

FINAL REPORT

STUDY TITLE

A DEVELOPMENTAL TOXICITY STUDY OF 313401 IN RATS

EPA GUIDELINE NUMBER

40 CFR 798.4900

STUDY DIRECTOR

Donald G. Stump, Ph.D.

STUDY INITIATED ON

October 10, 1996

STUDY COMPLETED ON

May 30, 1997

PERFORMING LABORATORY

WIL Research Laboratories, Inc. 1407 George Road Ashland, OH 44805-9281

LABORATORY STUDY NUMBER

WIL-157016

SPONSOR PROJECT NUMBER

GP96-032

SPONSOR

Page 1 of 58 521

WIL RESEARCH LABORATORIES, INC. A Subsidiary of Great Lakes Chemical Corporation, Ashland, OH 44805-9281 (419) 289-8700

Exhibit 2792 State of Minnesota v. 3M Co., Court File No. 27-CV-10-28862

3M MN01062651

A Developmental Toxicity Study of 313401 in Rats

STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS

No claim of confidentiality is made for any information contained in this study on the basis of its falling within the scope of FIFRA 10(d)(1)(A), (B) or (C).

Director of Regulatory Affairs (title)

-2-522

A Developmental Toxicity Study of 313401 in Rats

COMPLIANCE STATEMENT

This study, designated WIL-157016, was conducted in compliance with the United States Environmental Protection Agency (EPA) Good Laboratory Practice Standards (40 CFR Part 160), October 16, 1989; the Japanese Ministry of Agriculture, Forestry and Fisheries (MAFF) Good Laboratory Practice Standards (59 NohSan No. 3850), August 10, 1984; the Organization for Economic Cooperation and Development (OECD) Principles of Good Laboratory Practice [C(80) 30 (Final) Annex 2], 1981; the Standard Operating Procedures of WIL Research Laboratories, Inc.; and the protocol as approved by the sponsor. The protocol for this study was designed to be in accordance with the United States Environmental Protection Agency (EPA) Federal Insecticide, Fungicide and Rodenticide Act (FIFRA) Pesticide Assessment Guidelines (Subdivision F, series 83-3), 40 CFR 798.4900; the OECD Guidelines for Testing of Chemicals, Health Effects Test Guidelines, Section 414, May 12, 1981; and the Japanese MAFF Agricultural Chemical Laws and Regulations Testing Guidelines for Toxicology Studies (59 NohSan No. 4200), January 28, 1985.

Donald G. Stump, Ph.D. Study Director

5/30/97

Applicant/Submitter

Date

-3- 523

A Developmental Toxicity Study of 313401 in Rats

FLAGGING STATEMENT

(This page was intentionally left blank; client will insert appropriate statement.)

,

.....

A Developmental Toxicity Study of 313401 in Rats

TABLE OF CONTENTS

			Page
I.	Sur	mmary	8
п.	Ob	jective	10
Ш.	Stu	idy Design	11
IV.	Exj	perimental Procedures	12
	Α.	Introduction	12
	B.	Test and Control Articles	12
		1. Test Article Identification	12
		2. Vehicle Control Article Identification	12
		3. Preparation	13
		4. Administration	13
		5. Sampling and Analyses	14
	C.	Animal Receipt and Acclimation	14
	D.	Animal Housing	15
	E.	Diet, Drinking Water and Maintenance	15
	F.	Environmental Conditions	15
	G.	Assignment of Animals to Treatment Groups and Breeding Procedures	16
	H.	Maternal Observations During Gestation	16
		1. Clinical Observations and Survival	16
		2. Body Weights and Gravid Uterine Weights	17
		3. Food Consumption	17
	I.	Gestation Day 20 Laparohysterectomy	17
	J.	Fetal Morphological Examination	18
	K.	Statistical Analyses	19
	L.	Data Retention	20

.....

		<u>Page</u>
V.	Results	21
	A. Clinical Observations and Survival	21
	B. Body Weights and Gravid Uterine Weights	21
	C. Food Consumption	22
	D. Necropsy Data	23
	E. Gestation Day 20 Laparohysterectomy Data	23
	F. Fetal Morphological Data	23
	1. External Malformations and Variations	24
	2. Visceral Malformations and Variations	24
	3. Skeletal Malformations and Variations	24
	4. Summary of External, Visceral and Skeletal Examinations	25
VI.	Discussion and Conclusions	26
VII.	Key Study Personnel and Report Submission	28
VIII.	Quality Assurance Unit Statement	30
IX.	References	31

526

.

