, MW12, MW13, MW14R, MW16, MW101, MW104, MW105, MW108, MW110, PW09, and PW10.

8 Signatures

Digitally signed by Susan T. Wolf DN: csUS, stmMN, IsSt, Paul, ou=3M Environmental Laboratory - authenticated by LRA, email=stwol@mmm.com, o=3M, on=Susan T. Wolf Reason: I have reviewed this document Date: 2015.01.02 14:42:01 -05'00'

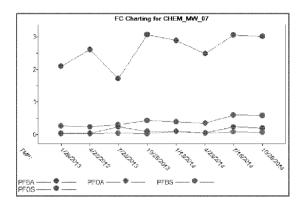
Susan T. Wolf, 3M Principal Analytical Investigator

Digitally signed by Villiam K. Reagen DN:c=US, st=MN, I=S.: Paul, out_aboratory Director, ou=MB Environmental Laboratory authenticated by LRA, emailswiteraagen@mmm.com, n=3M, cn=Villiam K. Reagen Date: 2015.01 05 05:52:59 00:00

William K. Reagen, Ph.D., 3M Environmental Laboratory Technical Director

The 3M Environmental Laboratory's Quality Assurance Unit has audited the data and report for this project.

Tamper Rind

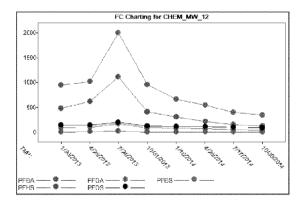

Digitally signed by Tanya K. Rude EN: cel.5, m=4NN i-S5 Faul: ou=3M Environmental Laboratory - aninentized by Unea Tanya K. Rude Reason: lagrees to the some disional by the placement of my signature on this document East: 2015.01.02 14 44545 cet00°

Quality Assurance Representative

This test report shall not be reproduced except in full, without written approval of the 3M Environmental Laboratory.

PAGE 28 OF 34

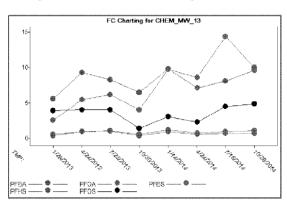
3M_MN01596205



Cottage Grove MW07 - units are ng/mL

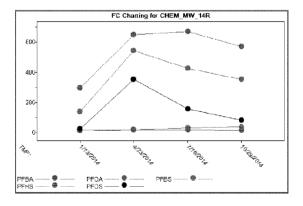
MW07	1/29/2013	4/22/2013	7/23/2013	10/28/2013	1/13/2014	4/23/2014	7/16/2014	10/28/2014
PFBA	2.09	2.61	1.71	3.07	2.88	2.48	3.05	3.01
PFOA	0.259	0.240	0.303	0.428	0.390	0.344	0.602	0.581
PFBS	<0.0250	0.0268	0.0396	0.0291	<0.100	0.0360	0.0762	0.0701
PFOS	0.0439	0.0459	0.241	0.104	0.104	0.0493	0.237	0.191

Samples were below the limit of quantitation for PFHS.


Cottage Grove MW12 - units are ng/mL

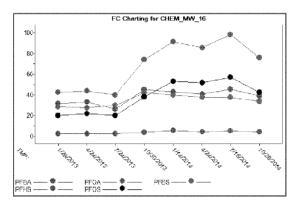
MW12	1/30/2013	4/25/2013	7/24/2013	10/31/2013	1/16/2014	4/25/2014	7/17/2014	10/30/2014
PFBA	484	622	1110	408	312	220	154	127
PFOA	946	1020	2000	954	668	548	402	348
PFBS	91.4	105	175	87.7	82.1	68.9	50.4	46.1
PFHS	13.7	16.4	23.9	13.0	13.1	9.82	8.11	7.78
PF05	143	145	204	131	121	117	96.9	92.5

PAGE 29 OF 34


3M_MN01596206

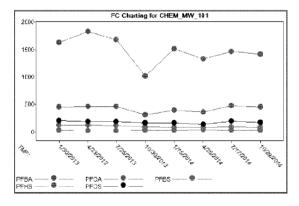
Cottage Grove MW13 – units are ng/mL

	*****						*****	
MW13	1/29/2013	4/24/2013	7/23/2013	10/30/2013	1/14/2014	4/24/2014	7/16/2014	10/28/2014
PFBA	5.60	9.34	8.30	6.48	9.80	7.14	8.08	9.64
PFOA	2.56	5.46	6.17	4.01	9.78	8.63	14.4	10.0
PFBS	0.560	0.972	1.07	0.571	1.20	0.752	0.973	1.09
PFHS	0.396	0.931	1.05	0.366	0.969	0.556	0.713	0.720
PEOS	3.92	4.05	4 02	1.40	3.08	2.33	4 4 8	4.89


Cottage Grove MW14R – units are ng/mL

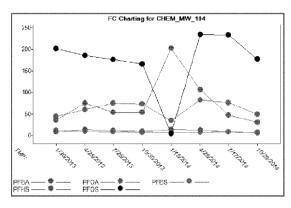
MW14R	1/13/2014	4/23/2014	7/16/2014	10/29/2014
PFBA	295	650	671	570
PFOA	139	543	426	353
PFBS	17.5	18.2	29.6	38.1
PFHS	12.3	20.0	20.1	16.6
PFOS	24.9	353	158	82.6

PAGE 30 OF 34


3M_MN01596207

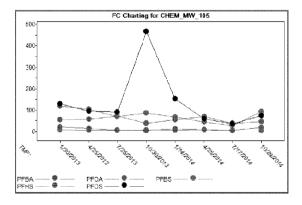
Cottage Grove MW16 - units are ng/mL

MW16	1/29/2013	4/24/2013	7/24/2013	10/30/2013	1/14/2014	4/24/2014	7/16/2014	10/28/2014
PFBA	31.5	33.2	26.3	45.0	42.9	40.7	45.7	38.9
PFOA	42.6	43.8	39.9	73.9	91.0	85.7	98.3	75.8
PFBS	28.3	27.5	29.6	42.1	40.0	37.9	37.9	33.9
PFHS	2.54	2.74	2.83	3.95	5.52	4.49	5.46	4.58
PFOS	20.2	21.8	20.1	38.2	53.1	51.9	57.0	42.6


Cottage Grove MW101 – units are ng/mL

MW101	1/30/2013	4/23/2013	7/25/2013	10/30/2013	1/15/2014	4/25/2014	7/17/2014	10/29/2014
PFBA	1630	1830	1680	1020	1510	1330	1460	1410
PFOA	124	121	112	86.7	79.4	76.0	83.9	74.8
PFBS	25.2	19.5	24.0	25.5	25.4	37.8	29.3	29.6
PFHS	455	459	464	314	398	364	480	452
PFO5	206	188	189	158	159	135	193	170

PAGE 31 OF 34


3M_MN01596208

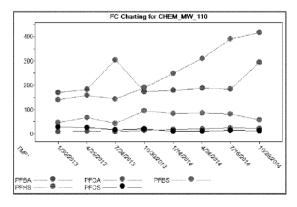
Cottage Grove MW104 - units are ng/mL

MW104	1/30/2013	4/25/2013	7/25/2013	10/30/2013	1/15/2014	4/25/2014	7/17/2014	10/29/2014
PFBA	36.3	74.7	54.3	53.6	202	107	47.9	30.9
PFOA	44.8	60.7	74.7	72.5	35.1	82.1	76.5	50.00
PFBS	11.4	9.75	8.16	7.95	7.50	8.10	8.68	7.72
PFHS	9.07	13.4	11.8	10.1	14.2	12.6	8.95	6.24
PFOS	201	185	176	165	4.25	234	233	177

Cottage Grove MW105 – units are ng/mL

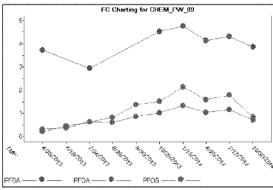
1/30/2013	4/25/2013	7/25/2013	10/30/2013	1/14/2014	4/25/2014	7/17/2014	10/29/2014	1/30/2013
54.4	57.0	71.6	38.9	55.6	71.0	39.2	46.3	54.4
119	104	70.6	87.2	68.3	44.3	27.7	92.8	119
8.03	5.72	6.49	4.98	6.15	7.68	4.89	4.01	8.03
21.1	16.0	6.35	6.01	12.6	8.59	6.65	18.9	21.1
129	95.0	92.3	467	152	58.7	36.2	73.5	129

PAGE 32 OF 34


3M_MN01596209

Cottage Grove MW108 - units are ng/mL

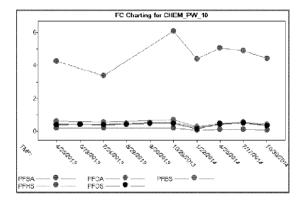
MW108	1/30/2013	4/25/2013	7/24/2013	10/30/2013	1/14/2014	4/25/2014	7/17/2014	10/29/2014
PFBA	101	42.5	38.0	51.7	51.6	65.4	222	87.0
PFOA	348	201	202	218	169	164	522	268
PFBS	26.5	16.1	14.6	21.6	17.0	17.4	60.7	22.7
PFHS	11.1	4.95	4.94	4.47	4.13	3.58	11.3	8.50
PFOS	45.5	37.3	26.8	33.2	33.5	43.3	58.0	42.0


Cottage Grove MW110 - units are ng/mL

MW110	1/3 0/ 2013	4/25/2013	7/24/2013	10/30/2013	1/14/2014	4/24/2014	7/16/2014	10/28/2014
PFBA	171	183	304	174	179	189	185	294
PFOA	141	160	144	190	248	310	390	417
PFBS	46.6	66.7	43.8	94.8	85.1	86.1	82.3	57.6
PFHS	10.3	11.8	9.41	15.3	19.4	20.9	24.1	23.5
PFO5	28.6	26.4	17.8	21.1	12.1	12.5	15.4	12.9

PAGE 33 OF 34

3M_MN01596210



Cottage Grove PW09 - units are ng/mL

PW09	4/25/13	6/19/13	7/24/13	8/29/13	9/30/13	10/29/13	1/15/14	4/25/14	7/17/14	10/30/14
PFBA	3.72	NA	2.95	NA	NA	4.53	4.76	4.14	4.32	3.87
PFOA	0.223	0.462	0.624	0.605	0.873	1.02	1.33	1.05	1.16	0.701
PFOS	0.324	0.376	0.622	0.818	1.38	1.52	2.13	1.60	1.79	0.838

NA = Not Applicable; analyte not requested for the sampling event.

Cottage Grove PW10 - units are ng/mL

PW10	4/25/13	6/19/13	7/24/13	8/29/13	9/30/13	10/29/13	1/15/14	4/25/14	7/17/14	10/30/14
PFBA	4.25	NA	3.37	NA	NA	6.09	4.40	5.07	4.90	4.43
PFOA	0.428	0.415	0.420	0.471	0.528	0.524	0.212	0.421	0.484	0.376
PFBS	0.594	NA	0.540	NA	NA	0.703	0.261	0.471	0.540	0.400
PFHS	0.197	NA	0.185	NA	NA	0.193	0.0485	0.110	0.104	0.0777
PFOS	0.396	0.401	0.380	0.415	0.465	0.458	0.124	0.437	0.503	0.337

NA = Not Applicable; analyte not requested for the sampling event.

