HEALTH HAZARD SUMMARY OF
PERFLUOROOCTANE SULFONIC ACID, POTASSIUM SALT
AS REPRESENTED BY FC-95

Identity and Composition

Material Names	1-Octanesulfonic acid, heptadecafluoro-, potassium salt; FC-95 FLUORAD Brand Fluorochemical Surfactant; L-1159
Folder Numbers	12234, T-2014, T-3351, T-4979, T-5142, T-1117, T-1389, T-2306
CAS Number	2759-39-3
Formula	C₈F₁₇OSO₂⁻K⁺
Purity (of FC-95) [1]	82-86%
Impurities (in FC-95) [1]	Potassium perfluorohexane sulfonate [3871-99-6] 3-8%
	Potassium perfluorobutane sulfonate [29420-49-3] 3-7%
	Potassium perfluoropentane sulfonate [60270-55-5] 2-6%
	Potassium perfluorooctane sulfonate [3872-25-1] 1-3%

Exposure and Use

Primary Uses	Wetting and foaming agent [18]
Production Volume	No data found
Where made/used	Cottage Grove, Decatur
Workers Exposed	No data found
Air Monitoring Data	Long-term breathing zone samples of 2 Cottage Grove workers in 1993 showed FC-95 concentrations of 1.42 and 0.45 mg/m³, respectively. An area sample in the Cottage Grove mixing and milling area indicated a concentration of 0.04 mg/m³ [26].
Biol. Monitoring	Serum samples from 5 Decatur employees were found to contain perfluorohexane sulfonate (~ 0.57 ppm), perfluorooctane sulfonate (~ 5.35 ppm) and perfluorooctanoate (~1.79 ppm) [17].
Customer Exposure	No data found
Exposure Limits	0.1 mg/m³ (skin) 8-hr TWA [1]
Physicochemical Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical State</td>
<td>Free-flowing powder, light colored [1]</td>
</tr>
<tr>
<td>Particle Size</td>
<td>No data found</td>
</tr>
<tr>
<td>Melting Point</td>
<td>ca. 240°C [23]; decomposes at 390°C [18]</td>
</tr>
<tr>
<td>Boiling Point</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>ca. 0.6 [1]</td>
</tr>
<tr>
<td>Molecular Weight</td>
<td>538.1 (for the C₈ salt)</td>
</tr>
<tr>
<td>Vapor Pressure</td>
<td>No data found</td>
</tr>
<tr>
<td>Water Solubility</td>
<td>0.2 g/100 g [18]</td>
</tr>
<tr>
<td>Lipid Solubility</td>
<td>No data found</td>
</tr>
<tr>
<td>Other Solubility</td>
<td>< 0.1 g/100 g in 37% HCl, 40% HNO₃, 50%H₂SO₄ and 10% NaOH [18]</td>
</tr>
<tr>
<td>Octanol:Water</td>
<td>Partition Coefficient 10 [23]</td>
</tr>
<tr>
<td>Dissoc. Constant</td>
<td>pKₐ < 1 [24]</td>
</tr>
<tr>
<td>pH in water</td>
<td>7.0 - 8.0 (0.1% aq. soln.) [1]</td>
</tr>
<tr>
<td>Reactivity</td>
<td>No data found</td>
</tr>
<tr>
<td>Conversion Factor</td>
<td>Not determined</td>
</tr>
</tbody>
</table>

Toxicokinetics

Absorption: At least 95% of a single oral dose of [¹⁴C]FC-95 administered to male rats was absorbed within 24 h [15]. The radiochemical purity of the [¹⁴C]FC-95 used in this and the other radiolabel studies listed below was > 99% [19].

After a single, 24-hour occluded dermal exposure to FC-95 at a dose of 5000 mg/kg, total serum fluorine concentrations were 0.9 and 10.3 ppm, respectively, for female and male albino rabbits. Serum concentrations 28 days after dosing had risen to 128.0 and 130.2 ppm for females and males, respectively [5].

Distribution: Single i.v. doses (mean 4.2 mg/kg) of [¹⁴C]FC-95 in 0.9% NaCl were administered to male rats. At 89 days after dosing, mean tissue [¹⁴C] concentrations (expressed as µg FC-95 equivalents/g tissue) were: liver, 20.56; plasma, 2.21; kidney, 1.09; lung, 1.06; spleen, 0.51; bone marrow, 0.46; RBC, 0.45; adrenals, 0.41; testes, 0.36; skin, 0.35; muscle, 0.29; subcutaneous fat, 0.20; eye, 0.16; abdominal fat, < 0.08; and brain, < 0.05 [7].
Liver, plasma and RBC 14C levels were markedly reduced in male rats administered cholestyramine (~ 2.7 g/kg/d) in their diet following single i.v. doses of $[^{14}$C]FC-95 [8].

Metabolism: Preliminary data from analysis of urine, feces and tissues of rats as well as the inherent stability of perfluorinated anions suggest that FC-95 is not metabolized [24].