.

A Developmental Toxicity Study of 313401 in Rats

INDEX OF TABLES

Page 1

1.	Summary of Maternal Survival and Pregnancy Status	33
2.	Summary of Clinical Findings: Total Occurrence/No. of Animals (Daily Examinations)	34
3.	Mean Body Weights (Grams) During Gestation	35
4.	Mean Body Weight Changes (Grams) During Gestation	37
5.	Mean Gravid Uterine Weights and Net Body Weight Changes (Grams)	39
6.	Mean Food Consumption During Gestation (Grams/Animal/Day)	40
7.	Mean Food Consumption During Gestation (Grams/Kg/Day)	42
8.	Summary of Mean Fetal Data at the Scheduled Necropsy	44
9.	Summary of Mean Fetal Data at the Scheduled Necropsy (% Per Litter)	45
10.	Number of Fetuses and Litters with Malformations - Summary	48
11.	Mean Litter Proportions of Malformations - Summary (% Per Litter)	49
12.	Number of Fetuses and Litters with Variations - Summary	53
13.	Mean Litter Proportions of Variations - Summary (% Per Litter)	54

-7-

521

A Developmental Toxicity Study of 313401 in Rats

I. <u>SUMMARY</u>

The potential maternal toxicity and developmental toxicity of 313401 were evaluated. The test article, 313401, in the vehicle, 1% carboxymethylcellulose (CMC)/0.1% polysorbate 80, was administered to three groups of 25 bred Crl:CD[®](SD)BR rats once daily from gestation days 6 through 15. Dosage levels were 4, 16 and 32 mg/kg/day administered at a dose volume of 5 ml/kg. A concurrent control group composed of 25 bred females received the vehicle, 1% CMC/0.1% polysorbate 80, on a comparable regimen at 5 ml/kg. The route of administration was oral by gastric intubation. Clinical observations, body weights and food consumption were recorded. On gestation day 20, a laparohysterectomy was performed on all animals. The uteri and ovaries were examined and the numbers of fetuses, early and late resorptions, total implantations and corpora lutea were recorded. Mean gravid uterine weights and net body weight changes were calculated for each group. The fetuses were weighed, sexed and examined for external, soft tissue and skeletal malformations and variations.

All maternal animals survived to the scheduled necropsy on gestation day 20; no test article-related internal findings were observed. Clinical observations related to test article administration were not apparent at any dose level. A reduced mean body weight gain occurred in the 32 mg/kg/day group during gestation days 9-12 and 6-16. During the entire treatment period (gestation days 6-16), body weight gain in the 32 mg/kg/day group was 72% of the control group gain. Food consumption was inhibited in the 32 mg/kg/day for the entire treatment period (gestation days 6-16). Food consumption (g/animal/day) for the entire treatment period (gestation days 6-16) was reduced by 9% in the 32 mg/kg/day group when compared to the control group value.

Fetal toxicity occurred in conjunction with the moderate maternal toxicity noted at a dose level of 32 mg/kg/day. A reduced mean fetal body weight was observed in the 32 mg/kg/day group. Intrauterine growth and survival were unaffected by test article administration at dose levels of 4 and 16 mg/kg/day. The malformations observed in the treated groups were considered to be spontaneous in origin. An increased incidence of one developmental variation, bent ribs, was observed in the 32 mg/kg/day group and was attributed to the test article.

-8-

In conclusion, no maternal toxicity or developmental toxicity was noted at dose levels of 4 and 16 mg/kg/day. Maternal toxicity was expressed at a dose level of 32 mg/kg/day by a reduced mean body weight gain during gestation days 9-12 and reduced food consumption during gestation days 9-12 and 12-16. Developmental toxicity was exhibited by a reduced mean fetal body weight in the 32 mg/kg/day group and by an increased incidence of one skeletal variant (bent ribs) in the 32 mg/kg/day group. Fetal toxicity occurred in conjunction with the moderate maternal toxicity previously noted at this dose level. Based on the results of this study, a dose level of 16 mg/kg/day was considered to be the NOAEL (no observable adverse effect level) for maternal toxicity and developmental toxicity.