PAGE 34 OF 34

3M_MN01596211

of pre-inega the bottles. Chain-of: Castrdy Stit Center Bill 280-584-17 of pour out the contents of the bottle. Chain-of: Castrdy Stit Center Bill 280-584-17 Project: ISO11-01-03-18 Phone: (651) 733-9873 All. Phone: (651) 733-9873 Requester: Kotonith, James Ronald (MAPLEWO Completion Date: Project: (S01) 723-9851 Date: Creact: IO242014 Project Description: Cortage Grove 4th Quarter 2014 Sampling Completion Date: Date: Creact: IO242014 Project Description: Cortage Grove 4th Quarter 2014 Sampling Date: Time Sample Matrix Comment ISO11-01-03-18-001 Cake-Gow-MW07-0-1/16-28 16/15/1/4 04/0 ISO11-01-03-18-001 Cake-Gow-MW07-0-1/16-28 16/15/1/4 04/0 ISO11-01-03-18-001 Cake-Gow-MW07-0-1/16-28 16/15/1/4 10/0 ISO11-01-03-18-002 Cake-Gow-MW07-0-1/16-28 16/15/1/4 10/0 ISO11-01-03-18-002 Cake-Gow-MW07-0-1/16-28 16/15/1/4 10/0 ISO11-01-03-18-002 Cake-Gow-MW07-0-1/16-28 16/15/1/4 10/0 ISO11-01-03-18-003 Cake-Gow-MW07-0-1/16-28 16/15/1/4 10/0 ISO11-01-03-18-004 Come-Gow-MW112-0-1/16-28 16/15/1/4 10/0	ample bottles include the ad nal standards and surrogate	ldition of s. 3M ENVIRONMENT	AL LABORATORY	Shipping Address: 3M Environmental Laboratory
Project: IS011-01-03-18 Phone: (651) 733-9373 Alt. Phone: (651) 733-9651 Project Number: 05713/8015 Requester: Kosmith, James Ronald (MAPLEWO Department: 452050 Completion Date: Project Number: 0511/2014 Project Number: 073138015 Baue Create: 10/24/2014 Project Number: 0511/2014 Project Number: 073138015 Date Create: 10/24/2014 Project Number: 073138015 Date Create: 10/24/2014 Project Number: 073138015 Date Create: 10/24/2014 Sample Number: 073138015 Date Create: 10/24/2014 Sample Number: 0318/002 Convertiging Comments: Date Time Sample Description: Codes-ownWV97-9-1/410-28 15011-01-03-18-001 Codes-ownWV97-9-1/410-28 10/25/1/1-10/40-18 15011-01-03-18-002 Codes-ownWV97-9-1/410-28 10/25/1/1	ot pre-rinse the bottles.	Chain-of		3M Center, Bldg 260-5N-17
Project: ISO11-01-03-18 Att Product (651) 733-6650 Requester: Kotsmith, James Ronald (MAPLEWO Department: 452090 Fox: (651) 733-6650 Department: 452090 Site Source: 01J9C020 Project Lead:-Sisan T. Wolf Project Lead: Sisan T. Wolf Project Lead: Sisan T. Wolf Project Contact: 1024/2014 Project Lead: Sisan T. Wolf Project Lead: Sisan T. Wolf Project Lead: Sisan T. Wolf Project Lead: Sisan T. Wolf Project Lead: Sisan T. Wolf Project Lead: Sisan T. Wolf Project Lead: Sisan T. Wolf Project Lead: Sisan T. Wolf Project Lead: Sisan T. Wolf Project Lead: Sisan T. Wolf Project Lead: Sisan T. Wolf Project Lead: Sisan T. Wolf Project Lead: Sisan T. Wolf Project Lead: Sisan T. Wolf Project Lead: Sisan T. Wolf ISO11-01-03-18-001 Combedwide/MW12-0 10 / 25 ISO11-01-03-18-002 Combedwide/MW12-0 10 / 25 ISO11-01-03-18-003 Combedwide/MW12-0 1/ 10 / 25 ISO11-01-03-18-004				
Project: ISO11-01-03-18 Fax: (651) 733-4687 Requester: Kotsmith, James Ronald (MAPLEWO Completion Date: Department: 452090 Site Source: 0119/C020 Project: Number: 00731 38015 Date: Crastal: 0124-2014 Project Description: Cottage Grove 4th Quarter 2014 Sampling Completion Date: Sample Number: Sample Description: Cottage Grove 4th Quarter 2014 Sampling ISO11-01-03-18-001 CodeA-GW-MW07-0-14/10-25 16/55/14/16/04/0 ISO11-01-03-18-002 CodeA-GW-MW07-0-14/10-25 16/55/14/16/0 ISO11-01-03-18-003 CodeA-GW-MW07-0-14/10-25 16/55/14/16/0 16/55/14/16/0 ISO11-01-03-18-005 CodeA-GW-MW07-0-14/10-25 16/55/14/16/0 16/55/14/16/0 16/55/14/16/0 ISO11-01-03-18-006 CodAM-GW-MW012-0-14/10-25 16/55/14/16/0 16/55/14/16/0 16/55/14/16/0 16/55/14/16/0 16/55/14/16/0 16/55/14/16/0 16/55/14/16/0 16/55/14/16/	A to service and the service of the			
Notice 1012000 Project Lead: Susan T. Wolf Project Lead: Sus	Project: ISO11-01-03-	18		Fax: (651) 733-4687
Notice 1012000 Project Lead: Susan T. Wolf Project Lead: Sus				
Department of 2013 138015 Date Created: 1024/2014 Project Number: 0073 138015 Date Created: 1024/2014 Project Number: Cottage Grove 4th Quarter 2014 Sampling Date Time Sample Mather: Sample Description 3M Sample Number: Sample Description: Date Time Sample Mather: Sample Description ISOI1-01-03-18-001 CGMN-GW-MW07-06-14/10-28 16/15/14/14/14/04/06 ISOI1-01-03-18-002 CGMN-GW-MW07-06-14/10-28 16/15/14/14/14/04/06 ISOI1-01-03-18-003 CGMN-GW-MW07-06-14/10-28 16/15/14/14/14/04/06 ISOI1-01-03-18-004 CGMN-GW-MW12-06-14/10-28 16/15/14/14/14/04/06 ISOI1-01-03-18-004 CGMN-GW-MW12-06-14/10-28 16/25/14/14/14/25 ISOI1-01-03-18-004 CGMN-GW-MW12-DB-14/10-28 16/25/14/14/25 ISOI1-01-03-18-004 CGMN-GW-MW12-DB-14/10-28 16/25/14/12/0 ISOI1-01-03-18-006 CGMN-GW-MW13-DB-14/10-28 16/25/14/12/0 ISOI1-01-03-18-006 CGMN-GW-MW13-DB-14/10-28 16/25/14/12/0 ISOI1-01-03-18-006 CGMN-GW-MW13-DB-14/10-28 16/25/14/12/0 11/25/2 ISOI1-01-03-18-006 CGMN-GW-MW13-DB-14/10-28 16/25/14/12/0 11/25/2 16/25/14/12/0 11/25/2 ISOI1-01-03-18-010 CGMN-GW-MW13-DB-14/10-28 <td></td> <td></td> <td></td> <td>n T. Wolf</td>				n T. Wolf
Date Created: 10/24/2014 Email Address: stwolf@mnim.com Project Description: Cottage Grove 4th Quarter 2014 Sampling Email Address: stwolf@mnim.com <u>3M Sample Number</u> Sample Description: Date Time Sampled Matrix Comment ISO11-01-03-18-001 COMM-GW-MW07-0F-14/10-2.8 10/12/14/14/14/04/0 6W ISO11-01-03-18-002 CGMM-GW-MW07-0F-14/10-2.8 10/12/14/14/14/04/0 1 ISO11-01-03-18-002 CGMM-GW-MW07-0F-14/10-2.8 10/12/14/14/14/04/0 1 ISO11-01-03-18-002 CGMM-GW-MW07-0F-14/10-2.8 10/12/14/14/14/04/0 1 ISO11-01-03-18-003 CGMM-GW-MW07-0F-14/10-2.8 10/12/14/14/14/04/0 1 ISO11-01-03-18-004 CGMM-GW-MW12-DB-14/10-2.6 10/22/14/14/14/14/14/14/14/14/14/14/14/14/14/			Phone Number: 65	1-733-9851
Comments: Date:Time Sampled Matrix Comment 15011-01-03-18-001 COMM-OW-MW07-0-1/1/0.2.8 10/12/1/4 10/10/0 6.00 15011-01-03-18-002 COMM-OW-MW07-DB-1/11/0.5.8 10/12/1/4 10/10/0 1 15011-01-03-18-003 COMM-OW-MW07-DB-1/11/0.5.8 10/12/1/4 10/10/0 1 15011-01-03-18-003 COMM-OW-MW07-PB-1/11/0.2.8 10/12/1/4 10/10/0 1 15011-01-03-18-004 COMM-OW-MW12-DB-1/1/0.3.0 0/20/17 10:55 1 15011-01-03-18-005 COMM-OW-MW13-PMS-1/1/0.3.0 10/12/8 10/20/17 10:55 1 15011-01-03-18-005 COMM-OW-MW13-PMS-1/10.2.0 10/20/17 10:55 1 1 15011-01-03-18-006 COMM-OW-MW13-PMS-1/11.0.5 10/20/17 10:55 1 1 1 15011-01-03-18-006 COMM-OW-MW13-PMS-1/11.0.5 10/20/17 10:55 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Date Created: 10/24/20	14	Email Address: stw	volf@mmm.com
3M Sample Number Sumple Description Date/Time Sampled Matrix Comment ISO11-01-03-18-001 COMN-GW-MW07-0-1/10-28 1b/2t/14 1040 6W	-	ttage Grove 4th Quarter 2014 Sampling		
M Sample Number Simple Decription 1S011-01-03-18-001 CGMN-GW-MW07-0-1/10 28 1b/tf/i+ 10/40 6W 1S011-01-03-18-002 CGMN-GW-MW07-0B-1/4/10 28 1c/ts/i+ 10/40 1 1S011-01-03-18-002 CGMN-GW-MW07-0B-1/4/10 28 1c/ts/i+ 10/40 1 1S011-01-03-18-003 CGMN-GW-MW07-0B-1/4/10 30 0/30/17 1-55 1 1S011-01-03-18-004 CGMN-GW-MW12-0B-1/4/10 30 0/30/17 1-55 1 1S011-01-03-18-005 CGMN-GW-MW12-0B-1/4/10 30 10/30/17 1-55 1 1S011-01-03-18-005 CGMN-GW-MW12-0B-1/4/10 30 10/30/17 1-55 1 1S011-01-03-18-005 CGMN-GW-MW13-0B-1/4/10 30 10/30/17 1-55 1 1S011-01-03-18-007 CGMN-GW-MW13-0B-1/4/10 30 10/25/14 120 1 1S011-01-03-18-007 CGMN-GW-MW13-0B-1/4/10 20 10/25/14 120 1 IS011-01-03-18-007 CGMN-GW-MW142-0 10/10/16 10/12/14 11/15 1 IS011-01-03-18-010 CGMN-GW-MW142-0 10/12/2 10/12/14 11/15 1 1 IS011-01-03-18-012	Comments:			
M Sample Number Simple Decription 1S011-01-03-18-001 CGMN-GW-MW07-0-1/10 28 1b/tf/i+ 10/40 6W 1S011-01-03-18-002 CGMN-GW-MW07-0B-1/4/10 28 1c/ts/i+ 10/40 1 1S011-01-03-18-002 CGMN-GW-MW07-0B-1/4/10 28 1c/ts/i+ 10/40 1 1S011-01-03-18-003 CGMN-GW-MW07-0B-1/4/10 30 0/30/17 1-55 1 1S011-01-03-18-004 CGMN-GW-MW12-0B-1/4/10 30 0/30/17 1-55 1 1S011-01-03-18-005 CGMN-GW-MW12-0B-1/4/10 30 10/30/17 1-55 1 1S011-01-03-18-005 CGMN-GW-MW12-0B-1/4/10 30 10/30/17 1-55 1 1S011-01-03-18-005 CGMN-GW-MW13-0B-1/4/10 30 10/30/17 1-55 1 1S011-01-03-18-007 CGMN-GW-MW13-0B-1/4/10 30 10/25/14 120 1 1S011-01-03-18-007 CGMN-GW-MW13-0B-1/4/10 20 10/25/14 120 1 IS011-01-03-18-007 CGMN-GW-MW142-0 10/10/16 10/12/14 11/15 1 IS011-01-03-18-010 CGMN-GW-MW142-0 10/12/2 10/12/14 11/15 1 1 IS011-01-03-18-012				
ISO11-01-03-18-002 CGMN-GW-MIV07-DB- 14/10.25 10/15/4 10/40 ISO11-01-03-18-003 CGMN-GW-MIV07-FMS- 14/10.25 10/12/4 10/40 ISO11-01-03-18-004 CGMN-GW-MIV12-0- 14/10.3 c 0/30/14 10.55 ISO11-01-03-18-005 CGMN-GW-MIV12-0- 14/10.3 c 0/30/14 10.55 ISO11-01-03-18-006 CGMN-GW-MIV12-DB- 14/10.2 c 10/30/14 10.55 ISO11-01-03-18-006 CGMN-GW-MIV12-DB- 14/10.2 c 10/30/14 10.55 ISO11-01-03-18-006 CGMN-GW-MIV13-DB- 14/10.2 c 10/30/14 10.55 ISO11-01-03-18-006 CGMN-GW-MIV13-DB- 14/10.2 c 10/23/14 10.0 c ISO11-01-03-18-008 CGMN-GW-MIV13-DB- 14/10.2 c 10/25/14 12.0 c ISO11-01-03-18-009 CGMN-GW-MIV13-DB- 14/10.2 c 10/25/14 12.0 c ISO11-01-03-18-009 CGMN-GW-MIV13-DB- 14/10.2 c 10/25/14 12.0 c ISO11-01-03-18-010 CGMN-GW-MIV13-DB- 14/10.2 c 10/23/14 115 c ISO11-01-03-18-010 CGMN-GW-MIV14-DB- 14/10.2 c 10/23/14 115 c ISO11-01-03-18-012 CGMN-GW-MIV14-DB- 14/10.2 c 10/23/14 115 c ISO11-01-03-18-012 CGMN-GW-MIV14-DB- 14/10.2 c 10/23/14 115 c ISO11-01-03-18-014 CGMN-GW-MIVA-DB- 14/10.2 c 10/23/14 115 c IS	<u>3M Sample Number</u>	Sample Description	Date/Time Sampled	<u>Matrix</u> <u>Comment</u>
1001101-03-18-003 CGMN-GW-MW07-FMS- 1410-28 10 [28]/4 10 40 1S011-01-03-18-004 CGMN-GW-MW12-0- 14/10-3 c 0/30/14 10-35 1S011-01-03-18-005 CGMN-GW-MW12-DB- 14/10-3 c 10/30/14 10-35 IS011-01-03-18-006 CGMN-GW-MW12-DB- 14/10-3 c 10/30/14 10-55 IS011-01-03-18-006 CGMN-GW-MW12-FMS- 14/10-3 c 10/30/14 10-55 IS011-01-03-18-007 CGMN-GW-MW13-DB- 14/10-3 c 10/32/14 1055 IS011-01-03-18-008 CGMN-GW-MW13-DB- 14/10-3 c 10/32/14 1210 IS011-01-03-18-009 CGMN-GW-MW13-DB- 14/10-3 c 10/32/14 1210 31-344 IS011-01-03-18-010 CGMN-GW-MW13-FMS- 14/10-3 c 10/32/14 115 100/32/14 115 IS011-01-03-18-010 CGMN-GW-MW14R-DB- 14/10-3 c 10/24/14 115 10/32/14 115 IS011-01-03-18-011 CGMN-GW-MW14R-FMS- 14/16-19 10/24/14 115 10/32/14 115 IS011-01-03-18-014 CGMN-GW-MW14R-FMS- 14/16-19 10/24/14 115 15 15 IS011-01-03-18-014 CGMN-GW-MW14R-FMS- 14/16-19 10/24/14 13.50 bW 16 <	ISO11-01-03-18-001	CGMN-GW-MW07-0- 1410 28	10/28/14 1040	6 W
ISO11-01-03-18-004 CGMN-GW-MW12-06 14/103 c 9/30/14 1.555 ISO11-01-03-18-005 CGMN-GW-MW12-DB- 14/103 c 10/30/14 1055 ISO11-01-03-18-006 CGMN-GW-MW12-FMS- 14/103 c 10/30/14 1055 ISO11-01-03-18-006 CGMN-GW-MW12-FMS- 14/103 c 10/30/14 1055 ISO11-01-03-18-007 CGMN-GW-MW13-DE- 14/1028 10/128/14 12/10 ISO11-01-03-18-007 CGMN-GW-MW13-DE- 14/1028 10/128/14 12/10 ISO11-01-03-18-007 CGMN-GW-MW13-DE- 14/1028 10/128/14 12/10 ISO11-01-03-18-007 CGMN-GW-MW13-EMS- 14/1029 10/24/14 11/15 ISO11-01-03-18-010 CGMN-GW-MW14R-0- 14/1624 10/24/14 11/15 ISO11-01-03-18-011 CGMN-GW-MW14R-DE- 14/1629 10/24/14 11/15 ISO11-01-03-18-012 CGMN-GW-MW14R-DE- 14/1629 10/24/14 11/15 ISO11-01-03-18-013 CGMN-GW-MW16-0- 14/1628 10/24/14 13/150 0W ISO11-01-03-18-014 CGMN-GW-MW16-DE- 14/1629 10/23/14 13/150 0W	1SO11-01-03-18-002	CGMN-GW-MW07-DB- 141028	10/28/14 1040	
ISO11-01-03-18-004 COMN-GW-MW12-DB-/4/0.50 10/30/17 10/35 ISO11-01-03-18-005 CGMN-GW-MW12-DB-/4/0.50 10/30/17 10/35 ISO11-01-03-18-006 CGMN-GW-MW13-DB-/4/0.50 10/36/17 10/35 ISO11-01-03-18-007 CGMN-GW-MW13-DB-/14/0.28 10/28/14 1210 ISO11-01-03-18-007 CGMN-GW-MW13-DB-/14/0.28 10/28/14 1210 ISO11-01-03-18-008 CGMN-GW-MW13-DB-/14/0.28 10/28/14 1210 ISO11-01-03-18-009 CGMN-GW-MW13-FMS-/14/0.28 10/28/14 1210 ISO11-01-03-18-010 CGMN-GW-MW13-FMS-/14/0.28 10/28/14 1210 ISO11-01-03-18-011 CGMN-GW-MW14R-DB-/14/0.28 10/28/14 115 ISO11-01-03-18-012 CGMN-GW-MW14R-FMS-/14/0.28 10/28/14 115 ISO11-01-03-18-013 CGMN-GW-MW14R-FMS-/14/0.28 10/28/14 115 ISO11-01-03-18-013 CGMN-GW-MW16-0-/14/0.28 10/28/14 1350 W ISO11-01-03-18-013 CGMN-GW-MW16-D-/14/0.28 10/28/14 1350 DW ISO11-01-03-18-014 CGMN-GW-MW16-DB-/14/0.28 10/28/14 1350 DW Sample Condition Upon Receipt:	, ISO11-01-03-18-003	CGMN-GW-MW07-FMS- 1410 28	10/28/14 1040	
ISO11-01-03-18-006 CGMN-GW-MW12-FMS- /4/0.3 cs IQ/30/17 /055 ISO11-01-03-18-007 CGMN-GW-MW13-0- [4] 10.2 8 ip/28/14 12,0 ISO11-01-03-18-007 CGMN-GW-MW13-DE- [4] 10.2 8 ip/28/14 12,0 ISO11-01-03-18-008 CGMN-GW-MW13-DE- [4] 10.2 8 ip/28/14 12,0 ISO11-01-03-18-009 CGMN-GW-MW13-FMS- [4] 10.2 8 ip/28/14 12,0 ISO11-01-03-18-010 CGMN-GW-MW13-FMS- [4] 10.2 9 ip/28/14 12,0 ISO11-01-03-18-011 CGMN-GW-MW14R-DE- [4] 10.2 9 ip/28/14 115 ISO11-01-03-18-012 CGMN-GW-MW14R-FMS- [4] 10.2 9 ip/28/14 (13.5 0 ISO11-01-03-18-012 CGMN-GW-MW16-0E- [4] 10.2 9 ip/28/14 (3.5 0 iso11-01-03-18-013 ISO11-01-03-18-013 CGMN-GW-MW16-DE- [4] 10.2 9 ip/28/14 (3.5 0 iso11-01-03-18-014 CGMN-GW-MW16-DE- [4] 10.2 9 ISO11-01-03-18-013 CGMN-GW-MW16-DE- [4] 10.2 9 ip/28/14 (3.5 0) iso11-01-03-18-014 CGMN-GW-MW16-DE- [4] 10.2 9 ip/28/14 (3.5 0) iso11-01-03-18-014 CGMN-GW-MW16-DE- <td< td=""><td>ISO11-01-03-18-004</td><td>CGMN-GW-MW12-0- 141030</td><td>10/30/14 1255</td><td></td></td<>	ISO11-01-03-18-004	CGMN-GW-MW12-0- 141030	10/30/14 1255	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ISO11-01-03-18-005	CGMN-GW-MW12-DB- 141030	10/30/14 1055	
ISO11-01-03-18-008 CGMN-GW-MW13-DB- 14 102% $10/25/14$ 1210 Stright overfill ISO11-01-03-18-009 CGMN-GW-MW13-FMS- 14102% $10/25/14$ $12/25/14$ 1210 ISO11-01-03-18-010 CGMN-GW-MW14R-0- $14/02\%$ $10/24/14$ 1115 ISO11-01-03-18-010 CGMN-GW-MW14R-0- $14/02\%$ $10/24/14$ 1115 ISO11-01-03-18-011 CGMN-GW-MW14R-DB- $14/02\%$ $10/24/14$ 1115 ISO11-01-03-18-012 CGMN-GW-MW14R-FMS- $14/02\%$ $10/24/14$ 1155 ISO11-01-03-18-012 CGMN-GW-MW16-0- $14/02\%$ $10/24/14$ 1155 ISO11-01-03-18-013 CGMN-GW-MW16-0- $14/02\%$ $10/24/14$ 1350 $6W$ ISO11-01-03-18-014 CGMN-GW-MW16-DB- $14/02\%$ $10/24/14$ 1350 $6W$ Sample Condition Upon Receipt: \Box Acceptable \Box \Box $I10/24/14$ $I1350$ $6W$ Sample Condition Upon Receipt: \Box Acceptable \Box \Box $I10/24/24$ $I10/24/24$ $I10/24/24$ $I10/24/24$ $I10/24/24$ $I10/24/24$ $I10/24/24$ <t< td=""><td>ISO11-01-03-18-006</td><td>CGMN-GW-MW12-FMS- 141030</td><td>10/30/14 1055</td><td></td></t<>	ISO11-01-03-18-006	CGMN-GW-MW12-FMS- 141030	10/30/14 1055	
ISO11-01-03-18-009 CGMN-GW-MW13-FMS- $[4] [0U_0^k]$ $i0/28/14$ $12/0$ ISO11-01-03-18-010 CGMN-GW-MW14R-0- $i4 0U_0^k]$ $i0/24/14$ 115 ISO11-01-03-18-011 CGMN-GW-MW14R-DB- $i4 0U_0^k]$ $i0/24/14$ $i115$ ISO11-01-03-18-012 CGMN-GW-MW14R-FMS- $i4 0U_0^k]$ $i0/24/14$ $i115$ ISO11-01-03-18-013 CGMN-GW-MW16-0- $i4 0U_0^k]$ $i0/28/14$ $i350$ $i0$ ISO11-01-03-18-013 CGMN-GW-MW16-0- $i4 0U_0^k]$ $i6/28/14$ $i350$ $i0i$ ISO11-01-03-18-013 CGMN-GW-MW16-DB- $i4 0U_0^k]$ $ie/28/14$ $i350$ $6W$ Sample Condition Upon Receipt: \Box Acceptable \Box All items accounted for Temperature: Deg C Received on Ice Other: $Collector's signature:$ $fifthetee Collected by (print): Jehn Hunteh Collector's signature: fifthetee Date Time Mlex Mutet infthetee infthetee infthetee infthetee infthetee infthetee Collected by (print): Jehn I$	ISO11-01-03-18-007	СGMN-GW-MW13-0- 141028	10/28/14 1210	
ISO11-01-03-18-010 CGMN-GW-MW14R-0- $iii i i i i i i i i i$	ISO11-01-03-18-008	СGMN-GW-MW13-DB- 141028	10/28/14 1210	Slight overfill
ISO11-01-03-18-011 CGMN-GW-MW14R-DB-141600 $10/24/14$ 116 ISO11-01-03-18-012 CGMN-GW-MW14R-FMS-141600 $10/24/14$ 115 ISO11-01-03-18-013 CGMN-GW-MW16-0-141028 $10/24/14$ 115 ISO11-01-03-18-013 CGMN-GW-MW16-0-141028 $10/24/14$ 1350 4 ISO11-01-03-18-014 CGMN-GW-MW16-DB-141028 $10/28/14$ 1350 $6W$ Sample Condition Upon Receipt: \Box Acceptable \Box All items accounted for Temperature: Deg C Received on Ice C ther: Collected by (print): Jehn Hunteh Collector's signature: AH Relinquished by: Date Time Shipped Via Received by: Date Time $M(lex Went)$ \Box	ISO11-01-03-18-009	СGMN-GW-MW13-FMS- 141028	10/28/14 ,210	
ISO11-01-03-18-012 CGMN-GW-MW14R-FMS-141819 10/24/14 115 ISO11-01-03-18-013 CGMN-GW-MW16-0-141028 10/28/14 1350 0 ISO11-01-03-18-014 CGMN-GW-MW16-DB-141028 10/28/14 1350 0W Sample Condition Upon Receipt: Acceptable All items accounted for Temperature: Deg C Received on Ice Other: Collected by (print): Jehn Hudded Collector's signature: All Relinquished by: Date Time Shipped Via Received by: Date Time Alley West Image: Collector's signature: <	ISO11-01-03-18-010	СGMN-GW-MW14R-0- Ц1624	10/29/14 1115	
ISO11-01-03-18-013 CGMN-GW-MW16-0- 1410.2% $10/28/14$ 1350 $10/28/14$ $10/28/14$ $10/28/14$ $10/28/14$ 1350 $10/28/14$	ISO11-01-03-18-011	СGMN-GW-MW14R-DB- ЧИЛ	10/29/14 1115	
ISOTIONOTION Commentation ISOTIONOTION ISOTIONOTIONOTION ISOTIONOTIONOTION ISOTIONOTIONOTION ISOTIONOTIONOTION ISOTIONOTIONOTION ISOTIONOTIONOTION ISOTIONOTIONOTION ISOTIONOTIONOTION Isotian Isotian <td>1SO11-01-03-18-012</td> <td>СGMN-GW-MW14R-FMS- ЦЦССО</td> <td>10/29/14 1115</td> <td></td>	1SO11-01-03-18-012	СGMN-GW-MW14R-FMS- ЦЦССО	10/29/14 1115	
ISOIT-01-03-18-014 Commentative intervent with the part of the part	ISO11-01-03-18-013	CGMN-GW-MW16-0- 141028	10/28/14 1350	
Sample Condition Open Received on Ice Deg C Received on Ice Other: Collected by (print): Jehn Hunteh Collector's signature: Jehn Relinquished by: Date Time Shipped Via Received by: Date Time Alex West Image: Shipped Via	ISO11-01-03-18-014	CGMN-GW-MW16-DB- 141028	10/28/14 1350	GW
Concernenced by (prim): Date Time Shipped Via Received by: Date Time Mex West Image: Concernenced by: Image: Concerned by: Image: Concernenced by: Image: Co	Temperature:	Deg C	ther:	Ne 11 A
Alex West				Loh NO
	Relinquished by:	Date Time Shipped Vi	a Received by:	Date lime
	Alex Wer	t l		
Page 1 of 3	Ľ			
Page 1 of 3				
Page 1 of 3			,	
				Page 1 of 3

3M_MN01596212

3630.0263

- -----

3M ENVIRONMENTAL LABORATORY Chain-of-Custody

Shipping Address: 3M Environmental Laboratory 3M Center, Bldg 260-5N-17 St. Paul, MN 55144

Phone: (651) 733-9873 Alt. Phone: (651) 736-6559 Fax: (651) 733-4687

Project: ISO11-01-03-18 (cont.)