Excretion: Single i.v. doses (mean 4.2 mg/kg) of $[^{14}$C]FC-95 in 0.9% NaCl were administered to male rats. By 89 days after dosing, 30.2% of the administered 14C had been excreted in the urine and 12.6% had been excreted in the feces [7]. Fecal and total excretion of 14C were markedly increased in male rats administered cholestyramine (~ 2.7 g/kg/d) in their diet following single i.v. doses of $[^{14}$C]FC-95. The results suggest that there was significant enterohepatic circulation of FC-95 [8, 24].

Biological Half-life: The plasma elimination half-life of 14C following single oral administration of $[^{14}$C]FC-95 (mean dose 4.2 mg/kg) to male rats was 7.5 days [15].

Acute Toxicity

Oral: LD50, rat: 1.25 - 2.5 g/kg (aqueous suspension of FC-95, T-1389) [3].
LD50, rat: 251 mg/kg (20:80 acetone:corn oil suspension of FC-95, Lot 640). Clinical signs included diarrhea, hypoactivity, decreased limb tone, ataxia, corneal opacity, high carriage, ptosis, piloerection, prostration and tremors [4].

Single 250 mg/kg doses of an aqueous suspension of FC-95 (Lot 640) were administered by oral gavage to 6 male and 6 female rats. Two animals of each sex were sacrificed and necropsied at 4, 24 and 48 hours after dosing. Blood, urine, feces, liver, kidney, brain and bone marrow samples were collected and returned to the sponsor for analysis. No deaths or gross lesions were observed [16]. (The samples were reportedly sent to Jon Belisle but results of the sample analyses were not found.)

Dermal: LD50, rabbit > 5000 mg/kg (aqueous suspension of FC-95, Lot 646). No deaths occurred during the 28-day observation period. Hyperactivity in 5/10 males was observed on day 6. Body weights were lower at 7 days but increased thereafter. No visible lesions were noted on necropsy. Total serum fluorine concentrations were 0.9 and 10.3 ppm, respectively, for females and males 1 day after dosing and 128.0 and 130.2 ppm, respectively, 28 days after dosing [5].

Inhalation: 1-Hour LC50, rats: 5.2 mg/L (FC-95, T-2305CoC). Clinical signs included red nasal discharge, dry rales, breathing difficulty, hypoactivity, lacrimation, salivation, hair loss, loss of righting reflex, sensitivity to touch, cold extremities, ——

1418.0003

3MA10064689
ties, ataxia, convulsions, tremors and seizures. Weight losses occurred prior to
death and weight loss or reduced weight gain occurred in all surviving animals.
Lung and liver discoloration were the most frequent necropsy findings. The
respirable fraction or size distribution of the sample was not reported [6].

Other: No data found

Primary Irritation

Ocular: FC-95 (T-111-7) was minimally irritating to the eyes in a standard Draize
test in rabbits. The maximum primary eye irritation score was 9.3 out of a possible
110.0. Effects were limited to the conjunctivae [2].

Dermal: FC-95 (T-1117) was non-irritating to intact or abraded skin sites in a
standard Draize test in rabbits. The primary skin irritation score 0.0 out of a
possible 8.0 at each observation time [2].

Respiratory: No data found

Sensitization

Dermal: No data found

Respiratory: No data found

Genotoxicity

Gene Mutation: FC-95 (T-2014CoC) was not mutagenic in *Salmonella typhi-
murium* strains TA-1535, TA-1537, TA-1538, TA-98, TA-100 or in *Saccharomyces
cerevisiae* strain D4 in a standard plate incorporation assay with or without
metabolic activation [9].

Chromosomal Effects: No data found

Other: No data found

Subchronic Toxicity

90-Day Oral Toxicity in Rats
FC-95 was administered in the diet for 90 days to groups consisting of 5 male and
5 female Sprague Dawley rats. Doses were 0 (control), 30, 100, 300, 1000 and
3000 ppm. All animals in the 300, 1000 and 3000 ppm dose groups and 3 animals
in the 100 ppm dose group died during the study. Significant treatment-related effects (and LOELs) included: weight loss, elevated plasma glutamate-pyruvate transaminase, elevated plasma glutamate-oxalacetate transaminase and liver discoloration (30 ppm); increased sensitivity to external stimuli, red material around the eyes or mouth, decreased food consumption, elevated plasma creatinine phosphokinase, alkaline phosphatase, blood glucose and blood urea nitrogen, decreased hemoglobin, hematocrit, erythrocyte count, reticulocyte count (in females) and leucocyte count, liver enlargement, necrosis and hepatocellular hypertrophy and stomach discoloration and hemorrhage (100 ppm); emaciation, convulsions, stomach mucosal hyperkeratosis, bone marrow hypocellularity, thymic follicular atrophy, splenic lymphoid follicular atrophy, atrophy of mesenteric lymph nodes, atrophy of villi in small intestines, skeletal muscle atrophy and dermal acanthosis and hyperkeratosis (300 ppm); hunched posture (1000) and hypoactivity (3000). Liver effects were more prevalent in males. A NOAEL was not identified in this study [13].