529

II. <u>OBJECTIVE</u>

The objective of the study was to determine the potential maternal toxicity and developmental toxicity of 313401 in the Crl:CD[®](SD)BR rat. The selected route of administration was oral since this is the intended route of clinical administration for the human. The animal model was selected on the basis of availability of historical control data and susceptibility of the species to known developmental toxicants.

-10-

530

3M_MN01062660

III. STUDY DESIGN

-11-

3M_MN01062661

IV. EXPERIMENTAL PROCEDURES

A. INTRODUCTION

The experimental phase of the study was initiated with the assignment of mated rats to treatment groups on December 17, 1996, and concluded with the last laparohysterectomy on January 10, 1997; the dosing period was from December 23, 1996, to January 5, 1997. Dose levels were selected based on the results of a preliminary range-finding study with 313401 (WIL-157015¹).

B. TEST AND CONTROL ARTICLES

1. TEST ARTICLE IDENTIFICATION

The test article, 313401, was received from Griffin Corporation, Valdosta, Georgia, on October 3, 1996, as follows:

Identification	No. of Containers <u>Received</u>	Description
Sample: 313401 Expiration Date: 6/28/97 Lot No.: 22L-2 AN#: 9601474 [WIL Log No. 3170A]	1 Bottle Gross weight: 138.5 g	Light yellow powder

Stability and purity data for the test article were the responsibility of the sponsor. The test article was 93.297% pure. For the purposes of dose calculations, the test article was considered to be 100% 313401. The test article was stored at room temperature and was considered stable under these conditions. A Certificate of Analysis for the test article is presented in Appendix A. A one-gram reserve sample of the test article was taken on October 24, 1996, and stored in the Archives at WIL Research Laboratories, Inc.

2. VEHICLE CONTROL ARTICLE IDENTIFICATION

The vehicle control article utilized in preparation of the test mixtures was prepared using carboxymethylcellulose and polysorbate 80 received from Sigma Chemical Co., St. Louis, Missouri.

-12-

3. PREPARATION

The vehicle control article formulations were prepared as follows. A sufficient amount of 1% aqueous carboxymethylcellulose (1% CMC) was prepared by heating deionized water to approximately 70°C and adding an appropriate amount of carboxymethylcellulose powder. The mixture was then stirred until clear. The appropriate amount of polysorbate 80 was calculated to achieve a 0.1% solution and added to the 1% carboxymethylcellulose solution after removal of an identical amount of 1% CMC.

The appropriate amount of the test article, 313401, was weighed for each group into a tared, precalibrated, properly-labeled storage container. A sufficient amount of the vehicle was added to bring the volume in the container to the calibration mark. Each preparation was homogenized on a Polytron[®] PT 6000 for approximately 2-5 minutes. Formulations were placed on the Caframo[™] overhead stirrers and the preparations were stirred continuously throughout the sampling and dispensing procedures. The formulations were divided into aliquots for daily dose administration. Daily aliquots were homogenized as needed.

Preparations for all dose groups were prepared weekly (December 23 and 30, 1996). The test article formulations were stored at room temperature. The dosing preparations were visually inspected for homogeneity by the study director on December 23, 1996, and were found to be acceptable for use.

4. ADMINISTRATION

The test mixtures were administered orally by gavage, via a 16-gauge stainless steel gavage cannula (Popper and Sons, Inc., New Hyde Park, New York 11040), as a single daily dose from gestation days 6 through 15. A dosage volume of 5 ml/kg was used for all dosage levels. The control animals received the vehicle, 1% CMC/0.1% polysorbate 80, on a comparable regimen at 5 ml/kg. Individual dosages were based on the most recently recorded body weights to provide the correct mg/kg dose. The following diagram presents the study group assignment:

-13-

533

Group <u>Number</u>	Test <u>Article</u>	Dosage Level (mg/kg/day)	Dosage Concentration <u>(mg/ml)</u>	Dosage Volume <u>(ml/kg)</u>	Number of <u>Females</u>
1	Vehicle	0	0	5	25
2	313401	4	0.8	5	25
3	313401	16	3.2	5	25
4	313401	32	6.4	5	25