Requester: Kotsmith, James Ronald (MAPLEWO Department: 452090 Site Source: 01J9C020 Project Number: 0073138015 Date Created: 10/24/2014 Project Description: Cottage Grove 4th Quarter 2014 Sampling

Completion Date: Project Lead: Susan T. Wolf Phone Number: 651-733-9851 Email Address: stwolf@mmm.com

3M Sample Number	Sample Description	Date/Time Sampled Matrix Comment
ISO11-01-03-18-015	CGMN-GW-MW16-FMS- 141028	10/28/14 1350 GW
ISO 1-01-03-18-016	CGMN-GW-MW101-0- 141029	10/29/14 1520
ISO11-01-03-18-017	CGMN-GW-MW101-DB- 14 10 29	10/29/14 1520
ISO11-01-03-18-018	CGMN-GW-MW101-FMS- 1710 29	10/29/14 1520
ISO11-01-03-18-019	CGMN-GW-MW104-0- 14 10 29	10/29/14 1355
ISO11-01-03-18-020	ССМИ-СW-MW104-DB- 14 16 29	10/29/14 1355
ISO11-01-03-18-021	CGMN-GW-MW104-FMS- 410 29	10/29/14 1355
ISO11-01-03-18-022	CGMN-GW-MW105-0- 14 10 29	10/29/14 1305
ISO11-01-03-18-023	CGMN-GW-MW105-DB- 41020	10/29/14 1305
ISO11-01-03-18-024	CGMN-OW-MW105-FMS- 141074	10/27/14 1307
ISO11-01-03-18-025	ССМЛ-GW-MW108-0- 14(029	10/29/14 1210
ISO11-01-03-18-026	ССМЛ-GW-MW108-DB- 141029	10/29/14 1210
ISO11-01-03-18-027	CGMN-GW-MW108-FMS- HICLY	10/27/14 1210
ISO11-01-03-18-028	CGMN-GW-MW110-0- 141028	10/28/14 1435
ISO11-01-03-18-029	CGMN-GW-MWIIO-DB- 141028	10/28/14 1436
ISO11-01-03-18-030	CGMN-GW-MWIIO-FMS- 141023	10/28/14 1435
ISO11-01-03-18-031	CGMN-GW-PW09-0- 14 10 30	10/30/14 1225 GW

Sample Condition Upon Receipt:

Acceptable

All tems accounted for

Temperature:

Received on Ice

Deg C

 Collected by (print):
 Jehn Hunfen
 Collector's signature:
 M

 Relinquished by:
 Date
 Time
 Shipped Via
 Received by:
 Date
 Time

Other:

Page 2 of 3

SM ENVIRONMENTAL LABORATORY Chain-df-Custody

Shipping Address: 3M Environmental Laboratory 3M Center, Bldg 260-5N-17 St. Paul, MN 55144

Phone: (651) 733-9873 Alt. Phone: (651) 736-6559 Fax: (651) 733-4687

Project: ISO11-01-03-18 (cont.)

Requester: Kotsmith, James Ronald (MAPLEWO Department: 452090 Site Source: 01J9C020 Project Number: 0073138015 Date Created: 10/24/2014 Project Description: Cottage Grove 4th Quarter 2014 Sampling

Completion Date: Project Lead: Susan T. Wolf Phone Number: 651-733-9851 Email Address: stwolf@mmm.com

Sample Description	Date/Time Sampled Matrix Comment
CGMN-GW-PW09-DB- 141030	14/30/14 1025 6W
001.01.000	10/20/14 1025 6W
	10/30/14 1010
00101000	10/20/11 1010
CO101 011 011	10/30/14 1010
CGMN-GW-RB MARCE -0- 14 1029	10/24/14 1105
CGMN-GW-TRIP-0- 1410 28	10/28/14 0930
CGMN-GW-TRIP-LS- 1410 28	10/28/14 0930
CGMN-GW-TRIP-HS- 141028	10/28/14 0930 GW
	CGMN-GW-PW09-DB- 14/030 CGMN-GW-PW09-FMS- 14/030 CGMN-GW-PW10-0- 14/030 CGMN-GW-PW10-DB- 14/030 CGMN-GW-PW10-FMS- 14/030 CGMN-GW-RB MM/05-0- 14/029 CGMN-GW-TRIP-0- 14/028

Sample Condition Upon Receipt:

Acceptable All

All tems accounted for

Temperature:

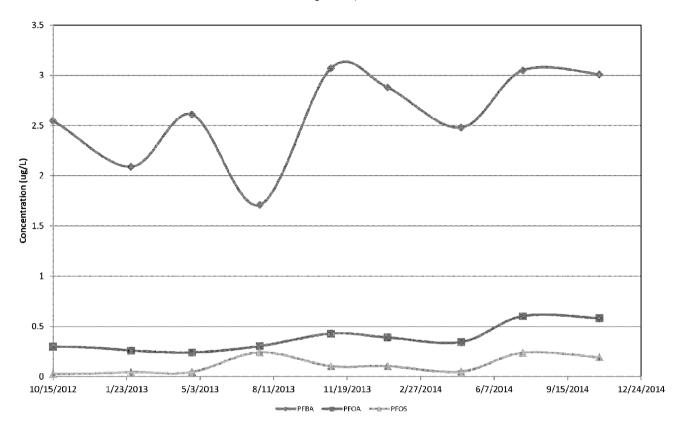
Deg C 🔲 Received on Ice

Other:

Collected by (print): John Hunter				Collector's signature: And ITO			
Relinquished by:	Date	Time	Shipped Via	Received by:		Date	Time
4							
/							
						-	
		<u> </u>					
							D 2 C2

Page 3 of 3

3M_MN01596214



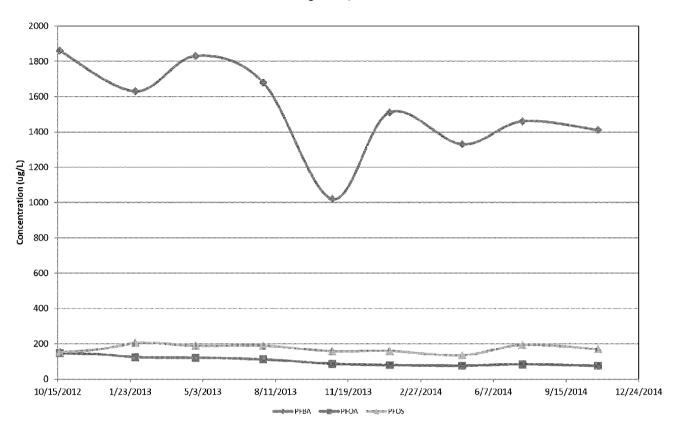
ATTACHMENT E PFBA, PFOA AND PFOS TREND GRAPHS

BACKGROUND LOCATION

WESTER

Monitoring Well MW-07 (Background) 10/2012 - 10/2014 Cottage Grove, MN Site

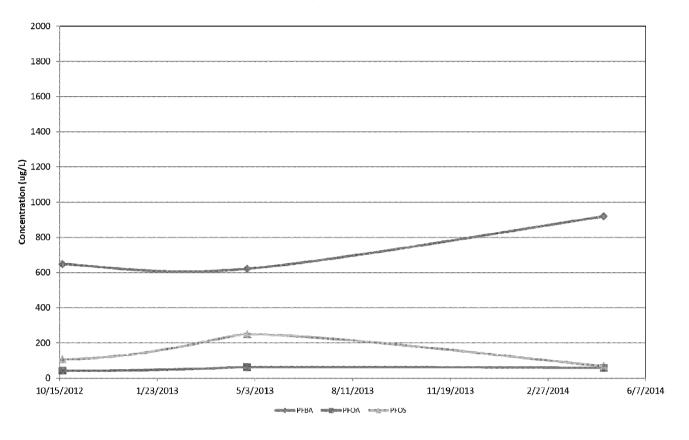
CGMN All FC data Crosstab-thru-2014-C7-17(ISO-14).xisx; MW07


3M_MN01596217

- - - - - - - - -

D1/D2 AREA

Monitoring Well MW-101 (D1/D2 Area) 10/2012 - 10/2014 Cottage Grove, MN Site

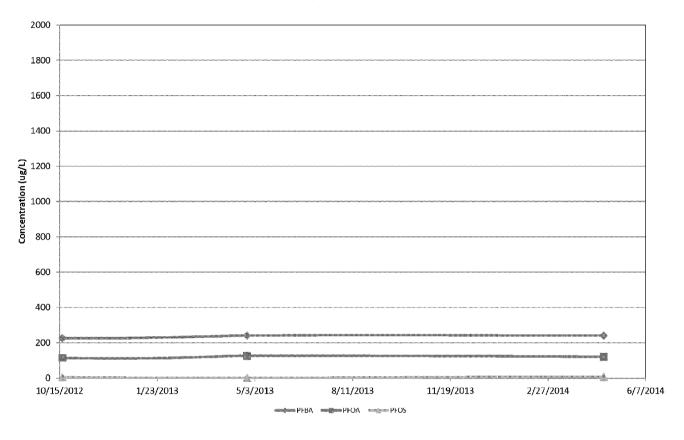


CGMN_All_FC_data_Crosstab-thru-2014-07-17(ISO-14) (2).xlsx; MW101

3M_MN01596219

WESTERN

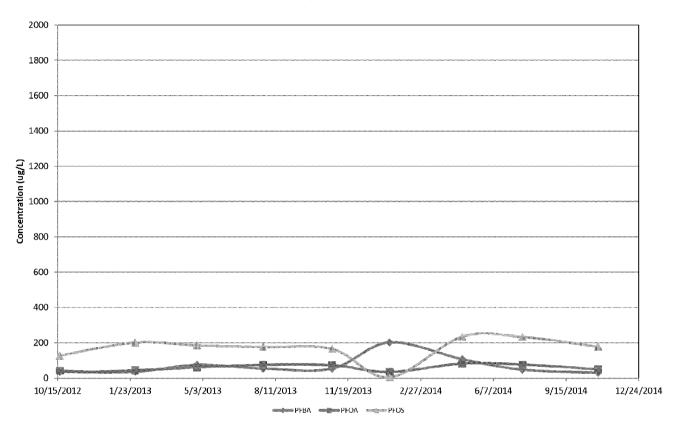
Monitoring Well MW-102 (D1/D2 Area) 10/2012 - 4/2014 Cottage Grove, MN Site



CGMN All FC data Crosstab-thru-2014-07-17(ISO-14) (2).xlsx; MW102

3M_MN01596220

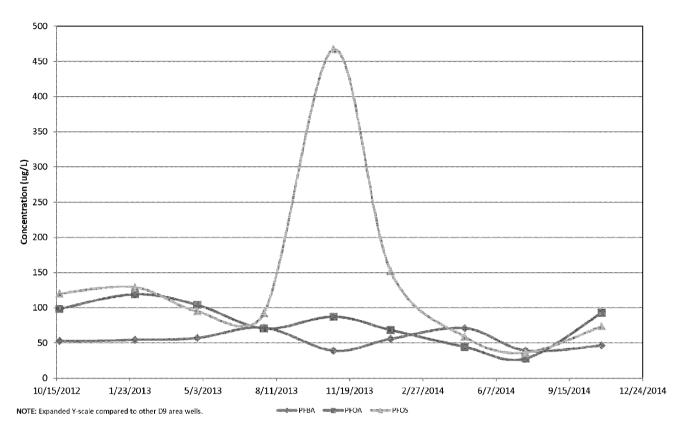
WEIGN


Monitoring Well MW-103 (D1/D2 Area) 10/2012 - 4/2014 Cottage Grove, MN Site

CGMN All FC data Crosstab-thru-2014-07-17(ISO-14) (2).xlsx; MW103

WEILEN

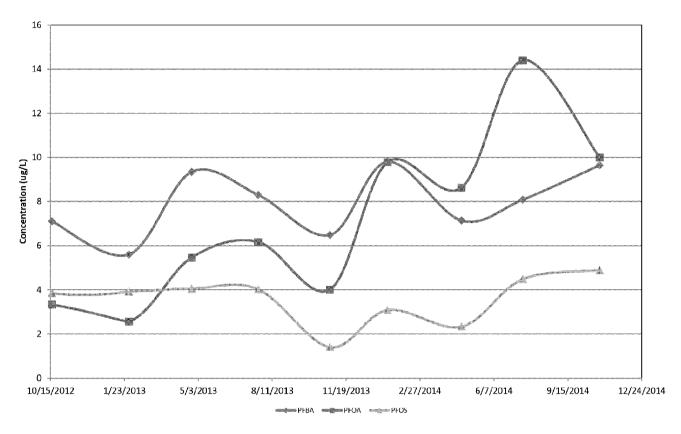
Monitoring Well MW-104 (D1/D2 Area) 10/2012 - 10/2014 Cottage Grove, MN Site


CGMN_All_FC_data_Crosstab-thru-2014-07-17(ISO-14) (2),xlsx; MW104

3M_MN01596222

D9 AREA

Monitoring Well MW-105 (D9 Area) 10/2012 - 10/2014 Cottage Grove, MN Site



CGMN All FC data Crosstab-thru-2014-07-17(ISO-14) (2).xlsx; MW105

3M_MN01596224

WISTON

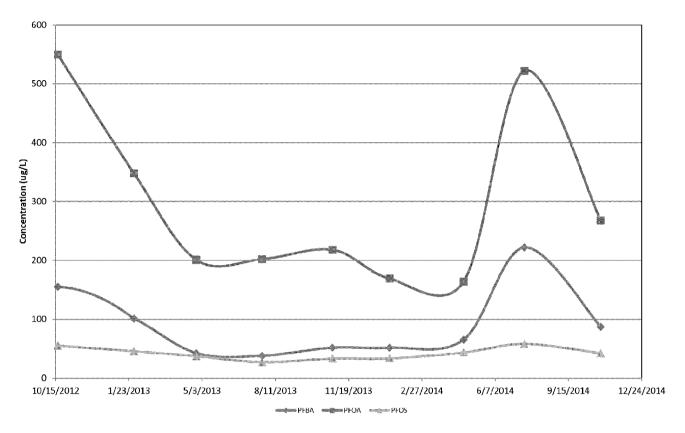
Monitoring Well MW-13 (D9 Area) 10/2012 - 10/2014 Cottage Grove, MN Site

CGMN All FC data Crosstab-thru-2014-07-17(ISO-14) (2).xlsx; MW13

3M_MN01596225

WISTERN

Production Well PW-09 (D9 Area) 04/2013 - 10/2014 Cottage Grove, MN Site

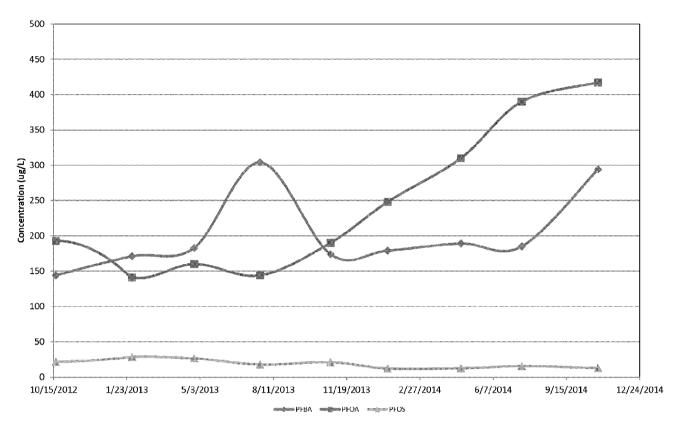

CGMN All FC data Crosstab-thru-2014-07-17(ISO-14) (2) xisx; PW09

3M_MN01596226

WWTP AREA

WISTERN

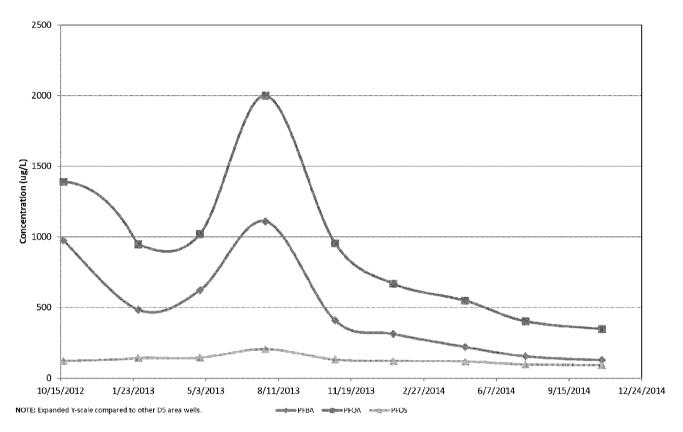
Monitoring Well MW-108 (WWTP Area) 10/2012 - 10/2014 Cottage Grove, MN Site