Repeated Dose Oral Toxicity in Monkeys
FC-95 was administered daily by oral gavage to groups consisting of 2 male and 2 female rhesus monkeys. Doses were 0 (control), 10, 30, 100 and 300 mg/kg/day. All animals receiving FC-95 died by day 20. Clinical signs included anorexia, hypoactivity, emesis and occasional diarrhea. Just prior to death the animals exhibited general body trembling, twitching, convulsions and prostration [20].

90-Day Oral Toxicity in Monkeys
FC-95 suspended in water was administered daily for 90 days by oral gavage to groups consisting of 2 male and 2 female rhesus monkeys. Doses were 0 (control), 0.5, 1.5 and 4.5 mg/kg/day. All animals in the highest dose group died or were sacrificed in extremis by week 7. Significant treatment-related effects (and LOELs) included: anorexia, emesis, diarrhea and decreased serum alkaline phosphatase (0.5 mg/kg/day); hypoactivity, trembling and weight loss (1.5 mg/kg/day); black or bloody stool, dehydration, rigidity, convulsions, prostration, decreased serum cholesterol, diffuse lipid depletion of adrenals, atrophy of pancreatic exocrine cells and atrophy of submandibular salivary gland serous alveolar cells (4.5 mg/kg/day). No gross lesions were noted at necropsy and there were no significant organ weight variations from controls. A NOAEL was not identified in this study [14].

Chronic Toxicity and Carcinogenicity
No data found

Reproductive and Developmental Toxicity

Oral Developmental Toxicity in Rats (Pilot Study)
FC-95 (T-3551) in corn oil was administered by oral gavage to groups of 6-7 pregnant rats on days 6-15 of gestation. Doses were 0 (control), 1.5, 10 and 20
mg/kg/day. Maternal body weights and food consumption in the two highest dose groups were significantly reduced compared to controls. All dams in the high dose group died before day 20. Clinical signs in surviving dams included hunching, rough haircoat, tremors, convulsions, prostration and anorexia. No consistent treatment-related teratogenic or embryotoxic effects were observed [11].

Oral Developmental Toxicity in Rats
FC-95 (T-3351) in corn oil was administered by oral gavage to groups of 25 pregnant rats on days 6-15 of gestation. Doses were 0 (control), 1, 5, and 10 mg/kg/day. Maternal body weights and food consumption in the two highest dose groups were significantly reduced compared to controls. Two dams in the high dose group died before day 20. Clinical signs in surviving dams included hunching, thinness, alopecia, rough haircoat, anorexia. Gastrointestinal lesions were noted in the high-dose dams. Treatment-related fetal effects included: increased resorptions and fetal death, decreased fetal body weight, delayed skeletal ossification, cleft palate, subcutaneous edema and cryptorchism (undescended testicles). These effects occurred primarily in the high-dose group. The maternal and fetal NOAELs for this study were both 1 mg/kg/day [12].

Oral Developmental Toxicity in Rats
FC-95 in corn oil was administered by oral gavage to groups of pregnant rats on days 6-15 of gestation. Doses were 0 (control), 1, 5 and 10 mg/kg/day. Animals were sacrificed on day 20. Maternal body weights in the high dose group were significantly reduced compared to controls. No significant treatment-related teratogenic or embryotoxic effects were observed. Observed fetal lens abnormalities were subsequently interpreted to be artifacts of the tissue sectioning procedure [10].

Mechanistic Studies
Perfluorooctane sulfonic acid has been demonstrated to cause hepatic peroxisome proliferation in the rat [22].

Male mice administered perfluorooctane sulfonic acid at a concentration of 0.05% w/w in their diet for 5 days exhibited weight loss and increases in each of the following hepatic parameters: relative liver weight (slight), mitochondrial and microsomal protein, palmitoyl-CoA oxidation, catalase in mitochondrial and cytosolic fractions, glutathione transferase, epoxide hydrolase, DT-diaphorase, Ω- and Ω-1-hydroxylation [21].

Treatment of male rats with perfluorooctanesulfonic acid (0.02% in the diet for 7-14 days) caused decreased body weight, increased liver weight, increased liver triacylglycerol, increased liver free cholesterol, decreased liver cholesterol ester, decreased serum cholesterol and triacylglycerols. Hepatocytes isolated from treated rats showed reduced synthesis of cholesterol from acetate, pyruvate and hydroxymethylglutarate but not from mevalonate, increased oxidation of palmitate and reduced fatty acid synthesis. Activities of liver hydroxymethyl glutaric acid-
CoA reductase and acyl-CoA:cholesterol acyltransferase were reduced. These results suggest that the hypolipemic effect of perfluorooctanesulfonic acid may be due to impaired production of lipoprotein particles due to reduced synthesis and esterification of cholesterol together with enhanced oxidation of fatty acids in the liver [25].

Human Health Effects

No data found

References

18. 3M Commercial Chemicals Division. 19xx. Fluorad® Brand Fluorochemical Surfactants FC-95 and FC-98. Technical Information, 3M Company, St. Paul, MN.

26. Industrial Hygiene Information System. 1994. 3M Industrial Hygiene Services, St. Paul, MN.