5. SAMPLING AND ANALYSES

Prior to the initiation of dosing on December 10, 1996, duplicate 1-ml aliquots were collected from the middle stratum of the control group formulation and from the top, middle (four aliquots) and bottom strata of each treated group formulation. One set of these samples was analyzed for homogeneity. The second set of samples was combined and stored for 8-day stability verification. The results of homogeneity analysis for Groups 3 and 4 performed on December 10, 1996, were acceptable for use according to WIL Standard Operating Procedures. The homogeneity analysis of the Group 2 preparation on this date did not produce any usable data. The cause was determined to be related to the amount of acetonitrile in the secondary dilution. The Group 2 formulation was remade on December 11, 1996, and analyzed for homogeneity and 8-day stability on December 19, 1996. On December 18, 1996, an 8-day stability analysis was performed on the Group 3 and 4 formulations (prepared on December 10, 1996). On the days the dosing formulations were prepared (December 23 and 30, 1996), duplicate 1-ml aliquots were collected from the middle stratum of each dosing formulation, including the control, and analyzed for concentration. The methodology and results of these analyses are presented in Appendix B. The dosing formulations were homogeneous, stable for 8 days and contained the amounts of test article specified in the protocol.

C. ANIMAL RECEIPT AND ACCLIMATION

One hundred twenty-five sexually mature, virgin female rats, Crl:CD[®](SD)BR, were received in good health from Charles River Laboratories, Inc., Portage, Michigan, on December 5, 1996. The animals were approximately 70 days old. Upon receipt, each female was observed by a qualified technician. The animals were

-14-

initially weighed on December 6, 1996. All animals were uniquely identified by a Monel metal eartag displaying the animal number and housed for 12 days for acclimation purposes. During the acclimation period, the animals were observed twice daily for mortality and moribundity.

D. ANIMAL HOUSING

Upon arrival and until pairing, all animals were individually housed in clean, wire-mesh cages suspended above cage-board. The animals were paired for mating in the home cage of the male. Following positive identification of mating, the females were returned to an individual suspended wire mesh cage; nesting material was not required as the females were euthanized prior to the date of expected parturition. Animals were maintained in accordance with the "Guide for the Care and Use of Laboratory Animals²." The animal facilities at WIL Research Laboratories, Inc., are accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC International).

E. DIET, DRINKING WATER AND MAINTENANCE

The basal diet used in this study was PMI Feeds, Inc.[©] Certified Rodent LabDiet[©] 5002. This diet is a certified feed with appropriate analyses performed by the manufacturer and provided to WIL Research Laboratories, Inc. Municipal water supplying the facility is sampled for contaminants according to Standard Operating Procedures. The results of these analyses are maintained at WIL Research Laboratories, Inc. Contaminants were not present in animal feed or water at concentrations expected to interfere with the objectives of this study. Drinking water delivered by an automatic watering system and the basal diet were provided *ad libitum* throughout the acclimation period and during the study.

F. ENVIRONMENTAL CONDITIONS

All animals were housed throughout the acclimation period and during the study in an environmentally-controlled room. Controls were set to maintain a temperature of $72^{\circ} \pm 4^{\circ}F$ and a relative humidity between 30% and 70%. Room temperature and relative humidity were recorded daily. Temperatures ranged from 71.1°F to 72.6°F and relative humidity ranged from 31.8% to 47.1% during the study period.

-15-

Light timers were calibrated to provide a 12-hour light/12-hour dark photoperiod. Air handling units were set to provide approximately 10 fresh air changes per hour.

G. ASSIGNMENT OF ANIMALS TO TREATMENT GROUPS AND BREEDING PROCEDURES

At the conclusion of the acclimation period, all available females were weighed and examined in detail for physical abnormalities. At the discretion of the study director, animals judged to be in good health and meeting acceptable body weight requirements (a minimum of 220 g) were placed in a suspended wire-mesh cage with a resident male from the same strain and source for breeding. Resident males were untreated, sexually mature rats utilized exclusively for breeding. These rats were maintained under similar laboratory conditions as the females. A breeding record containing the male and female identification numbers and the dates of cohabitation was prepared. The selected females were approximately 12 weeks old when paired for breeding.

Positive evidence of mating was confirmed by the presence of a copulatory plug or the presence of sperm in a vaginal smear. Each mating pair was examined daily. The day on which evidence of mating was identified was termed day 0 of gestation and the animals were separated.