CGMN_All_FC_data_Crosstab-thru-2014-07-17(ISO-14) (2).xlsx; MW108

3M_MN01596228

D5 AREA

Monitoring Well MW-110 (D5 Area) 10/2012 - 10/2014 Cottage Grove, MN Site

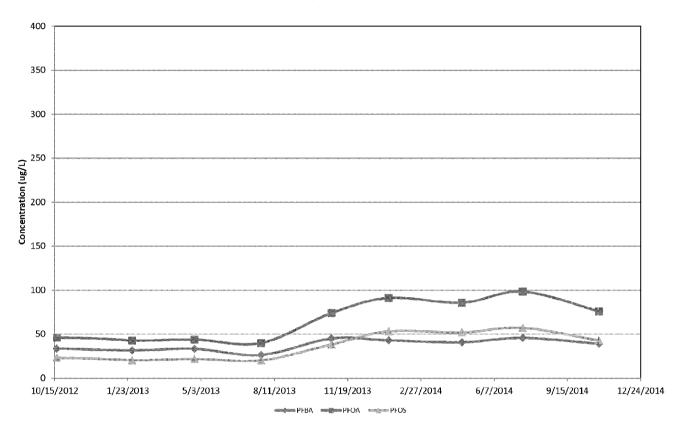


CGMN_All_FC_data_Crosstab-thru-2014-07-17(ISO-14) (2).xlsx; MW110

3M_MN01596230

WESTERN

Monitoring Well MW-12 (D5 Area) 10/2012 - 10/2014 Cottage Grove, MN Site

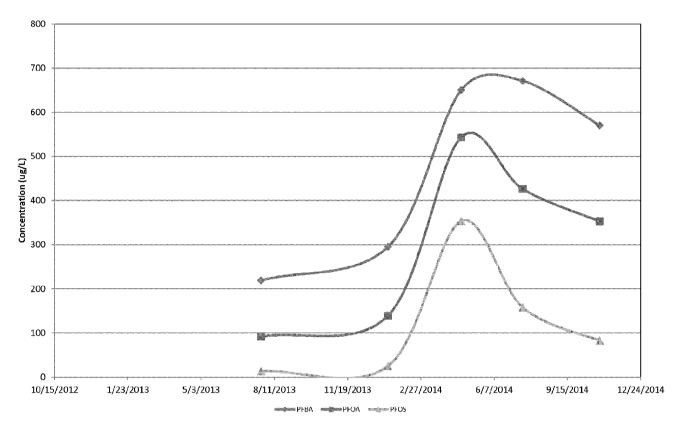


CGMN All FC data Crosstab-thru-2014-07-17(ISO-14) [2).xlsx; MW12

3M_MN01596231

WISTON

Monitoring Well MW-16 (D5 Area) 10/2012 - 10/2014 Cottage Grove, MN Site

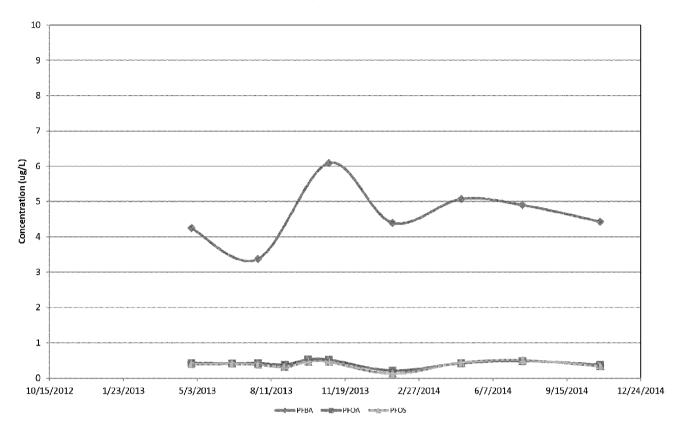

CGMN All FC data Crosstab-thru-2014-07-17(ISO-14) (2).xlsx; MW16

3M_MN01596232

D8 AREA

WESTERN

Monitoring Well MW-14R (D8 Area) 7/2013 - 10/2014 Cottage Grove, MN Site


CGMN_All_FC_cata_Crosstab-thru-2014-07-17(ISO-14) (2).xlsx; MW14R

3M_MN01596234

EAST COVE AREA

Production Well PW-10 (East Cove Area) 04/2013 - 7/2014 Cottage Grove, MN Site

CGMN All FC data Crosstab-thru-2014-07-17(ISO-14) (2) xisx; PW10

3M_MN01596236

ATTACHMENT F LABORATORY ANALYTICAL PACKAGES FOR PORE WATER AND SURFACE WATER SAMPLING – SEPTEMBER/OCTOBER 2014

Final Report

Analysis of Mississippi River Pore Water and Surface Water Samples Near the 3M Cottage Grove Facility – September 2014 Sampling

Laboratory Request Number: ISO11-01-03-17

Method Requirement: 3M Method ETS-8-044.1

Report Date: Date of Last Signature

Testing Laboratory

3M Environmental Health and Safety Operations Environmental Laboratory 3M Center, Bldg 260-05-N-17 St. Paul, MN 55144

Requester

Jim Kotsmith 3M EHS Operations 3M Building 224-5W-17 Saint Paul, MN 55144-1000 Phone: (651) 737-3635

The testing reported herein meet the requirements of ANSI/ISO/IEC 17025:2005 "General Requirements for the Competence of Testing and Calibration Laboratories", in accordance with the A2LA Testing Certificate # 2052.01. Additionally, the laboratory's quality system has been audited and was determined to be in conformance with the EPA GLPs (40 CFR 792) by an independent A2LA assessment.

PAGE 1 OF 36

3M_MN01596238

3M Environmental Laboratory

3M Environmental Laboratory Technical Director: William K. Reagen, Ph.D. 3M Principal Analytical Investigator: Susan Wolf Report Author: Chelsie Grochow

Analytical Report ISO11-01-03-17

Analysis of Mississippi River Pore Water and Surface Water Samples Near the 3M Cottage Grove Facility – September 2014 Sampling

Report Date: Date of Last Signature

1 Summary/Introduction

The 3M Environmental Laboratory prepared and analyzed samples collected by Weston personnel from the Mississippi River near the 3M Cottage Grove facility. Samples were collected September 29 – October 2, 2014. Samples were returned to the 3M Environmental Laboratory on October 3, 2014 and analyzed for perfluorobutanoic acid (PFBA), perfluorooctanoic acid (PFOA), and perfluorooctane sulfonate (PFOS), under 3M Environmental Laboratory project number ISO11-01-03-17.

The 3M Environmental Laboratory prepared sample containers for thirty-two sampling locations; sixteen pore water (interstitial water; IW) locations and sixteen corresponding surface water (SW) locations. Each empty container was marked with a "fill to here" line that corresponded to a final volume of 100 mL. Sample bottle sets for eight of the thirty-two sampling locations consisted of a field sample, field sample duplicate, and a target analyte field matrix spike. All other locations included a field sample and a field sample duplicate only. All samples bottles included the addition of internal standards and surrogate recovery standards (SRSs) [$^{13}C_3$]-PFBA, [$^{13}C_4$]-PFOA and [$^{13}C_4$]-PFOS, which were added to the sample containers prior to being sent to the field for sample collection. Sample bottles reserved for target analyte field matrix spikes were fortified with an appropriate matrix spike solution containing the target analytes prior to being sent to the field for sample collection.

Samples were prepared and analyzed according to 3M Environmental Laboratory method ETS-8-044.1 "Method of Analysis for the Determination of Perfluorinated Compounds in Water by LC/MS/MS; Direct Injection Analysis". Following sample analysis by internal standard calibration, it was suspected that the internal standards and surrogates were not spiked as intended, since the internal standard and surrogate recovery response was approximately one half of the expected response. This was confirmed with the trip blank matrix spike sample which had recoveries of approximately 200%. Surrogate recovery standards added to the sample containers prior to sample collection were not used to assess sample recovery and the samples were quantitated by external standard calibration. Target analyte laboratory matrix spikes were prepared for those sampling locations that did not include a target analyte field matrix spike.

Table 1 summarizes the sample results using the analytical method identified above. All results for quality control samples prepared and analyzed with the samples will be reported and discussed elsewhere in this report.

PAGE 2 OF 36

3M_MN01596239

Table 1. Sample Results Summary. (1)

3M LIMS ID	Sample Description	PFBA Concentration (ng/mL)	PFOA Concentration (ng/m∟)	PFOS Concentration (ng/mL)		
Surface Water Locations						
ISO11-01-03-17-001	CGMN-SW-MRIW09b-0-141001	<0.0500	0.0332	<0.0232		
ISO11-01-03-17-001	CGMN-SW-MRIW09b-DB-141001	<0.0500	0.0332	<0.0232		
15011-01-03-17-002						
	Average	<0.0500	0.0303	<0.0232		
10011 01 00 17 000	%RPD Sample/Sample Dup	NA		NA		
ISO11-01-03-17-003	CGMN-SW-MRIW09-0-141001	< 0.0500	<0.0240	<0.0232		
ISO11-01-03-17-004	CGMN-SW-MRIW09-DB-141001	<0.0500	<0.0240	<0.0232		
	Average	<0.0500	<0.0240	<0.0232		
	%RPD Sample/Sample Dup	NA	NA	NA		
ISO11-01-03-17-005	CGMN-SW-MRIW09d-0-141001	<0.0500	<0.0240	<0.0232		
ISO11-01-03-17-006	CGMN-SW-MRIW09d-DB-141001	<0.0500	<0.0240	<0.0232		
	Average	<0.0500	<0.0240	<0.0232		
	%RPD Sample/Sample Dup	NA	NA	NA		
ISO11-01-03-17-008	CGMN-SW-MRIW09f-0-141001	<0.0500	<0.0240	<0.0232		
ISO11-01-03-17-009	CGMN-SW-MRIW09f-DB-141001	<0.0500	<0.0240	<0.0232		
	Average	<0.0500	<0.0240	<0.0232		
	%RPD Sample/Sample Dup	NA	NA	NA		
ISO11-01-03-17-010	CGMN-SW-MRIW14b-0-140930	<0.0500	0.0789	<0.0232		
ISO11-01-03-17-011	CGMN-SW-MRIW14b-DB-140930	<0.0500	0.0711	<0.0232		
	Average	<0.0500	0.0750	<0.0232		
	%RPD Sample/Sample Dup	NA	10	NA		
ISO11-01-03-17-012	CGMN-SW-MRIW14-0-140930	<0.0500	<0.0240	<0.0232		
ISO11-01-03-17-013	CGMN-SW-MRIW14-DB-140930	<0.0500	<0.0240	<0.0232		
	Average	<0.0500	<0.0240	<0.0232		
	%RPD Sample/Sample Dup	NA	NA	NA		
ISO11-01-03-17-015	CGMN-SW-MRIW14d-0-130813	<0.0500	<0.0240	<0.0232		
ISO11-01-03-17-016	CGMN-SW-MRIW14d-DB-130813	<0.0500	<0.0240	<0.0232		
	Average	<0.0500	<0.0240	<0.0232		
	%RPD Sample/Sample Dup	NA	NA	NA		
ISO11-01-03-17-017	CGMN-SW-MRIW14f-0-140930	<0.0500	<0.0240	<0.0232		
ISO11-01-03-17-018	CGMN-SW-MRIW14f-DB-140930	<0.0500	<0.0240	<0.0232		
	Average	<0.0500	<0.0240	<0.0232		
	%RPD Sample/Sample Dup	NA	NA	NA		

NA = Not Applicable

 Samples were analyzed by solvent dilution with external standard calibration. The analytical method uncertainties associated with the reported results are as follows: PFBA ± 25%, PFOA ± 13%, and PFOS ± 17%.

(2) The RPD value did not meet method acceptance criteria of $\leq 20\%$.

(3) The field matrix spike sample for location CGMN-IW-MRIW14d did not meet acceptance criteria of 100 ± 30%. The method uncertainty has been expanded to ± 48% for PFBA.

PAGE 3 OF 36

Table 1 continued. Sample Results Summary. (1)

3M LIMS ID	Sample Description	PFBA Concentration (ng/mL)	PFOA Concentration (ng/mL)	PFOS Concentration (ng/mL)
Surface Water Locati	ons			
ISO11-01-03-17-019	CGMN-SW-MRIW19b-0-140930	0.0808	0.200	0.139
ISO11-01-03-17-020	CGMN-SW-MRIW19b-DB-140930	0.0549	0.205	0.135
	Average	0.0679	0.203	0.137
	%RPD Sample/Sample Dup	38 ⁽²⁾	2.5	2.9
ISO11-01-03-17-022	CGMN-SW-MRIW19-0-140930	<0.0500	0.0922	<0.0232
ISO11-01-03-17-023	CGMN-SW-MRIW19-DB-140930	<0.0500	0.0898	<0.0232
	Average	<0.0500	0.0910	<0.0232
	%RPD Sample/Sample Dup	NA	2.6	NA
ISO11-01-03-17-024	CGMN-SW-MRIW19d-0-140930	<0.0500	<0.0240	<0.0232
ISO11-01-03-17-025	CGMN-SW-MRIW19d-DB-140930	<0.0500	<0.0240	<0.0232
	Average	<0.0500	<0.0240	<0.0232
	%RPD Sample/Sample Dup	NA	NA	NA
ISO11-01-03-17-026	CGMN-SW-MRIW19f-0-140930	<0.0500	<0.0240	<0.0232
ISO11-01-03-17-027	CGMN-SW-MRIW19f-DB-140930	<0.0500	<0.0240	<0.0232
	Average	<0.0500	<0.0240	<0.0232
	%RPD Sample/Sample Dup	NA	NA	NA
ISO11-01-03-17-028	CGMN-SW-MRIW25b-0-140930	0.575	0.171	0.150
ISO11-01-03-17-029	CGMN-SW-MRIW25b-DB-140930	0.530	0.174	0.145
	Average	0.553	0.173	0.148
	%RPD Sample/Sample Dup	8.1	1.7	3.4
ISO11-01-03-17-030	CGMN-SW-MRIW25-0-140930	0.659	0.181	0.128
ISO11-01-03-17-031	CGMN-SW-MRIW25-DB-140930	0.687	0.181	0.126
	Average	0.673	0.181	0.127
	%RPD Sample/Sample Dup	4.2	0.0	1.6
ISO11-01-03-17-032	CGMN-SW-MRIW25d-0-140930	<0.0500	0.0396	<0.0232
ISO11-01-03-17-033	CGMN-SW-MRIW25d-DB-140930	<0.0500	0.0509	<0.0232
	Average	<0.0500	0.0453	<0.0232
	%RPD Sample/Sample Dup	NA	25 ⁽²⁾	NA
ISO11-01-03-17-034	CGMN-SW-MRIW25f-0-140929	<0.0500	<0.0240	<0.0232
ISO11-01-03-17-035	CGMN-SW-MRIW25f-DB-140929	<0.0500	<0.0240	<0.0232
	Average	<0.0500	<0.0240	<0.0232
	%RPD Sample/Sample Dup	NA	NA	NA

NA = Not Applicable

 Samples were analyzed by solvent dilution with external standard calibration. The analytical method uncertainties associated with the reported results are as follows: PFBA ± 25%, PFOA ± 13%, and PFOS ± 17%.

(2) The RPD value did not meet method acceptance criteria of $\leq 20\%$.

(3) The field matrix spike sample for location CGMN-IW-MRIW14d did not meet acceptance criteria of 100 ± 30%. The method uncertainty has been expanded to ± 48% for PFBA.

PAGE 4 OF 36

3M_MN01596241

Table 1 continued. Sample Results Summary. (1)

3M LIMS ID	Sample Description	PFBA Concentration (ng/mL)	PFOA Concentration (ng/mL)	PFOS Concentration (ng/mL)
Interstitial Water (Po	e Water)	-		
ISO11-01-03-17-037	CGMN-IW-MRIW09b-0-141002	47.6	8.31	3.00
ISO11-01-03-17-038	CGMN-IW-MRIW09b-DB-141002	44.3	7.88	2.90
	Average	46.0	8.10	2.95
	%RPD Sample/Sample Dup	7.2	5.3	3.4
ISO11-01-03-17-039	CGMN-IW-MRIW09-0-141002	6.77	1.39	0.392
ISO11-01-03-17-040	CGMN-IW-MRIW09-DB-141002	6.65	1.39	0.374
	Average	6.71	1.39	0.383
	%RPD Sample/Sample Dup	1.8	0.0	4.7
ISO11-01-03-17-042	CGMN-IW-MRIW09d-0-141001	2.93	0.781	<0.0232
ISO11-01-03-17-043	CGMN-IW-MRIW09d-DB-141001	2.94	0.797	0.0269
	Average	2.94	0.789	0.0269
	%RPD Sample/Sample Dup	0.34	2.0	NA
ISO11-01-03-17-044	CGMN-IW-MRIW09f-0-141002	15.6	0.523	0.0236
ISO11-01-03-17-045	CGMN-IW-MRIW09f-DB-141002	15.1	0.524	<0.0232
	Average	15.4	0.524	0.0236
	%RPD Sample/Sample Dup	3.3	0.19	NA
ISO11-01-03-17-046	CGMN-IW-MRIW14b-0-141002	24.4	101	37.1
ISO11-01-03-17-047	CGMN-IW-MRIW14b-DB-141002	24.4	102	37.0
	Average	24.4	102	37.1
	%RPD Sample/Sample Dup	0.0	0.99	0.27
ISO11-01-03-17-048	CGMN-IW-MRIW14-0-141001	2.29	4.49	0.284
ISO11-01-03-17-049	CGMN-IW-MRIW14-DB-141001	2.03	3.99	0.218
	Average	2.16	4.24	0.251
	%RPD Sample/Sample Dup	12	12	26 ⁽²⁾
ISO11-01-03-17-050	CGMN-IW-MRIW14d-0-141001	0.307	0.0780	<0.0232
ISO11-01-03-17-051	CGMN-IW-MRIW14d-DB-141001	1.40	0.354	0.0952
	Average	0.854 ⁽³⁾	0.216	0.0952
	%RPD Sample/Sample Dup	128 ⁽²⁾	1 28 ⁽²⁾	NA
ISO11-01-03-17-053	CGMN-IW-MRIW14f-0-141002	72.0	3.96	0.0477
ISO11-01-03-17-054	CGMN-IW-MRIW14f-DB-141002	80.2	4.42	<0.0232
	Average	76.1	4.19	0.0477
	%RPD Sample/Sample Dup	11	11	NA

NA = Not Applicable

 Samples were analyzed by solvent dilution with external standard calibration. The analytical method uncertainties associated with the reported results are as follows: PFBA ± 25%, PFOA ± 13%, and PFOS ± 17%.

(2) The RPD value did not meet method acceptance criteria of $\leq 20\%$.

(3) The field matrix spike sample for location CGMN-IW-MRIW14d did not meet acceptance criteria of 100 ± 30%. The method uncertainty has been expanded to ± 48% for PFBA.

PAGE 5 OF 36

Table 1 continued. Sample Results Summary. (1)

3M LIMS ID	Sample Description	PFBA Concentration (ng/mL)	PFOA Concentration (ng/mL)	PFOS Concentration (ng/mL)
Interstitial Water (Po	e Water)			
ISO11-01-03-17-055	CGMN-IW-MRIW19b-0-141001	69.0	149	33.1
ISO11-01-03-17-056	CGMN-IW-MRIW19b-DB-141001	69.4	144	29.2
	Average	69.2	147	31.2
	%RPD Sample/Sample Dup	0.58	3.4	13
ISO11-01-03-17-057	CGMN-IW-MRIW19-0-141001	62.6	9.20	91.9
ISO11-01-03-17-058	CGMN-IW-MRIW19-DB-141001	62.5	9.10	92.7
	Average	62.6	9.15	92.3
	%RPD Sample/Sample Dup	0.16	1.1	0.87
ISO11-01-03-17-059	CGMN-IW-MRIW19d-0-141001	13.3	0.112	<0.0232
ISO11-01-03-17-060	CGMN-IW-MRIW19d-DB-141001	13.5	0.116	<0.0232
	Average	13.4	0.114	<0.0232
	%RPD Sample/Sample Dup	1.5	3.5	NA
ISO11-01-03-17-062	CGMN-IW-MRIW19f-0-141002	50.0	223	0.896
ISO11-01-03-17-063	CGMN-IW-MRIW19f-DB-141002	53.0	239	0.930
	Average	51.5	231	0.913
	%RPD Sample/Sample Dup	5.8	6.9	3.7
ISO11-01-03-17-064	CGMN-IW-MRIW25b-0-140930	54.6	380	1300
ISO11-01-03-17-065	CGMN-IW-MRIW25b-DB-140930	53.2	368	1290
	Average	53.9	374	1300
	%RPD Sample/Sample Dup	2.6	3.2	0.77
ISO11-01-03-17-066	CGMN-IW-MRIW25-0-140930	59.1	23.8	16.3
ISO11-01-03-17-067	CGMN-IW-MRIW25-DB-140930	58.6	23.3	16.1
	Average	58.9	23.6	16.2
	%RPD Sample/Sample Dup	0.85	2.1	1.2
ISO11-01-03-17-068	CGMN-IW-MRIW25d-0-141001	11.0	37.4	0.0962
ISO11-01-03-17-069	CGMN-IW-MRIW25d-DB-141001	10.5	35.9	0.0920
	Average	10.8	36.7	0.0941
	%RPD Sample/Sample Dup	4.7	4.1	4.5
ISO11-01-03-17-070	CGMN-IW-MRIW25f-0-141001	16.5	10.2	7.21
ISO11-01-03-17-071	CGMN-IW-MRIW25f-DB-141001	15.9	9.83	6.09
	Average	16.2	10.0	6.65
	%RPD Sample/Sample Dup	3.7	3.7	17
ISO11-01-03-17-073	CGMN-SW-MRIW09-RB01-141001	<0.0500	<0.0240	<0.0232
ISO11-01-03-17-074	CGMN-IW-MRIW09-RB02-141001	<0.0500	<0.0240	<0.0232
ISO11-01-03-17-075	CGMN-IW-TRIP-0-140929	<0.0500	<0.0240	<0.0232

NA = Not Applicable

 Samples were analyzed by solvent dilution with external standard calibration. The analytical method uncertainties associated with the reported results are as follows: PFBA ± 25%, PFOA ± 13%, and PFOS ± 17%.

(2) The RPD value did not meet method acceptance criteria of $\leq 20\%$.

(3) The field matrix spike sample for location CGMN-IW-MRIW14d did not meet acceptance criteria of 100 ± 30%. The method uncertainty has been expanded to ± 48% for PFBA.

PAGE 6 OF 36

3M_MN01596243

2 Method Summary

2.1 Methods

Analysis for PFBA, PFOA, and PFOS was completed following 3M Environmental Laboratory method ETS-8-044.1 "Method of Analysis for the Determination of Perfluorinated Compounds in Water by LC/MS/MS".

Table 2. Target Analytes.

Target Analytes	Acronym	Reference Material Structure
Perfluorobutanoate (C4 Acid)	PFBA	Linear
Perfluorooctanoate (C8 Acid)	PFOA	Linear + Branched
Perfluorooctanesulfonate (C8 Sulfonate)	PFOS	Linear + Branched

2.2 Sample Collection

Pore water (interstitial water) and surface water samples were collected in 125 mL NalgeneTM (highdensity polyethylene) bottles prepared at the 3M Environmental Laboratory. A set of laboratory prepared Trip Blank and Trip Blank field matrix spikes were sent with the set of collection bottles. Sample bottles were received by the laboratory on October 3, 2014. Samples were stored refrigerated at the laboratory after receipt.

2.3 Sample Preparation

Samples with a dilution factor of 2 were prepared by removing a 0.4 mL aliquot of the well mixed sample and diluting it with 0.4 mL of methanol and analyzed by external standard calibration. Samples that required further dilution were initially prepared using a dilution factor of 10 by removing a 1 mL aliquot of the well mixed sample and diluting it with 9 mL of laboratory reagent water. Then a 0.4 mL aliquot of the 1:10 diluted sample was diluted again with 0.4 mL of methanol. In addition, target analyte lab matrix spike samples were prepared for samples that did not contain field matrix spikes. The laboratory matrix spike levels are discussed in section 3.9 of the report.

Sampling locations CGMN-IW-MRIW19f and CGMN-IW-MRI25b required further dilution. These samples were prepared by removing a 0.1 mL aliquot of the well mixed sample and diluting it with 9.8 mL of methanol. To each of the diluted samples, a 0.1 mL aliquot of a solution containing SRSs was added at a nominal concentration of 1 ng/mL (dilution factor of 100). The samples were analyzed by external standard calibration.

During the preparation of the laboratory control samples, an aliquot of a separate internal standard spiking solution was added to the laboratory control samples (nominal concentration of 1 ng/mL). The sample bottles were spiked with an internal standard mix at a nominal concentration of 1 ng/mL prior to being sent to the field for sample collection. The laboratory control samples were then diluted with methanol in the same manner as the samples.

2.4 Analysis

All samples and quality control samples were analyzed for PFBA, PFOA, and PFOS using high performance liquid chromatography/ tandem mass spectrometry (HPLC/MS/MS). Detailed instrument parameters, the liquid chromatography gradient program, and the specific mass transitions analyzed are described in the raw data hard copies placed in the final data packet, and are briefly described below.

PAGE 7 OF 36

3M_MN01596244

Due to the nature of the sample, the wide range of concentrations found in the sample, and the environmental occurrence of multiple isomers of the laboratory's analytes of interest, the software used for processing the analytical results is not able to consistently integrate the analytical peak, manual integration of the analytical peak is necessary. All manual integrations are performed following the procedures outlined in method ETS-12-010. The consistency of the laboratory's integration is ensured through the training of laboratory personnel, the peer review process required for all manual integrations, the review of manual integrations by the QAU, and where necessary the review of manual integrations by laboratory management.

Instrument Name	ETS Kirk
Analysis Dates	10/7/14, 10/13/14, 10/15/14, 10/20/14, 10/23/14, 10/24/14
Analytical Method	ETS-8-044.1
Liquid Chromatograph	Agilent 1260
Guard column	Betasil C18 (4.6 mm X 100 mm), 5 μ
Analytical column	Betasil C18 (4.6 mm X 100 mm), 5µ
Injection Volume	2, 5, or 10 μL
Mass Spectrometer	Applied Biosystems API 5500
lon Source	Turbo Spray
Electrode	Turbo ion electrode
Polarity	Negative
Software	Analyst 1.6.2

Table 3. Instrument Parameters.

Table 4. Liquid Chromatography Conditions.

Step Number	Total Time (min)	Flow Rate (μL/min)	Percent A (2mM ammonium acetate)	Percent B (Methanol)			
	ETS-8-044.1						
0	0.00	750	90.0	10.0			
1	0.50	750	90.0	10.0			
2	4.00	750	70.0	30.0			
3	6.00	750	70.0	30.0			
4	11.0	750	20.0	80.0			
5	13.0	750	20.0	80.0			
6	13.5	750	10.0	90.0			
7	16.0	750	10.0	90.0			
8	16.5	750	90.0	10.0			
9	19.0	750	90.0	10.0			

PAGE 8 OF 36

....

Analyte	Mass Transition Q1/Q3	Internal Standard ⁽¹⁾	Mass Transition Q1/Q3			
PFBA	213/169	[¹³ C ₄]-PFBA	217/172			
	413/369					
PFOA	413/219	[¹³ C ₈]-PFOA	421/376			
	413/169					
	499/99					
PFOS	499/80	[¹³ C ₈]-PFOS	507/80			
	499/130					
[¹³ C ₃]-PFBA	216/172	[¹³ C₄]-PFBA	217/172			
[¹³ C ₄]-PFOA	417/372	[¹³ C ₈]-PFOA	421/376			
[¹³ C₄]-PFOS	503/80	[¹³ C ₈]-PFOS	507/80			
Dwell time was 20 or 50 msec for each transition. The individual transitions were summed to produce a "total ion chromatogram" (TIC), which was used for guantitation.						

Table 5. Mass Transitions.

(1) Internal standard was included in the acquisition method on 10/7/14 and 10/13/14: however, internal standard calibration was not used for the quantitation of the analyzed samples.

Analytical Results 3

3.1 Calibration

10/7/13, 10/13/14, 10/20/14, 10/23/14, & 10/24/14 Analysis - Samples were quantitated for all analytes against an external standard calibration curve. Calibration standards were prepared by spiking known amounts of stock solutions into 50 mL of 50:50 methanol: laboratory reagent water. Between nine and fourteen standards ranging from 0.02 ng/mL to 5 ng/mL, 10 ng/mL, or 100 ng/mL (nominal) were analyzed. A guadratic, 1/x weighted, calibration curve of the standard peak area counts was used to fit the data for each analyte. The data were not forced through zero during the fitting process. Calculating the standard concentrations using the peak area ratios and the resultant calibration curve confirmed accuracy of each curve point.

10/15/14 Analysis - Samples were analyzed against an external standard calibration curve. Calibration standards were prepared by spiking known amounts of the stock solution into 50 mL of 90:10 methanol: laboratory Milli-Q[™] water. Nine standards ranging from 0.02 ng/mL to 10 ng/mL (nominal) were analyzed. A quadratic, 1/x weighted, calibration curve of the standard peak area counts was used to fit the data for each analyte. The data were not forced through zero during the fitting process. Calculating the standard concentrations using the peak area counts and the resultant calibration curve confirmed accuracy of each curve point.

For both analyses, each curve point was quantitated using the overall calibration curve and reviewed for accuracy. Method calibration accuracy requirements of 100±25% (100±30% for the lowest curve point) were met for all analytes. The correlation coefficient (r) was greater than 0.995 for all analytes in each analysis.

3.2 System Suitability

A calibration standard was analyzed four times at the beginning of the analytical sequence to demonstrate overall system suitability. The acceptance criteria of less than or equal to 5% relative standard deviation (RSD) for peak area/ratio and retention time criteria of less than or equal to 2% RSD were met for all analytes.

PAGE 9 OF 36

3M MN01596246

3.3 Limit of Quantitation (LOQ)

The LOQ for each analysis is the lowest non-zero calibration standard in the curve that meets linearity and accuracy requirements and for which the area counts/ratio are at least twice those of the appropriate blanks. The LOQ for all analytes can be found in Table 6.

Analyte	10/7/14 Analysis LOQ, ng/mL ⁽¹⁾	10/13/14 Analysis LOQ, ng/mL ⁽¹⁾	10/15/14 Analysis ∟OQ, ng/mL ⁽²⁾	10/20/14 Analysis LOQ, ng/mL ⁽¹⁾	10/23/14 Analysis LOQ, ng/mL ⁽¹⁾	10/24/14 Analysis LOQ, ng/mL ⁽¹⁾
PFBA	0.0500	0.0250	NA	0.0500	NA	NA
PFOA	0.0240	0.0240	0.0192	0.0480	NA	0.0240
PFOS	0.0232	0.0232	0.0185	0.0232	0.0232	NA

Table 6. Limit of Quantitation (LOQ).

NA = Not Applicable

(1) A dilution factor of 2 was applied to the LOQ.

(2) A dilution factor was not applied to the LOQ.

3.4 Continuing Calibration

During the course of each analytical sequence, continuing calibration verification samples (CCVs) were analyzed to confirm that the instrument response and the initial calibration curve were still in control. All reported sample results were bracketed by CCVs that met method criteria of $100\% \pm 25\%$.

3.5 Blanks

Three types of blanks were prepared and analyzed with the samples: solvent blanks (procedural blanks), field/trip blanks, and equipment rinseate blanks for the water samples. Each blank result was reviewed and used to evaluate method performance. Procedural blank results were reviewed according to the method and used to evaluate method performance to determine the LOQ for each analyte.

3.6 Lab Control Spikes (LCSs)

Low, mid, and high lab control spikes were prepared and analyzed in triplicate. The LCS samples were prepared by spiking known amounts of the analyte into 10 mL of laboratory reagent water or 1 mL of laboratory Milli-Q[™] water to produce the desired concentration. The LCSs were diluted with methanol in the same manner as the samples. All LCS results were used to determine overall method uncertainty in Section 3.7.

The method acceptance criteria states that the average recovery of LCS be $100\% \pm 20\%$ with a RSD $\leq 20\%$, when evaluated independently at each concentration level. All LCSs met acceptance criteria with the following exceptions:

10/7/14 Analysis: The low set of LCSs for PFBA had a RSD value of 41%. A method deviation is included with the raw data.

The following calculations were used to generate data in Table 7 for laboratory control spikes.

LCS Percent Recovery	= Calculated Concentration * 100%
	Spike Concentration
LCS% RSD = standard	deviation LCS replicates * 100%
ave	rage LCS recovery

PAGE 10 OF 36

3M_MN01596247

ETS-8-044.1						
External Calibration						
Analyzed 10/7/14		PFBA		PFO	A (Linear + Branc	hed)
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-141007-1	0.198	0.178	89.8	0.190	0.184	96.8
LCS-141007-2	0.198	0.331	167	0.190	0.202	106
LCS-141007-3	0.198	0.166	83.6	0.190	0.193	101
Average ± %RSD		113% ± 41% ⁽¹⁾		101% ± 4.5%		
LCS-141007-4	19.8	19.4	98.1	19.0	19.2	101
LCS-141007-5	19.8	19.4	98.2	19.0	19.4	102
LCS-141007-6	19.8	20.0	101	19.0	19.8	104
Average ± %RSD		99.1% ± 1.7%			102% ± 1.5%	
LCS-141007-7	157	173	110	150	158	105
LCS-141007-8	157	170	108	150	152	101
LCS-141007-9	157	164	105	150	150	100
Average ± %RSD		108% ± 2.3%			102% ± 2.6%	

Table 7. Laboratory Control Spike Recovery.

ETS-8-044.1			
External Calibration			
Analyzed 10/7/14	PFO	S (Linear + Branc	hed)
	Spiked	Calculated	
Lab ID	Concentration (ng/mL)	Concentration (ng/mL)	%Recovery
LCS-141007-1	0.184	0.153	82.9
LCS-141007-2	0.184	0.158	86.1
LCS-141007-3	0.184	0.158	85.9
Average ± %RSD		85.0% ± 2.1%	
LCS-141007-4	18.4	16.8	91.4
LCS-141007-5	18.4	17.2	93.2
LCS-141007-6	18.4	17.8	96.6
Average ± %RSD		93.7% ± 2.8%	
LCS-141007-7	145	164	113
LCS-141007-8	145	152	105
LCS-141007-9	145	150	103
Average \pm %RSD		107% ± 4.9%	

(1) RSD value did not meet acceptance criteria of $\leq 20\%$.

PAGE 11 OF 36

3M_MN01596248

ETS-8-044.1						
External Calibration						
Analyzed 10/13/14		PFBA		PFO	A (Linear + Branc	hed)
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-141013-1	0.198	0.176	89.0	0.190	0.182	95.6
LCS-141013-2	0.198	0.170	85.7	0.190	0.178	93.9
LCS-141013-3	0.198	0.177	89.2	0.190	0.190	100
Average ± %RSD		88.0% ± 2.2%		96.5% ± 3.3%		
LCS-141013-4	1.98	1.91	96.6	1.90	1.81	95.4
LCS-141013-5	1.98	2.06	104	1.90	1.92	101
LCS-141013-6	1.98	2.01	101	1.90	1.88	98.8
Average \pm %RSD		101% ± 3.7%			98.4% ± 2.9%	
LCS-141013-7	15.9	15.8	99.3	15.2	16.5	108
LCS-141013-8	15.9	17.2	108	15.2	17.1	113
LCS-141013-9	15.9	17.4	110	15.2	16.9	111
Average ± %RSD		106% ± 5.4%			111% ± 2.3%	

ETS-8-044.1 External Calibration					
Analyzed 10/13/14	PFO	S (Linear + Branc	hed)		
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery		
LCS-141013-1	0.184	0.150	81.6		
LCS-141013-2	0.184	0.146	79.1		
LCS-141013-3	0.184	0.150	81.4		
Average ± %RSD	80.7% ± 1.7%				
LCS-141013-4	1.84	1.53	83.2		
LCS-141013-5	1.84	1.58	85.9		
LCS-141013-6	1.84	1.56	84.9		
Average ± %RSD		84.7% ± 1.6%			
LCS-141013-7	14.7	14.0	95.0		
LCS-141013-8	14.7	14.3	97.3		
LCS-141013-9	14.7	14.3	97.2		
Average ± %RSD		96.5% ± 1.3%			

(1) RSD value did not meet acceptance criteria of $\leq 20\%$.

PAGE 12 OF 36

3M_MN01596249

ETS-8-044.1						
External Calibration						
Analyzed 10/15/14	PFO	PFOA (Linear + Branched)		PFOS (Linear + Branched)		
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-141015-1	0.191	0.175	91.6	0.185	0.179	97.0
LCS-141015-2	0.191	0.175	91.5	0.185	0.183	98.8
LCS-141015-3	0.191	0.181	94.6	0.185	0.181	98.0
Average ± %RSD		92.6% ± 1.9%			97.9% ± 0.92%	
LCS-141015-4	1.91	1.98	104	1.85	1.90	103
LCS-141015-5	1.91	1.91	99.9	1.85	1.88	102
LCS-141015-6	1.91	1.92	101	1.85	1.87	101
Average \pm %RSD		102% ± 2.1%			102% ± 0.98%	
LCS-141015-7	7.60	7.89	104	7.36	7.50	102
LCS-141015-8	7.60	7.92	104	7.36	7.47	101
LCS-141015-9	7.60	8.05	106	7.36	7.65	104
Average ± %RSD		105% ± 1.1%			102% ± 1.5%	
ETS-8-044.1						
External Calibration Analyzed 10/15/14		[¹³ C ₄]-PFOA			[¹³ C ₄]-PFOS	
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-141015-1	0.199	0.201	101	0.190	0.192	101
LCS-141015-2	0.199	0.201	101	0.190	0.192	101
LCS-141015-3	0.199	0.198	99.5	0.190	0.191	100
Average \pm %RSD		101% ± 0.86%			101% ± 0.57%	
LCS-141015-4	1.99	2.10	106	1.90	1.99	105
LCS-141015-5	1.99	2.03	102	1.90	1.94	102
LCS-141015-6	1.99	2.01	101	1.90	1.94	102

(1) RSD value did not meet acceptance criteria of $\leq 20\%$.