The experimental design for WIL-157016 consisted of three 313401 treated groups and one control group. The bred females were consecutively assigned in a block design to groups containing 25 rats each by the following randomization procedure. The first mated female and the appropriate gestation day 0 designation were recorded and the female was assigned to group 1, the second mated female was assigned to group 2, and the third to group 3, etc. This process was continued daily until 25 females were placed into each group. Body weight values ranged from 223 g to 269 g on day 0 of gestation.

H. MATERNAL OBSERVATIONS DURING GESTATION

1. CLINICAL OBSERVATIONS AND SURVIVAL

All rats were observed twice daily for moribundity and mortality. Individual detailed clinical observations were recorded from day 0 through 20 of gestation (prior to test article administration during the dosing period). Animals were

-16-

observed for signs of toxicity approximately one hour following dosing. No significant findings were recorded at these observation periods, therefore, a table summarizing these data was not included in the report.

2. BODY WEIGHTS AND GRAVID UTERINE WEIGHTS

Individual maternal body weights were recorded on gestation days 0, 6-16 (daily) and 20. A group mean body weight was calculated for each of these days. Mean body weight changes were calculated for each corresponding interval and also for intervals 6-9, 9-12, 12-16, 6-16 and 0-20.

Gravid uterine weight was collected and net body weight (the day 20 body weight minus the weight of the uterus and contents) and net body weight change (the day 0-20 body weight change minus the weight of the uterus and contents) were calculated and presented for each gravid female at the scheduled laparohysterectomy.

3. FOOD CONSUMPTION

Individual food consumption was recorded on gestation days 0, 6-16 (daily) and 20. Food intake was reported as g/animal/day and g/kg/day for the corresponding body weight change intervals.

I. GESTATION DAY 20 LAPAROHYSTERECTOMY

All maternal animals were euthanized by carbon dioxide inhalation on gestation day 20. The thoracic, abdominal and pelvic cavities were opened by a ventral midline incision and the contents examined. In all instances, the *post mortem* findings were correlated with the *ante mortem* comments and any abnormalities were recorded. The uterus and ovaries were excised. The number of corpora lutea on each ovary was recorded. The trimmed uterus was weighed, opened and the number and location of all fetuses, early and late resorptions and the total number of implantation sites were recorded. The individual uterine distribution of implantation sites was documented using the following procedure. All implantation sites, including resorptions, were numbered in consecutive order beginning with the left distal to the left proximal uterine horn, noting the position of the cervix, and continuing from the right proximal to the right distal uterine horn.

-17-

Maternal tissues were preserved in 10% neutral buffered formalin for possible future histopathological examination only as indicated by the gross findings.

Uteri with no macroscopic evidence of nidation were opened and subsequently placed in 10% ammonium sulfide solution for detection of early implantation loss as described by Salewski³.

Intrauterine data were summarized using two methods of calculation. An example of each method of calculation follows:

1. Group Mean Litter Basis:

Postimplantation Loss/Litter =

 No. Dead Fetuses,
 <u>Resorptions (Early/Late)/Group</u> No. Gravid Females/Group

2. <u>Proportional Litter Basis</u>:

Summation per Group (%) = <u>Postimplantation Loss/Litter (%)</u>^a No. of Litters/Group

> a = <u>Resorptions (Early/Late)/Litter</u> x 100 No. Implantation Sites/Litter

J. FETAL MORPHOLOGICAL EXAMINATION

Each fetus was sexed, weighed and tagged for identification. Fetal tags contained the WIL study number, the female number and the fetus number. A detailed external examination of each fetus was conducted to include, but was not limited to, an examination of the eyes, palate and external orifices, and each finding was recorded. Crown-rump measurements were recorded for late resorptions, if present, and the tissues were discarded. Each fetus was examined viscerally by a modification of the Stuckhardt and Poppe⁴ fresh dissection technique to include the heart and major blood vessels. The sex of each fetus was confirmed by internal examination. Fetal kidneys were examined and graded for renal papillae development by a method described in Woo and Hoar⁵.