Average ± %RSD

103% ± 2.6%

PAGE 13 OF 36

103% ± 1.7%

3M_MN01596250

ETS-8-044.1						
External Calibration						
Analyzed 10/20/14		PFBA		PFO	A (Linear + Branc	hed)
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-141020-1	0.199	0.164	82.3	0.191	0.189	98.7
LCS-141020-2	0.199	0.199	100	0.191	0.191	100
LCS-141020-3	0.199	0.169	85.1	0.191	0.195	102
Average ± %RSD		89.1% ± 11%			100% ± 1.7%	
LCS-141020-4	19.9	22.0	110	19.1	20.9	109
LCS-141020-5	19.9	21.6	109	19.1	20.3	106
LCS-141020-6	19.9	21.3	107	19.1	20.2	106
Average \pm %RSD		109% ± 1.4%			107% ± 1.6%	
LCS-141020-7	157	177	113	151	165	110
LCS-141020-8	157	173	110	151	162	107
LCS-141020-9	157	172	110	151	160	106
Average ± %RSD		111% ± 1.6%			108% ± 1.9%	

ETS-8-044.1 External Calibration					
Analyzed 10/20/14	PFO	S (Linear + Branc	hed)		
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery		
LCS-141020-1	0.185	0.157	84.7		
LCS-141020-2	0.185	0.165	89.2		
LCS-141020-3	0.185	0.162	87.6		
Average ± %RSD	87.2% ± 2.6%				
LCS-141020-4	18.5	18.5	100		
LCS-141020-5	18.5	17.9	96.7		
LCS-141020-6	18.5	18.1	97.9		
Average ± %RSD		98.2% ± 1.7%			
LCS-141020-7	146	159	109		
LCS-141020-8	146	152	104		
LCS-141020-9	146	150	103		
Average ± %RSD		105% ± 3.1%			

(1) RSD value did not meet acceptance criteria of $\leq 20\%$.

PAGE 14 OF 36

3M_MN01596251

ETS-8-044.1 External Calibration Analyzed 10/23/14	PEO	S (Linear + Branc	hed)
Lab ID	Spiked Concentration (ng/mL)	Calculated Concentration (ng/mL)	%Recovery
LCS-141023-1	0.185	0.143	77.5
LCS-141023-2	0.185	0.155	83.9
LCS-141023-3	0.185	0.155	83.6
Average ± %RSD		81.7% ± 4.4%	
LCS-141023-4	1.85	1.74	94.3
LCS-141023-5	1.85	1.74	94.0
LCS-141023-6	1.85	1.70	91.8
Average ± %RSD		93.4% ± 1.5%	
LCS-141023-7	7.36	6.97	94.7
LCS-141023-8	7.36	6.97	94.7
LCS-141023-9	7.36	6.86	93.2
Average ± %RSD		94.2% ± 0.92%	

ETS-8-044.1 External Calibration			
Analyzed 10/24/14	PFO	A (Linear + Branc	hed)
	Spiked Concentration	Calculated Concentration	
Lab ID	(ng/mL)	(ng/mL)	%Recovery
LCS-141020-1	0.191	0.213	112
LCS-141020-2	0.191	0.216	113
LCS-141020-3	0.191	0.236	124
Average ± %RSD		116% ± 5.7%	
LCS-141020-4	19.1	21.0	110
LCS-141020-5	19.1	20.7	109
LCS-141020-6	19.1	20.6	108
Average ± %RSD		109% ± 0.92%	
LCS-141020-7	151	169	112
LCS-141020-8	151	164	109
LCS-141020-9	151	161	106
Average ± %RSD		109% ± 2.8%	

(1) RSD value did not meet acceptance criteria of $\leq 20\%$.

PAGE 15 OF 36

3M_MN01596252

3.7 Analytical Method Uncertainty

Analytical uncertainty is based on historical QC data that is control charted and used to evaluate method accuracy and precision. The method uncertainty is calculated following ETS-12-012.2. The standard deviation is calculated for the set of accuracy results (in %) obtained for the QC samples. For method ETS-8-044.1, the most recent fifty QC samples were used. The analytical method uncertainty is calculated by multiplying the standard deviation by a factor of 2, which corresponds to a confidence level of 95%.

Analyte	Standard Deviation (%)	Method Uncertainty (%)
PFBA	12.5	± 25
PFOA	6.56	±13
PFOS	8.55	± 17

3.8 Field Matrix Spikes (FMS)

Target analyte field matrix spikes (FMS) were prepared for select locations. For this sampling event, FMS samples were collected at eight sampling locations to verify that the analytical method is applicable to the collected matrix. FMSs were generated by adding a measured volume of field sample to a container spiked by the laboratory with the target analytes prior to shipping sample containers for sample collection. FMS recoveries within method acceptance criteria of 100±30% confirm that "unknown" components in the sample matrix do not significantly interfere with the extraction and analysis of the analytes of interest. FMS concentrations must be at least 50% of the sample concentration to be considered an appropriate spike level. The reference standards for PFOA and PFOS in the field matrix spiking solution consisted of linear and branched isomers. Table 9 lists the locations and spiking levels for which a target analyte FMS was prepared.

In addition, field matrix spikes for this project consisted of stable isotope surrogate recovery standard spikes (SRSs) of [$^{13}C_3$]-PFBA, [$^{13}C_4$]-PFOA and [$^{13}C_4$]-PFOS, which were added at a nominal concentration of 0.1 ng/mL to all sample bottles prior to sample collection. The [$^{13}C_3$]-labeled PFBA was selected to represent PFBA the [$^{13}C_4$]-labeled PFOA was selected to represent PFOA, and the [$^{13}C_4$]-labeled PFOS was selected to represent PFOS. Following sample analysis, it was suspected that the surrogate recovery standards were not spiked as intended; therefore, no surrogate recovery standard results were used to assess sample recovery.

The following calculation was used to generate the field matrix spike recovery in Section 4 of the report:

FMS Recovery =	$\underbrace{(Sample Concentration of FMS-Average Concentration : Field Sample & Field Sample Dup.)}_{*}$	100%
TWIS Recovery =	Spike Concentration	10070

Table 9. Field Matrix Spike Levels.

Sampling location	PFBA (ng/mL)	PFOA (ng/mL)	PFOS (ng/mL)
Surface Water (SW) locations: MRIW09d, MRIW14, MRIW19b, MRI25f	1.01	0.996	0.996
Interstitial Water (IW) locations. MRIW14d and Trip Blank Low	1.01	0.996	0.996
Interstitial Water (IW) locations: MRIW09, MRIW19d, MRIW25f, and Trip Blank High	5.05	4.98	4.98

PAGE 16 OF 36

3.9 Lab Matrix Spikes (LMS)

Due to noncompliant surrogate recovery standards using external standard calibration, laboratory matrix spike (LMS) samples were prepared for all sample locations that did not contain a field matrix spike sample. The LMSs were used to verify that the analytical method is applicable to the collected matrix. LMSs were generated by adding a measured volume of standard solution to an aliquot of the primary sample. The spike concentrations are presented in Table 10.

LMS recoveries within method acceptance criteria of 100±30% confirm that "unknown" components in the sample matrix do not significantly interfere with the extraction and analysis of the analytes of interest. LMS concentrations must be 50% of the sample concentration to be considered an appropriate spike level. LMSs are presented in section 4 of this report.

The following calculation was used to calculate the lab matrix spike recovery in Section 4 of the report:

LMS Recovery =	(Sample Concentration of LMS – Average Concentration : Field Sample & Field Sample Dup.) *10	ഹംഗ
	Spike Concentration	JU / 0

Table 10. Lab Matrix Spike Levels.

	Final Co	ncentration	(ng/mL)
Sampling Locations	PFBA	PFOA	PFOS
Surface Water (SW) locations: MRIW09b, MRIW09, MRIW09f, MRIW14b, MRIW14d, MRIW14f, MRIW19, MRIW19d, MRIW19f, MRIW25b, MRIW25, and MRIW25d Interstitial Water (IW) locations: MRIW09f and MRIW25d	0.998	0.957	0.926
Interstitial Water (IW) locations: MRIW09d, MRIW14, MRIW14f, and MRIW19f	4.97	4.77	4.61
Interstitial Water (IW) location: MRIW09b	9.98	9.57	9.26
Interstitial Water (IW) locations: MRIW19, MRIW25b, and MRIW25	49.7	47.7	46.1
Interstitial Water (IW) locations: MRIW14b and MRIW19b	98.9	94.9	91.8

PAGE 17 OF 36

4 Data Summary and Discussion

The tables below summarize the sample results and target analyte field matrix spike or laboratory matrix spike recoveries for the sampling locations as well as the Trip Blank. Results and values are average rounded to three significant figures according to EPA rounding rules. Because of rounding, values may vary slightly from those listed in the raw data. Field matrix spike and laboratory matrix spike recoveries meeting the method acceptance criteria of ± 30%, demonstrate that the method is appropriate for the given matrix and their respective quantitative ranges.

Following the initial analysis using internal standard calibration, almost all of the FMS sample recoveries were greater than 150%, including the trip blank samples. The FMS recoveries appear biased high due to the internal standard response being approximately one half of the expected response. Therefore, the samples were quantitated using external standard calibration, which resulted in surrogate recovery standards with approximately 50% recovery with the exception of two sample locations. Based on the internal standard response and the field matrix spike recoveries, it was concluded that the surrogates and internal standards were spiked incorrectly at the time the bottles were prepared for sampling. Therefore, all samples were quantitated and reported using external standard calibration. No surrogate recovery standard results are reported, with the exception of the PFOA surrogate results for sample location IW-MRIW19f, in which the surrogate recovery standards were added at the time of sample preparation and dilution.

Using external standard calibration, all field matrix spikes and laboratory matrix spikes met acceptance criteria with the following exception:

IW-MRIW14d: The sample/sample duplicate RPD for PFBA was 128%. The FMS recovery was 52.1%. Since the sample location had very high RPDs for all analytes, the sample set was reprepared and re-analyzed. The re-analysis confirmed the initial results and the sample set has been reported using the initial analysis. The method uncertainty has been expanded to ±48% for PFBA.

PAGE 18 OF 36

Table 11. CGMN SW MRIW09b 141001

		PFB.	PFBA		PFOA		s
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-17-001	CGMN-SW-MRIW09b-0-141001	<0.0500	NA	0.0332	NA	<0.0232	NA
ISO11-01-03-17-002	CGMN-SW-MRIW09b-DB-141001	<0.0500	NA	0.0274	NA	<0.0232	NA
ISO11-01-03-17-001; LMS	CGMN-SW-MRIW09b-LMS (1ppb)	1.15	115	1.09	11-	0.904	97.6
Average Concentration (ng/mL) ± %RPD		<0.0500 ng/mL		0.0303 ng/mL ± 19%		<0.0232 ng/mL	

NA = Not Applicable

Table 12. CGMN SW MRIW09 141001

			PFBA		PFOA		s
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-17-003	CGMN-SW-MRIW09-0-141001	<0.0500	NA	<0.0240	NA	<0.0232	NA
ISO11-01-03-17-004	CGMN-SW-MRIW09-DB-141001	<0.0500	NA	<0.0240	NA	<0.0232	NA
ISO11-01-03-17-003; LMS	CGMN-SW-MRIW09-LMS (1ppb)	1.10	110	1.04	109	0.888	95.9
Average Concentration (ng/mL) ± %RPD		<0.0500 ng/mL		<0.0240 ng/mL		<0.0232 ng/mL	

NA = Not Applicable

PAGE 19 OF 36

Table 13. CGMN SW MRIW09d 141001

		PFB	PFBA		PFOA		s
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-17-005	CGMN-SW-MRIW09d-0-141001	<0.0500	NA	<0.0240	NA	<0.0232	NA
ISO11-01-03-17-006	CGMN-SW-MRIW09d-DB-141001	<0.0500	NA	<0.0240	NA	<0.0232	NA
ISO11-01-03-17-007	CGMN-SW-MRIW09d-FMS-141001	0.994	98.4	0.916	92.0	0.840	84.3
Average Concentration (ng/mL) ± %RPD		<0.0500 ng/mL		<0.0240 ng/mL		<0.0232 ng/mL	

NA = Not Applicable

Table 14. CGMN SW MRIW09f 141001

		PFBA		PFOA		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-17-008	CGMN-SW-MRIW09f-0-141001	<0.0500	NA	<0.0240	NA	<0.0232	NA
ISO11-01-03-17-009	CGMN-SW-MRIW09f-DB-141001	<0.0500	NA	<0.0240	NA	<0.0232	NA
ISO11-01-03-17-008; LMS	CGMN-SW-MRIW09f-LMS (1ppb)	1.12	112	1.06	11-	0.906	97.8
Average Concentration (ng/mL) ± %RPD		<0.0500 ng/mL		<0.0240 ng/mL		<0.0232 ng/mL	

NA = Not Applicable

PAGE 20 OF 36

Table 15. CGMN SW MRIW14b 140930

		PFB.	PFBA		PFOA		s
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-17-010	CGMN-SW-MRIW14b-0-740930	<0.0500	NA	0.0789	NA	<0.0232	NA
ISO11-01-03-17-011	CGMN-SW-MRIW14b-DB-140930	<0.0500	NA	0.0711	NA	<0.0232	NA
ISO11-01-03-17-010; LMS	CGMN-SW-MRIW14b-LMS (1ppb)	1.13	113	1.08	105	0.882	95.2
Average Concentration (ng/mL) ± %RPD		<0.0500 ng/mL		0.0750 ng/mL ± 10%		<0.0232 ng/mL	

NA = Not Applicable

Table 16. CGMN SW MRIW14 140930

			PFBA		PFOA		s	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	
ISO11-01-03-17-012	CGMN-SW-MRIW14-0-140930	<0.0500	NA	<0.0240	NA	<0.0232	NA	
ISO11-01-03-17-013	CGMN-SW-MRIW14-DB-140930	<0.0500	NA	<0.0240	NA	<0.0232	NA	
ISO11-01-03-17-014	CGMN-SW-MRIW14-FMS-140930	0.991	98.1	0.922	92.6	0.827	83.0	
Average Concentration (ng/mL) ± %RPD		<0.0500 r	<0.0500 ng/mL		<0.0240 ng/mL		<0.0232 ng/mL	

NA = Not Applicable

PAGE 21 OF 36

Table 17. CGMN SW MRIW14d 140930

			PFBA		PFOA		s
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-17-015	CGMN-SW-MRIW14d-0-740930	<0.0500	NA	<0.0240	NA	<0.0232	NA
ISO11-01-03-17-016	CGMN-SW-MRIW14d-DB-140930	<0.0500	NA	<0.0240	NA	<0.0232	NA
ISO11-01-03-17-015; LMS	CGMN-SW-MRIW14d-LMS (1ppb)	1.11	111	1.11	116	0.911	98.4
Average Concentration (ng/mL) ± %RPD		<0.0500 ng/mL		<0.0240 ng/mL		<0.0232 ng/mL	

NA = Not Applicable

Table 18. CGMN SW MRIW14f 140930

		PFBA		PFOA		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-17-017	CGMN-SW-MRIW14f-0-140930	<0.0500	NA	<0.0240	NA	<0.0232	NA
ISO11-01-03-17-018	CGMN-SW-MRIW14f-DB-140930	<0.0500	NA	<0.0240	NA	<0.0232	NA
ISO11-01-03-17-017; LMS	CGMN-SW-MRIW14f-LMS (1ppb)	1.08	108	1.07	112	0.892	96.3
Average Concentration (ng/mL) ± %RPD		<0.0500 ng/mL		<0.0240 ng/mL		<0.0232 ng/mL	

NA = Not Applicable

PAGE 22 OF 36

Table 19. CGMN SW MRIW19b 140930

		PFBA		PFOA		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-17-019	CGMN-SW-MRIW19b-0-140930	0.0808	NA	0.200	NA	0.139	NA
ISO11-01-03-17-020	CGMN-SW-MRIW19b-DB-140930	0.0549	NA	0.205	NA	0.135	NA
ISO11-01-03-17-021	CGMN-SW-MRIW19b-FMS-140930	1.08	100	1.14	94 .1	1.01	87.7
Average Concentration (ng/mL) ± %RPD		0.0679 ng/mL± 38% ⁽¹⁾		0.203 ng/mL ± 2.5%		0.137 ng/mL ± 2.9%	

NA = Not Applicable (1) Sample/sample duplicate RPD did not meet acceptance criteria of ≤20%.

Table 20. CGMN SW MRIW19 140930

		PFB	PFBA		PFOA		S	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	
ISO11-01-03-17-022	CGMN-SW-MRIW19-0-140930	<0.0500	NA	0.0922	NA	<0.0232	NA	
ISO11-01-03-17-023	CGMN-SW-MRIW19-DB-140930	<0.0500	NA	0.0898	NA	<0.0232	NA	
ISO11-01-03-17-022; LMS	CGMN-SW-MRIW19-LMS (1ppb)	1.12	112	1.09	104	0.929	100	
Average Concentration (ng/mL) ± %RPD		<0.0500 r	<0.0500 ng/mL		0.0910 ng/mL ± 2.6%		<0.0232 ng/mL	

NA = Not Applicable

PAGE 23 OF 36

Table 21. CGMN SW MRIW19d 140930

		PFB.	PFBA		PFOA		s
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-17-024	CGMN-SW-MRIW19d-0-740930	<0.0500	NA	<0.0240	NA	<0.0232	NA
ISO11-01-03-17-025	CGMN-SW-MRIW19d-DB-140930	<0.0500	NA	<0.0240	NA	<0.0232	NA
ISO11-01-03-17-024; LMS	CGMN-SW-MRIW19d-LMS (1ppb)	1.15	115	1.12	117	0.966	104
Average Concentration (ng/mL) ± %RPD		<0.0500 ng/mL		<0.0240 ng/mL		<0.0232 ng/mL	

NA = Not Applicable

Table 22. CGMN SW MRIW19f 140930

		PFBA		PFOA		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-17-026	CGMN-SW-MRIW19f-0-140930	<0.0500	NA	<0.0240	NA	<0.0232	NA
ISO11-01-03-17-027	CGMN-SW-MRIW19f-DB-140930	<0.0500	NA	<0.0240	NA	<0.0232	NA
ISO11-01-03-17-026; LMS	CGMN-SW-MRIW19f-LMS (1ppb)	1.10	110	1.03	108	0.884	95.5
Average Concentration (ng/mL) ± %RPD		<0.0500 ng/mL		<0.0240 ng/mL		<0.0232 ng/mL	

NA = Not Applicable

PAGE 24 OF 36

Table 23. CGMN SW MRIW25b 140930

		PFBA		PFOA		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-17-028	CGMN-SW-MRIW25b-0-740930	0.575	NA	0.171	NA	0.150	NA
ISO11-01-03-17-029	CGMN-SW-MRIW25b-DB-140930	0.530	NA	0.174	NA	0.145	NA
ISO11-01-03-17-028; LMS	CGMN-SW-MRIW25b-LMS (1ppb)	1.68	113	1.16	103	0.984	90.3
Average Concentration (ng/mL) ± %RPD		0.553 ng/mL± 8.1%		0.173 ng/mL ± 1.7%		0.148 ng/mL ± 3.4%	

NA = Not Applicable

Table 24. CGMN SW MRIW25 140930

			PFBA		PFOA		s
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-17-030	CGMN-SW-MRIW25-0-140930	0.659	NA	0.181	NA	0.128	NA
ISO11-01-03-17-031	CGMN-SW-MRIW25-DB-140930	0.687	NA	0.181	NA	0.126	NA
ISO11-01-03-17-030; LMS	CGMN-SW-MRIW25-LMS (1ppb)	1.80	113	1.16	102	1.09	104
Average Concentration (ng/mL) ± %RPD		0.673 ng/mL± 4.2%		0.181 ng/mL ± 0.0%		0.127 ng/mL ± 1.6%	

NA = Not Applicable

PAGE 25 OF 36

Table 25. CGMN SW MRIW25d 140930

		PFBA		PFOA		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-17-032	CGMN-SW-MRIW25d-0-740930	<0.0500	NA	0.0396	NA	<0.0232	NA
ISO11-01-03-17-033	CGMN-SW-MRIW25d-DB-140930	<0.0500	NA	0.0509	NA	<0.0232	NA
ISO11-01-03-17-032; LMS	CGMN-SW-MRIW25d-LMS (1ppb)	1.08	108	1.08	108	0.869	93.8
Average Concentration (ng/mL) ± %RPD		<0.0500 ng/mL		0.0453 ng/mL ± 25% ⁽¹⁾		<0.0232 ng/mL	

NA = Not Applicable (1) Sample/sample duplicate RPD did not meet acceptance criteria of ≤20%.

Table 26. CGMN SW MRIW25f 140929

		PFB	A	PFOA		PFO	s
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-17-034	CGMN-SW-MRIW25f-0-140929	<0.0500	NA	<0.0240	NA	<0.0232	NA
ISO11-01-03-17-035	CGMN-SW-MRIW25f-DB-140929	<0.0500	NA	<0.0240	NA	<0.0232	NA
ISO11-01-03-17-036	CGMN-SW-MRIW25f-FMS-140929	0.976	96.6	0.977	98.1	0.869	87.2
Average Con	Average Concentration (ng/mL) ± %RPD		<0.0500 ng/mL		<0.0240 ng/mL		ng/mL

NA = Not Applicable

PAGE 26 OF 36

Table 27. CGMN IW MRIW09b 141002

			PFBA		PFOA		s
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-17-037	CGMN-IW-MRIW09b-0-141002	47.6	NA	8.31	NA	3.00	NA
ISO11-01-03-17-038	CGMN-IW-MRIW09b-DB-141002	44.3	NA	7.88	NA	2.90	NA
ISO11-01-03-17-037; LMS	CGMN-IW-MRIW09b-LMS (10ppb)	60.2	NC	19.6	120	13.7	116
Average Concentration (ng/mL) ± %RPD		46.0 ng/mL ± 7.2%		8.10 ng/mL ± 5.3%		2.95 ng/mL ± 3.4%	

NA = Not Applicable NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration.

Table 28. CGMN IW MRIW09 141002

			PFBA		PFOA		S
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-17-039	CGMN-IW-MRIW09-0-141002	6.77	NA	1.39	NA	0.392	NA
ISO11-01-03-17-040	CGMN-IW-MRIW09-DB-141002	6.65	NA	1.39	NA	0.374	NA
ISO11-01-03-17-041	CGMN-IW-MRIW09-FMS-141002	11.7	98.8	6.66	106	5.12	95.1
Average Con	Average Concentration (ng/mL) ± %RPD		6.71 ng/mL ± 1.8%		1.39 ng/mL ± 0.0%		L ± 4.7%

NA = Not Applicable

PAGE 27 OF 36

Table 29. CGMN IW MRIW09d 141001

			PFBA		PFOA		s
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-17-042	CGMN-IW-MRIW09d-0-141001	2.93	NA	0.781	NA	<0.0232	NA
ISO11-01-03-17-043	CGMN-IW-MRIW09d-DB-141001	2.94	NA	0.797	NA	0.0269	NA
ISO11-01-03-17-042; LMS	CGMN-IW-MRIW09d-LMS (5ppb)	8.43	111	5.70	103	4.42	95.3
Average Concentration (ng/mL) ± %RPD		2.94 ng/mL ± 0.34%		0.789 ng/mL ± 2.0%		0.0269 ng/mL	

NA = Not Applicable

Table 30. CGMN IW MRIW09f 141002

		PFB	Δ	PFOA		PFO	s
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-17-044	CGMN-IW-MRIW09f-0-141002	15.6	NA	0.523	NA	0.0236	NA
ISO11-01-03-17-045	CGMN-IW-MRIW09f-DB-141002	15.1	NA	0.524	NA	<0.0232	NA
ISO11-01-03-17-044; LMS	CGMN-IW-MRIW09f-LMS (1ppb)	16.4	NC	1.50	102	0.959	101
Average Conce	ntration (ng/mL) ± %RPD	15.4 ng/mL	. ± 3.3%	0.524 ng/mL	. ± 0.19%	0.0236 r	g/mL

NA = Not ApplicableNC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration.

PAGE 28 OF 36

Table 31. CGMN IW MRIW14b 141002

			PFBA		PFOA		s
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-17-046	CGMN-IW-MRIW14b-0-141002	24.4	NA	101	NA	37.1	NA
ISO11-01-03-17-047	CGMN-IW-MRIW14b-DB-141002	24.4	NA	102	NA	37.0	NA
ISO11-01-03-17-046; LMS	CGMN-IW-MRIW14b-LMS (100ppb)	131	108	207	117	122	92.5
Average Concentration (ng/mL) ± %RPD		24.4 ng/mL ± 0.0%		102 ng/mL ± 0.99%		37.1 ng/mL ± 0.27%	

NA = Not Applicable

Table 32. CGMN IW MRIW14 141001

		PFB	Δ	PFOA		PFO	s
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-17-048	CGMN-IW-MRIW14-0-141001	2.29	NA	4.49	NA	0.284	NA
ISO11-01-03-17-049	CGMN-IW-MRIW14-DB-141001	2.03	NA	3.99	NA	0.218	NA
ISO11-01-03-17-048; LMS	CGMN-IW-MRIW14-LMS (5ppb)	7.39	105	9.06	101	4.39	89.8
Average Concer	ntration (ng/mL) ± %RPD	2.16 ng/ml	. ± 12%	4.24 ng/ml	. ± 12%	0.251 ng/mL	. ± 26% ⁽¹⁾

NA = Not Applicable (1) Sample/sample duplicate RPD did not meet acceptance criteria of ≤20%.

PAGE 29 OF 36

Table 33. CGMN IW MRIW14d 141001

			PFBA		PFOA		s
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-17-050	CGMN-IW-MRIW14d-0-141001	0.307	NA	0.0780	NA	<0.0232	NA
ISO11-01-03-17-051	CGMN-IW-MRIW14d-DB-141001	1.40	NA	0.354	NA	0.0952	NA
ISO11-01-03-17-052	CGMN-IW-MRIW14d-FMS-141001	1.38	52.1 ⁽¹⁾	1.07	85.7	0.926	83.4
Average Conce	entration (ng/mL) ± %RPD	0.854 ng/mL	± 128% ⁽²⁾	0.216 ng/mL	± 128% ⁽²⁾	0.0952 n	ıg/mL

NA = Not Applicable
(1) FMS recovery did not meet acceptance criteria of 100 ± 30%. The method uncertainty has been expanded to ±48% for PFBA.
(2) Sample/sample duplicate RPD did not meet acceptance criteria of ≤20%.

Table 34. CGMN IW MRIW14f 141002

		PFBA		PFOA		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-17-053	CGMN-IW-MRIW14f-0-141002	72.0	NA	3.96	NA	0.0477	NA
ISO11-01-03-17-054	CGMN-IW-MRIW14f-DB-141002	80.2	NA	4.42	NA	<0.0232	NA
ISO11-01-03-17-053; LMS	CGMN-IW-MRIW14f-LMS (5ppb)	77.6	NC	8.70	94.5	4.14	8.88
Average Concentration (ng/mL) ± %RPD		76.1 ng/mL ± 11%		4.19 ng/mL ± 11%		0.0477 ng/mL	

NA = Not Applicable NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration.

PAGE 30 OF 36

Table 35. CGMN IW MRIW19b 141001

		PFBA		PFOA		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-17-055	CGMN-IW-MRIW19b-0-141001	69.0	NA	149	NA	33.1	NA
ISO11-01-03-17-056	CGMN-IW-MRIW19b-DB-141001	69.4	NA	144	NA	29.2	NA
ISO11-01-03-17-055; LMS	CGMN-IW-MRIW19b-LMS (100ppb)	171	103	240	98.5	109	84.8
Average Concentration (ng/mL) ± %RPD		69.2 ng/mL ± 0.58%		147 ng/mL ± 3.4%		31.2 ng/mL ± 13%	

NA = Not Applicable

Table 36. CGMN IW MRIW19 141001

		PFBA		PFOA		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-17-057	CGMN-IW-MRIW19-0-141007	62.6	NA	9.20	NA	91.9	NA
ISO11-01-03-17-058	CGMN-IW-MRIW19-DB-141001	62.5	NA	9.10	NA	92.7	NA
ISO11-01-03-17-057; LMS	CGMN-IW-MRIW19-LMS (50ppb)	116	108	56.8	99.9	125	70.9
Average Concentration (ng/mL) ± %RPD		62.6 ng/mL ± 0.16%		9.15 ng/mL ± 1.1%		92.3 ng/mL ± 0.87%	

NA = Not Applicable

PAGE 31 OF 36

Table 37. CGMN IW MRIW19d 141001

		PFBA		PFOA		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-17-059	CGMN-IW-MRIW19d-0-141001	13.3	NA	0.112	NA	<0.0232	NA
ISO11-01-03-17-060	CGMN-IW-MRIW19d-DB-141001	13.5	NA	0.116	NA	<0.0232	NA
ISO11-01-03-17-061	CGMN-IW-MRIW19d-FMS-141001	17.8	NC	4.94	96.9	4.29	86.1
Average Concentration (ng/mL) ± %RPD		13.4 ng/mL ± 1.5%		0.114 ng/mL ± 3.5%		<0.0232 ng/mL	

NA = Not Applicable NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration.

Table 38. CGMN IW MRIW19f 141002

		PFBA		PFOA		PFOS		¹³ C ₄ PFOA ⁽²⁾
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	%Recovery
ISO11-01-03-17-062	CGMN-IW-MRIW19f-0-141002	50.0	NA	223	NA	0.896	NA	96.1
ISO11-01-03-17-063	CGMN-IW-MRIW19f-DB-141002	53.0	NA	239	NA	0.930	NA	95.0
ISO11-01-03-17-062; LMS	CGMN-IW-MRIW19f-LMS (5ppb)	54.8	NC	NA (1)	NA ⁽¹⁾	4.96	87.8	NA ⁽¹⁾
Average Conce	ntration (ng/mL) ± %RPD	51.5 ng/mL	± 5.8%	231 ng/mL	± 6.9%	0.913 ng/m	L ± 3.7%	95.5% ± 1.2%

$$\begin{split} \mathsf{NA} &= \mathsf{Not} \; \mathsf{Applicable} \\ \mathsf{NC} &= \mathsf{Not} \; \mathsf{Calculated}; \; \mathsf{Spike} \; \mathsf{level} \; \mathsf{was} \; \mathsf{less} \; \mathsf{than} \; 0.5 \mathsf{x} \; \mathsf{the} \; \mathsf{endogenous} \; \mathsf{sample} \; \mathsf{concentration}. \\ (1) \quad \mathsf{The} \; \mathsf{LMS} \; \mathsf{sample} \; \mathsf{was} \; \mathsf{not} \; \mathsf{included} \; \mathsf{in} \; \mathsf{the} \; \mathsf{re-analysis} \; \mathsf{of} \; \mathsf{the} \; \mathsf{sample} \; \mathsf{sample} \; \mathsf{endogenous} \; \mathsf{endogenous} \; \mathsf{endogenous} \; \mathsf{sample} \; \mathsf{endogenous} \; \mathsf{endogenogenous} \; \mathsf{endogenous} \;$$

PAGE 32 OF 36

Table 39. CGMN IW MRIW25b 140930

		PFBA		PFOA		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-17-064	CGMN-IW-MRIW25b-0-140930	54.6	NA	380	NA	1300	NA
ISO11-01-03-17-065	CGMN-IW-MRIW25b-DB-140930	53.2	NA	368	NA	1290	NA
ISO11-01-03-17-064; LMS	CGMN-IW-MRIW25b-LMS (50ppb)	108	109	410	NC	1220	NC
Average Concentration (ng/mL) ± %RPD		53.9 ng/mL ± 2.6%		374 ng/mL± 3.2%		1300 ng/mL ± 0.77%	

NA = Not Applicable NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration.

Table 40. CGMN IW MRIW25 140930

		PFBA		PFOA		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-17-066	CGMN-IW-MRIW25-0-140930	59.1	NA	23.8	NA	16.3	NA
ISO11-01-03-17-067	CGMN-IW-MRIW25-DB-140930	58.6	NA	23.3	NA	16.1	NA
ISO11-01-03-17-066; LMS	CGMN-IW-MRIW25-LMS (50ppb)	111	105	70.9	99.3	52.0	77.7
Average Concentration (ng/mL) ± %RPD		58.9 ng/mL ± 0.85%		23.6 ng/mL± 2.1%		16.2 ng/mL ± 1.2%	

NA = Not Applicable

PAGE 33 OF 36

Table 41. CGMN IW MRIW25d 141001

		PFBA		PFOA		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-17-068	CGMN-IW-MRIW25d-0-141001	11.0	NA	37.4	NA	0.0962	NA
ISO11-01-03-17-069	CGMN-IW-MRIW25d-DB-141001	10.5	NA	35.9	NA	0.0920	NA
ISO11-01-03-17-068; LMS	CGMN-IW-MRIW25d-LMS (1ppb)	11.9	NC	36.5	NC	0.939	91.2
Average Concentration (ng/mL) ± %RPD		10.8 ng/mL ± 4.7%		36.7 ng/mL ± 4.1%		0.0941 ng/mL ± 4.5%	

NA = Not Applicable NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration.

Table 42. CGMN IW MRIW25f 141001

		PFBA		PFOA		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-17-070	CGMN-IW-MRIW25f-0-141001	16.5	NA	10.2	NA	7.21	NA
ISO11-01-03-17-071	CGMN-IW-MRIW25f-DB-141001	15.9	NA	9.83	NA	6.09	NA
ISO11-01-03-17-072	CGMN-IW-MRIW25f-FMS-141001	21.5	NC	15.1	NC	11.7	101
Average Concentration (ng/mL) ± %RPD		16.2 ng/mL ± 3.7%		10.0 ng/mL ± 3.7%		6.65 ng/mL ± 17%	

NA = Not Applicable NC = Not Calculated; Spike level was less than 0.5x the endogenous sample concentration.

PAGE 34 OF 36

Table 43. CGMN IW TRIP 140929

		PFBA		PFOA		PFOS	
3M LIMS ID	Description	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery	Concentration (ng/mL)	%Recovery
ISO11-01-03-17-075	CGMN-IW-TRIP-0-140929	<0.0500	NA	<0.0240	NA	<0.0232	NA
ISO11-01-03-17-076	CGMN-IW-TRIP-LS-140929	0.958	94.9	0.952	95.6	0.937	94 .1
ISO11-01-03-17-077	CGMN-IW-TRIP-HS-140929	4.77	94.5	4.73	95.0	4.74	95.2

NA = Not Applicable

PAGE 35 OF 36

5 Conclusion

Laboratory control spikes were used to determine the analytical method accuracy and precision for all analytes. The accuracy and precision were then used to estimate the method uncertainty for the results. Field matrix spike and lab matrix spike recoveries demonstrated that the analytical method was appropriate for the given sample matrix. Analysis was completed using 3M Environmental Laboratory method ETS-8-044.1 "Method of Analysis for the Determination of Perfluorinated Compounds in Water by LC/MS/MS; Direct Injection Analysis". Analytical results are reported in Tables 1 and 11-43 of this report.

6 Data/Sample Retention

All remaining samples and associated project data (hardcopy and electronic) will be archived according to 3M Environmental Laboratory standard operating procedures.

7 Signatures

Digitally signed by Susan T. Wolf DN: c=US, st=MN, I=St. Paul: ou=3M Environmental Laboratory - authenticated by LRA, email=stwolf@mmm.com, o=3M, cn=Susan 1. Wolf Reason: I have reviewed this document Date: 2014, i1 04 1549:52-0600

Susan Wolf, 3M Principal Analytical Investigator

Loff L

Digitally signed by William K. Reagen D'V: c=US, st=MN, I=St. Paul, ou=Laboratory Drestor, ou=3M Environmental Laboratory autheniciate by IR-A, enail=Wirkeragen@mmm.com, o=3M, c==William K. Reagen Reason: I am approving this document Date: 2014.11.05 "3:16.15 -06'00'

William K. Reagen, Ph.D., 3M Environmental Laboratory Technical Director

The 3M Environmental Laboratory's Quality Assurance Unit has audited the data and report for this project.

Casey Konell

Digitally signed by Casey Howell DN: crUS, sisHN, I=53: Paul, ou=Quality Assurance Unit, cu=3M crivity - authenticated by LRA, email=chowel @mmm.com, u=3M, crit=Casey - dowell Reason: Lagree to the terms defined by the piacement of my signature and this document Date: 2014.11.04 16:16:59 -06'90'

Quality Assurance Representative

This test report shall not be reproduced except in full, without written approval of the 3M Environmental Laboratory.