Heads from approximately one-half of the fetuses in each litter were placed in Bouin's fixative for subsequent soft-tissue examination by the Wilson⁶ sectioning technique. The heads from the remaining one-half of the fetuses were examined by

-18-

a mid-coronal slice. All carcasses were eviscerated and fixed in 100% ethyl alcohol. Following fixation in alcohol, each fetus was macerated in potassium hydroxide and stained with Alizarin Red S by a method similar to that described by Dawson⁷. External, visceral and skeletal findings were recorded as developmental variations (alterations in anatomic structure that are considered to have no significant biological effects on animal health or conformity, representing slight deviations from normal) or malformations (those structural anomalies that alter general body conformity, disrupt or interfere with body function, or may be incompatible with life).

The fetal developmental findings were summarized by: 1) presenting the incidence of a given finding both as a percentage of the number of fetuses and the number of litters available for examination in the group; and 2) considering the litter as the basic unit for comparison and calculating the number of affected fetuses in a litter on a proportional basis as follows:

Summation per Group $(\%) =$	Viable Fetuses Affected/Litter(%) ^a
_	No. of Litters/Group
	No. Viable Fetuses
a =	Affected/Litter x 100
	No. Viable Fetuses/Litter

K. STATISTICAL ANALYSES

All analyses were conducted using two-tailed tests for a minimum significance level of 5%, comparing each treated group to the vehicle control group. Means were presented with the standard deviation (S.D.) and the number of animals (N) used to calculate the mean. The following statistical tests were performed by a Digital[®] MicroVAX[®] 3400 computer (with appropriate programming) in this laboratory and are referenced on the report tables:

-19-

STATISTICAL TEST

- One-way ANOVA with Dunnett's test⁸

- Kruskal-Wallis test with

Mann-Whitney U test⁸

PARAMETER

Corpora Lutea, Total Implantations, Fetal Body Weights, Maternal Body Weights and Weight Changes, Maternal Net Body Weight Changes and Gravid Uterine Weights, Maternal Food Consumption

Litter Proportions of Intrauterine Data (Considering the Litter, Rather than the Fetus, as the Experimental Unit)

L. DATA RETENTION

The sponsor will have title to all documentation records, raw data, specimens or other work product generated during the performance of the study. All work product including raw paper data and specimens will be retained in the Archives at WIL Research Laboratories, Inc., as specified in the protocol.

Raw data in magnetic form, a retention sample of the test article and the original final report will be retained in the Archives at WIL Research Laboratories, Inc., in compliance with regulatory requirements.

-20-

540

V. RESULTS

A. CLINICAL OBSERVATIONS AND SURVIVAL

Summary Data: Tables 1, 2

All animals survived to the scheduled necropsy on gestation day 20. No test article-related clinical findings were observed in the treated groups. Clinical signs in the treated groups, such as hair loss, scabbing and red material around the nose, occurred similarly in the control group, in single animals or in a manner that was not suggestive of a relationship to treatment.

B. BODY WEIGHTS AND GRAVID UTERINE WEIGHTS

Summary Data: Tables 3, 4, 5

Mean body weight gain in the 32 mg/kg/day group was similar to the control group value during the first three days of dosing (gestation days 6-9). The mean body weight gain for this group was reduced during gestation days 9-12. The difference from the control group value was statistically significant (p < 0.01). During the remainder of the treatment period (gestation days 12-16), mean body weight gain in the 32 mg/kg/day group was similar to the control group value. Overall mean body weight gain during the entire treatment period (gestation days 6-16) in this group was statistically significantly (p < 0.01) lower (72% of control) than the control group value. During the post-treatment period (gestation days 16-20), mean body weight gain in the 32 mg/kg/day group was slightly increased; the difference from the control group was statistically significant (p < 0.01). Mean body weights in the 32 mg/kg/day group were generally comparable to the control group values throughout gestation; the only exceptions were significantly (p < 0.05) reduced values on gestation days 14 and 15. A statistically significant (p < 0.01) decrease in net body weight gain was noted for animals in the 32 mg/kg/day group. Mean gravid uterine weight and net body weight in this group were similar to the control group values.

The statistically significant effects on body weight data in the 32 mg/kg/day group when compared to the control group values are presented in the following table:

-21-

541

Body Weight Measurement	Gestation <u>Days</u>	Difference from <u>Control</u>	<u>P Value</u>
Body weight gain	9-12	lower	p<0.01
Body weight gain	6-16	lower	p<0.01
Body weight gain	16-20	higher	p<0.01
Body weight	14, 15	lower	p<0.05
Net body weight gain	20	lower	p<0.01

Mean body weights, body weight gains, net body weights, net body weight gains and gravid uterine weights in the 4 and 16 mg/kg/day groups were unaffected by test article administration. Sporadic statistically significant (p < 0.05 or p < 0.01) differences from the control group were noted and included lower mean body weight gain in the 16 mg/kg/day group during gestation days 9-12 and a lower mean body weight in this group on gestation day 14. However, a corresponding decrease in food consumption was not observed during gestation days 9-12, and the reduced body weight was attributed to the 5 g decrease in body weight relative to the control group on gestation day 6 (prior to the start of dosing). Therefore, no relationship to treatment was evident. All other values were similar to the control group values; none of the differences were statistically significant.

C. FOOD CONSUMPTION

Summary Data: Tables 6, 7

Food consumption in the 32 mg/kg/day group was comparable to that in the control group during the first three days of dosing (gestation days 6-9). Food consumption, evaluated as g/animal/day and g/kg/day, was slightly reduced in the 32 mg/kg/day group during the remainder of the treatment period (gestation days 9-12 and 12-16). The differences from the control group were generally statistically significant (p < 0.01 or p < 0.05). When the entire treatment period (gestation days 6-16) was evaluated, food consumption was slightly reduced in the 32 mg/kg/day group; the differences from the control group were statistically significant (p < 0.05). During the post-treatment period (gestation days 16-20), food consumption in the 32 mg/kg/day group was slightly increased relative to the control group. The difference in g/kg/day values was statistically significant (p < 0.05).

-22-

542

3M_MN01062672

Food consumption was unaffected by test article administration at dose levels of 4 and 16 mg/kg/day. The only statistically significant (p < 0.01) difference from the control group was an increase in food consumption (g/kg/day) in the 16 mg/kg/day group during the post-treatment period (gestation days 16-20). All other values (g/animal/day and g/kg/day) in these groups were similar to the control group values.

D. <u>NECROPSY DATA</u>

At the scheduled necropsy on gestation day 20, no test article-related internal findings were observed at any dose level. One female (no. 59531) in the 4 mg/kg/day group had clear fluid contents in both uterine horns and was nongravid. Another female (no. 59587) in this group had dilated renal pelves. Female no. 59560 in the 16 mg/kg/day group had a cystic ovary. All other females were internally normal.

E. GESTATION DAY 20 LAPAROHYSTERECTOMY DATA

Summary Data: Tables 8, 9

Mean fetal body weight in the 32 mg/kg/day group (3.5 g) was slightly reduced when compared to the control group value (3.7 g), but was equal to the overall mean fetal body weight in the WIL historical control data (3.5 g). The difference between the concurrent control group and the 32 mg/kg/day group was statistically significant (p < 0.05). Viable litter size, fetal sex ratios, postimplantation loss and the mean numbers of corpora lutea and implantation sites in the 32 mg/kg/day group were similar to the control group values.

Intrauterine growth and survival were unaffected by test article administration at dose levels of 4 and 16 mg/kg/day. No statistically significant differences from the control group were observed.

F. FETAL MORPHOLOGICAL DATA

Summary Data: Tables 10, 11, 12, 13

The number of fetuses (litters) available for morphological evaluation were 338(25), 284(19), 330(24) and 377(25) in the control, 4, 16 and 32 mg/kg/day groups, respectively.

-23-

1. EXTERNAL MALFORMATIONS AND VARIATIONS

No external developmental malformations or variations were noted in fetuses at any dose level.

2. VISCERAL MALFORMATIONS AND VARIATIONS

No visceral developmental malformations or variations were noted in fetuses at any dose level.

3. SKELETAL MALFORMATIONS AND VARIATIONS

In the 16 mg/kg/day group, three fetuses from one litter (nos. 59537-01, -07 and -08) each had costal cartilage malformation. All of the malformations consisted of fused left costal cartilages (no. 1 to no. 2) prior to joining the sternum, no left costal cartilage in position no. 2 and the left half of sternebra no. 1 attached to the left half of sternebra no. 2. Fetus no. 59537-08 also had a vertebral malformation that consisted of fused right cervical arches (no. 6 to no. 7). No other skeletal malformations were observed.