PAGE 36 OF 36

3M_MN01596273

mple bottles include the a			
nal standards and surrogat		TAL LABORATORY	Shipping Address: 3M Environmental Laborator
ot pre-rinse the bottles.	Chain-o	f-Custody	3M Center, Bldg 260-5N-17
ot pour out the contents o	of the bottle.		St. Paul, MN 55144
Project: ISO11-01-03-	.17		Phone: (651) 733-9873 Alt. Phone: (651) 736-6559 Fax: (651) 733-4687
Department: 452090 Project Number: 00731 Date Created: 9/9/2014	38015	Completion Date: Project Lead: Susan T. Phone Number: 651-73 Email Address: stwolf@ rpling-	3-9851
<u>3M Sample Number</u>	Sample Description	Date/Time Sampled Mar	t <u>rix Comment</u>
ISO11-01-03-17-001	CGMN-SW-MRIW096-0- 141001	10-1-14/14:50 Sh	1 Slight aver Bil
ISO11-01-03-17-002	CGMN-SW-MRIW09b-DB- HIODI	10-1-14/ 14:50	Slight overfil
ISO11-01-03-17-003	CGMN-SW-MRIW09-0- 14/001	10-1-14/14:10	Slight over fill
ISO11-01-03-17-004	CGMN-SW-MRIW09-DB- 141601	10-1-14/ 14:10	Slight over Bil
ISO11-01-03-17-005	CGMN-SW-MRIW09d-0- 141001	10-1-14/ 13:15	7
ISO11-01-03-17-006	CGMN-SW-MRIW09d-DB- 141001	10-1-14/ B:25	
ISO11-01-03-17-007	CGMN-SW-MRIW09d-FMS- 141001	10-1-14/13:15	Slight over Fil
ISO11-01-03-17-008	CGMN-SW-MRIW091-0- 1410021	10-2-14/199-5	10-1-14/12:55
ISO11-01-03-17-009	CGMN-SW-MRIW09f-DB- 14100×1	10-14/10-55	10-1-14/ 12:55
ISO11-01-03-17-010	CGMN-SW-MRIW146-0- 140930	9-30-14/ 16:35	
ISO11-01-03-17-011	CGMN-SW-MRIW146-DB- 140930	9-30-14/16:35	
ISO11-01-03-17-012	CGMN-SW-MRIWI4-0- 140430	9-30-14/16:10	
ISO11-01-03-17-013	CGMN-SW-MRIW14-DB- 140930	9-30-14/ 16:10	
ISO11-01-03-17-014	CGMN-SW-MRIW14-FMS- 140930	9-30-14/16:10 2	g≟ n
Sample Condition Upon Temperature:	Deg C C Received on Ice O	, , , , , , , , , , , , , , , , , , , ,	A.D.
Collected by (print):	Dave Carens/ Alexi West	Collector's signature:	KI IZ
Relinquished by:	Date Time Shipped Via	a Received by:	Date Time
1			

3M_MN01596274

SM ENVIRONMENTAL LABORATORY Chain-of-Custody

Shipping Address:

3M Environmental Laboratory 3M Center, Bldg 260-5N-17 St. Paul, MN 55144

Phone: (651) 733-9873 Alt. Phone: (651) 736-6559 Fax: (651) 733-4687

Project: ISO11-01-03-17 (cont.)

Requester: Kotsmith, James Ronald (MAPLEWO Department: 452090 Site Source: 01J9C020 Project Number: 0073138015 Date Created: 9/9/2014 Project Description: Mississippi River Surface and Pore Water Sampling -September 2014

Completion Date: Project Lead: Susan T. Wolf Phone Number: 651-733-9851 Email Address: stwolf@mmm.com

<u>3M Sample Number</u>	Sample Description	<u>on</u>		Date/Time Sar	npled	<u>Matrix</u>	<u>Commen</u>	ţ
ISO11-01-03-17-015	CGMN-SW-MRIWI	4d-0- 140930		9-30-14/15	:35	SN		
ISO11-01-03-17-016	CGMN-SW-MRIWI	4d-DB- 140930		9-30-14/15		1		
ISO11-01-03-17-017	CGMN-SW-MRIWI	4f-0- 14030		9-30-14/14				
ISO11-01-03-17-018	CGMN-SW-MRIWI	4f.DB- 140930		9-30-14/14	45			
ISO11-01-03-17-019	CGMN-SW-MRIWI	9b-0- 140930		9-30-14/13	40			
ISO11-01-03-17-020	CGMN-SW-MRIW1	9b-DB- 140930		9-30-14/ 13:	40			
ISO11-01-03-17-021	CGMN-SW-MRIW1	96-FMS- 140930)	9-30-14/ 13:0	10	and the second se		
ISO11-01-03-17-022	CGMN-SW-MRIWI	9-0- 1140930		9-30-14/ 12:5	55	Contraction and the contraction of the		
ISO11-01-03-17-023	CGMN-SW-MRIWI	9-DB- 140930		9-30-14/ 12:5	1			
ISO11-01-03-17-024	CGMN-SW-MRIWI	9d-0- 140930		9-30-14/ 12:0				
ISO11-01-03-17-025	CGMN-SW-MRJW1	эd-DB- /40930		9-30-14/12:	05			
ISO11-01-03-17-026	CGMN-SW-MRIW19	Pf-0- 140930		9-30-14/11:1	5	1		
ISO11-01-03-17-027	CGMN-SW-MRIWI	эг-DB- 140430		9-30-14/ 11:1	T			
ISO11-01-03-17-028	CGMN-SW-MRIW2:	5b-0- 140930		9-30-14/1 10:2				
ISO11-01-03-17-029	CGMN-SW-MRIW2:	56-DB- 140930		9-30-14/ 10:2		I		
ISO11-01-03-17-030	CGMN-SW-MRIW2:	5-0- 140930		9-30-14/ 09:3				
ISO11-01-03-17-031	CGMN-SW-MRIW25	5-DB- 140930		9-30-14/09:3		T		
Sample Condition Upon	Receipt A	cceptable		tems accounted for				
Temperature:	Deg C 🗍 F	Received on Ice	Othe	er:		18	\frown	
Collected by (print):	Dave Carros	1 Mep West		Collector's signatu	re:	alli	$\overset{()}{\leftarrow}$	
Relinquished by:	Date	Time Shipp	oed Via	Received by:			Date	Time
·····		<u> </u>						1
					in vetalijan			
						L		

Page 2 of 5

SM ENVIRONMENTAL LABORATORY Chain-of-Custody

Shipping Address: 3M Environmental Laboratory 3M Center, Bldg 260-5N-17 St. Paul, MN 55144

Phone: (651) 733-9873 Alt. Phone: (651) 736-6559 Fax: (651) 733-4687

Project: ISO11-01-03-17 (cont.)

Requester: Kotsmith, James Ronald (MAPLEWO Department: 452090 Site Source: 01J9C020 Project Number: 0073138015 Date Created: 9/9/2014 Project Description: Mississippi River Surface and Pore Water Sampling -September 2014

Completion Date: Project Lead: Susan T. Wolf Phone Number: 651-733-9851 Email Address: stwolf@mmm.com

Sample Descrip	<u>tion</u>		Dat	e/Time Sampled	<u>Matri</u>	<u>x</u> <u>Comme</u>	nt
CGMN-SW-MRIV	125d-0- 1404	130	g.:	30-14/108:25	512		
CGMN-SW-MRIV			1 1		1		
CGMN-SW-MRIW	25f-DB- 14	929					
CGMN-SW-MRIW					T		
1	A 1			8	1	/	
CGMN-IW-MRIW				4			
					3	*	
CGMN-IW-MRIW(19-FMS- 141	202		,			
			1 1		(Slight	- oue Bll
				4	a and a second second		010-011
				T			
					Å.		
						-	
			10-1-	1	- Ja		
•	-				Л		
Drive Carmin	Mex We	st	Collector	r's signature:	Ill	X	
Date Time Shipped Via			Received	Received by:			Time
		1					
	CGMN-SW-MRIW CGMN-SW-MRIW CGMN-SW-MRIW CGMN-SW-MRIW CGMN-SW-MRIW CGMN-SW-MRIW CGMN-IW-MRIW CGMN-IW-MRIW	CGMN-SW-MRIW25d-DB- 140 CGMN-SW-MRIW25f-DB- 140 CGMN-SW-MRIW25f-DB- 140 CGMN-SW-MRIW25f-DB- 141 CGMN-SW-MRIW25f-FMS- 141 CGMN-IW-MRIW09b-0- 1410 CGMN-IW-MRIW09b-0- 1410 CGMN-IW-MRIW09b-0- 14100 CGMN-IW-MRIW09b-0- 14100 CGMN-IW-MRIW09-0- 14100 CGMN-IW-MRIW09d-0- 14100 CGMN-IW-MRIW09d-0- 14100 CGMN-IW-MRIW09d-0- 14100 CGMN-IW-MRIW09d-0- 14100 CGMN-IW-MRIW09f-0- 14100 CGMN-IW-MRIW14b-0- 14100 CGMN-IW-MRIW14b-0- 14100 CGMN-IW-MRIW14-0- 1	CGMN-SW-MRIW25d-0- 140930 CGMN-SW-MRIW25d-DB- 140930 CGMN-SW-MRIW25f-0- 140929 CGMN-SW-MRIW25f-DB- 140929 CGMN-SW-MRIW25f-DB- 140929 CGMN-SW-MRIW25f-FMS- 140929 CGMN-SW-MRIW25f-FMS- 140929 CGMN-SW-MRIW25f-FMS- 140929 CGMN-IW-MRIW09b-0- 141002 CGMN-IW-MRIW09b-0- 141002 CGMN-IW-MRIW09-0- 141002 CGMN-IW-MRIW09-0- 141002 CGMN-IW-MRIW09-0- 141002 CGMN-IW-MRIW09-0- 141002 CGMN-IW-MRIW09-0- 141002 CGMN-IW-MRIW09d-0- 141002 CGMN-IW-MRIW09d-0- 141002 CGMN-IW-MRIW09f-0- 141002 CGMN-IW-MRIW14b-0- 141002 CGMN-IW-MRIW14b-0- 141002 CGMN-IW-MRIW14-0- 141001 Receipt Acceptable All Deg C Received on Ice Oth	CGMN-SW-MRIW25d-0- 140430 9-2 CGMN-SW-MRIW25d-0B- 140930 9-2 CGMN-SW-MRIW25f-0. 140929 9-2 CGMN-SW-MRIW25f-DB- 140929 9-2 CGMN-SW-MRIW25f-DB- 140929 9-2 CGMN-SW-MRIW25f-DB- 140929 9-2 CGMN-SW-MRIW25f-DB- 140929 9-2 CGMN-SW-MRIW25f-FMS- 140929 9-2 CGMN-IW-MRIW09b-0- 141002 10-2 CGMN-IW-MRIW09b-0- 141002 10-2 CGMN-IW-MRIW09-0- 141002 10-2 CGMN-IW-MRIW14b-0B- <	CGMN-SW-MRIW25d-0- 140930 9-30-14108:25 CGMN-SW-MRIW25d-DB- 140930 9-30-14108:25 CGMN-SW-MRIW25d-DB- 140929 9-29-141108:25 CGMN-SW-MRIW25f-DB- 140929 9-29-141108:40 CGMN-SW-MRIW25f-DB- 140929 9-29-141108:40 CGMN-SW-MRIW25f-DB- 140929 9-29-141108:40 CGMN-SW-MRIW25f-DB- 140929 9-29-141108:40 CGMN-IW-MRIW09b-0- 141002 10-2-14109:25 CGMN-IW-MRIW09b-0- 141002 10-2-14109:25 CGMN-IW-MRIW09b-0- 141002 10-2-14109:05 CGMN-IW-MRIW09-DB- 141002 10-2-14109:05 CGMN-IW-MRIW09-D- 141002 10-2-14109:05 CGMN-IW-MRIW09-D- 141002 10-2-14108:55 CGMN-IW-MRIW09-D- 141002 10-2-14108:55 CGMN-IW-MRIW09-D- 141002 10-2-14108:55 CGMN-IW-MRIW14b-DB- <	CGMN-SW-MRIW25d-0- 140930 9-30-14108:25 5W CGMN-SW-MRIW25d-DB- 140930 9-30-14108:25 5W CGMN-SW-MRIW25d-DB- 140979 9-30-14108:25 1 CGMN-SW-MRIW25f-DB- 140979 9-30-14108:25 1 CGMN-SW-MRIW25f-DB- 140979 9-30-14108:25 1 CGMN-SW-MRIW25f-DB- 140979 9-30-14108:25 1 CGMN-SW-MRIW25f-FMS- 140979 9-30-14108:25 1 CGMN-IW-MRIW09b-0- 14007 10-2-14109:25 1 CGMN-IW-MRIW09b-0- 141007 10-2-14109:25 1 CGMN-IW-MRIW09b-0- 141007 10-2-14109:05 1 CGMN-IW-MRIW09b-0- 141007 10-2-14109:05 1 CGMN-IW-MRIW09-DB- 141007 10-2-14109:05 1 CGMN-IW-MRIW09-DB- 141007 10-2-14109:05 1 CGMN-IW-MRIW09-DB- 141002 10-1-14113:55 1 CGMN-IW-MRIW09-DB- 141002 10-1-14113:55 1 CGMN-IW-MRIW096-DB- 141002 10-2-14108:55 1 CGMN-IW-MRIW096-DB- 141002 10-2-14108:55	CGMN-SW-MRIW25d-0- 140930 9-30-14108:25 SW CGMN-SW-MRIW25d-0B- 140930 9-30-14108:25 SW CGMN-SW-MRIW25d-0B- 140929 9-20-14108:25 SW CGMN-SW-MRIW25f-0- 140929 9-20-14108:25 SW CGMN-SW-MRIW25f-DB- 140929 9-20-14108:40 C CGMN-SW-MRIW25f-DB- 140929 9-20-14108:40 C CGMN-SW-MRIW25f-FMS- 140929 9-20-14108:40 C CGMN-W-MRIW09b-0- 14002 10-2-14109:25 PW CGMN-IW-MRIW09b-0- 14002 10-2-14109:25 S CGMN-IW-MRIW09b-0- 141002 10-2-14109:25 S CGMN-IW-MRIW09-0- 141002 10-2-14109:25 S CGMN-IW-MRIW09-DB- 141002 10-2-14109:25 S CGMN-IW-MRIW09-DB- 141002 10-2-14109:25 S S CGMN-IW-MRIW09-DB- 141002 10-1-14113:55 S S S CGMN-IW-MRIW09-DB- 141002 10-2-14109:25 C S S G CGMN-IW-MRIW09-DB- 141002 10-2-14108:55 C

Page 3 of 5

3M ENVIRONMENTAL LABORATORY Chain-of-Custody

Shipping Address: 3M Environmental Laboratory 3M Center, Bldg 260-5N-17 St. Paul, MN 55144

Phone: (651) 733-9873 Alt. Phone: (651) 736-6559 Fax: (651) 733-4687

Project: ISO11-01-03-17 (cont.)

Requester: Kotsmith, James Ronald (MAPLEWO Department: 452090 Site Source: 01J9C020 Project Number: 0073138015 Date Created: 9/9/2014 Project Description: Mississippi River Surface and Pore Water Sampling -September 2014

Completion Date: Project Lead: Susan T. Wolf Phone Number: 651-733-9851 Email Address: stwolf@mmm.com

<u>3M Sample Number</u>	Sample Descript	ion		Date/Time Sampled	<u>Matrix</u>	Commen	<u>1</u> t
ISO11-01-03-17-049	CGMN-IW-MRIW1	4.DB. 141	001	10-1-14/12:20	PN		
ISO11-01-03-17-050	CGMN-IW-MRIW1	4d-0 - 141	001	10-1-14/ 10:00	and the second sec		
ISO11-01-03-17-051	CGMN-IW-MRIWI	4d-DB- 14	1001	10-1-14/ 10:00		Slight	overtil
ISO11-01-03-17-052	CGMN-IW-MRIWI	4d-FMS- 14	11001	10-1-14/ 10:00			DAFelli
ISO11-01-03-17-053	CGMN-IW-MRIW1	4f-0- 1410	002	10-2-14/08:25		†	
ISO11-01-03-17-054	CGMN-IW-MRIWI			10-2-14/08:25		1	
ISO11-01-03-17-055	CGMN-IW-MRIWI			10-1-14/09:30			
ISO11-01-03-17-056	CGMN-IW-MRIWI	the second s		10-1-14/09:30			
ISO11-01-03-17-057	CGMN-IW-MRIWI			10-1-14/ 09:15		Slight	hur fil
ISO11-01-03-17-058	CGMN-IW-MRIWI			10-1-14/09:15	{	Slight	ever 611 ever 611
ISO11-01-03-17-059	CGMN-IW-MRIW19			10-1-14/09:05	al and		\$ Y E * 07/1
ISO11-01-03-17-060	CGMN-IW-MRIW19			10-1-14/ 09:05	and a state of		
ISO11-01-03-17-061	CGMN-IW-MRIW19		1001	10-1-14/ 09:05		Shinh #	Quefil
ISO11-01-03-17-062	CGMN-IW-MRIWIS			10-2-14 / 08:05		- Ind PM	Quer fill
ISO11-01-03-17-063	CGMN-IW-MRIW19			L L	3		
ISO11-01-03-17-064	CGMN-IW-MRIW25			9-30-14/1045		Shaht	over fill
Sample Condition Upon Temperature:	Deg C [] F	Acceptable Received on	Ice 🗌 Oth		<u></u>	\sum	
	ave Cains 1	Alex (Collector's signature: 🦯	<u>u 1</u>	X	
Relinquished by:	Date	Time	Shipped Via	Received by:		Date	Time

		,					Page 4 of 5

3M ENVIRONMENTAL LABORATORY Chain-of-Custody

Shipping Address: 3M Environmental Laboratory 3M Center, Bldg 260-5N-17 St. Paul, MN 55144

Phone: (651) 733-9873 Alt. Phone: (651) 736-6559 Fax: (651) 733-4687

Project: ISO11-01-03-17 (cont.)

Requester: Kotsmith, James Ronald (MAPLEWO Department: 452090 Site Source: 01J9C020 Project Number: 0073138015 Date Created: 9/9/2014 Project Description: Mississippi River Surface and Pore Water Sampling -September 2014

Completion Date: Project Lead: Susan T. Wolf Phone Number: 651-733-9851 Email Address: stwolf@mmm.com

3M Sample Number	Sample Descripti	<u>on</u>		Date/Time Sampled	<u>Matrix</u>	Comment	
ISO11-01-03-17-065	CGMN-IW-MRIW2	5b-DB- 140	930	9-30-14/10:45	PW	5116177	OVER FILL
ISO11-01-03-17-066	CGMN-IW-MRIW2			9-30-14/10:10			
ISO11-01-03-17-067	CGMN-IW-MRIW2	5-DB- 1409	30	9-30-14/10:10			
ISO11-01-03-17-068	CGMN-IW-MRIW2	5d-0- 14101	01	10-1-14/08:10			
ISO11-01-03-17-069	CGMN-IW-MRIW2	ففر ويبين بالمرجع المستف تشعادات الاباد التناجي		10-1-14/ 08:10			
ISO11-01-03-17-070	CGMN-IW-MRIW2			10-1-14/08:25			
ISO11-01-03-17-071	CGMN-IW-MRIW25	f-DB- 14 101	DI	10-1-14/08:25		1	
ISO11-01-03-17-072	CGMN-IW-MRIW25			10-1-14/08:25			
ISO11-01-03-17-073	CGMN-SW-MRINOG			10-1-14/14:00	Ţ	(GMH-SiJ.)	MRIWOG -RADI - 1410
ISO11-01-03-17-074	CGMN-IW- MRINGO			10-1-14/14:00	W		100 W 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ISO11-01-03-17-075	CGMN-IW-TRIP-0-			9-29-14/08:00	1		
ISO11-01-03-17-076	CGMN-IW-TRIP-LS			9-29-14/08:00			
ISO11-01-03-17-077	CGMN-IW-TRIP-HS	- 140929		9-29-14/08:00	2		
Sample Condition Upon Temperature:	-	acceptable Received on I		items accounted for er:	.1		
Collected by (print):	Dave Carry /	Alexa W	1		2/1	+	
Relinguished by:	Dave Carry /	Time		Collector's signature:	<u>jiti</u> a		
Connquisited by.	Date	1 ime	Shipped Via	Received by:		Date	Time
	L	L					
						I	Page 5 of 5