Increased incidences of several skeletal developmental variations were observed in fetuses at dose levels of 16 and 32 mg/kg/day. These included the following. One skeletal variant, 14th rudimentary ribs, was noted in all dose groups, including the control group. However, the percentages in the 16 and 32 mg/kg/day groups (13.1 and 11.3% per litter, respectively) were increased when compared to the control group value (2.2% per litter). The differences from the control group were statistically significant (p < 0.01). Another skeletal variant, 14th full ribs, was noted only in the 16 and 32 mg/kg/day groups (1.0 and 1.2% per litter, respectively). The values for 14th rudimentary ribs and 14th full ribs in these groups were within the range of values in the WIL historical control data (0.0-39.3% and 0.0-1.3%, respectively). An increase in the incidence of bent ribs was noted in the 32 mg/kg/day group (6.7% per litter) when compared to the concurrent control group (0.8% per litter) and the maximum value in the WIL historical control data (4.6% per litter). It should be noted that for most of the fetuses in the 32 mg/kg/day group with bent ribs, the variation was slight, occurred bilaterally and affected various combinations of rib nos. 4 through 12. Other skeletal variants in the treated groups occurred similarly in the control

-24-

544

group, were observed in a non dose-related manner, or were within the range of the WIL historical control data. No relationship to treatment was evident.

4. SUMMARY OF EXTERNAL, VISCERAL AND SKELETAL EXAMINATION

The only malformations observed during this study were in 3(1) fetuses (litters) in the 16 mg/kg/day group and were considered to be spontaneous in origin since no malformations were observed in the 32 mg/kg/day group. The only developmental variation attributed to treatment with the test article was an increase in the incidence of bent ribs in the 32 mg/kg/day group. The incidences of 14th rudimentary ribs and 14th full ribs were also increased in the 16 and 32 mg/kg/day group when compared to the concurrent control group values. However, no dose-related response was noted and the values were within the range of the WIL historical control data for these common developmental variations. In addition, no increase in the total number of developmental variations (% per litter) was observed at these dose levels, and no other evidence of developmental toxicity was observed in the 16 mg/kg/day group fetuses. Therefore, no relationship to treatment with the test article was evident. Other developmental variations in the treated groups were observed infrequently, at frequencies similar to those in the control group and/or at incidences that were within range of the WIL historical control data. When the total number of malformations and developmental variations were compared, on an incidence or proportional basis, no statistically significant differences from the control group were noted.

-25-

545

VI. DISCUSSION AND CONCLUSIONS

All maternal animals survived to the scheduled necropsy on gestation day 20. No clinical findings related to test article administration were observed at any dose level.

In the 32 mg/kg/day group, mean body weight gain and food consumption (g/animal/day and g/kg/day) were similar to the control group values during the first three days of dosing (gestation days 6-9). A statistically significant reduced mean body weight gain and slightly, but statistically significant reductions in food consumption occurred in this group during gestation days 9-12. Throughout the remainder of the treatment period (gestation days 12-16), mean body weight gain in the 32 mg/kg/day group was comparable to the control group value; however, food consumption remained slightly lower than that in the control group. When the entire treatment period (gestation days 6-16) was evaluated, mean body weight gain and food consumption in the 32 mg/kg/day group were significantly reduced relative to the control group values. During the post-treatment period (gestation days 16-20), mean body weight gain and food consumption in the 32 mg/kg/day group were slightly increased when compared to the control group values. Mean body weights in this group were generally similar to the control group values. A statistically significant decrease in mean net body weight gain was observed in the 32 mg/kg/day group. Mean net body weight and gravid uterine weight in this group were similar to the control group values. Mean body weights, body weight gains, net body weights, net body weight gains, gravid uterine weights and food consumption in the 4 and 16 mg/kg/day groups were unaffected by test article administration.

At the scheduled necropsy on gestation day 20, no test article-related internal findings were observed at any dose level.

Mean fetal body weight in the 32 mg/kg/day group was slightly reduced when compared to the control group value (statistically significant), but was within the range of the WIL historical control data. Viable litter size, fetal sex ratio, postimplantation loss and the numbers of corpora lutea and implantation sites in the 32 mg/kg/day group were unaffected by test article administration. Intrauterine growth and survival were not adversely affected at dose levels of 4 and 16 mg/kg/day.

Fetuses (litters) available for morphological evaluation numbered 338(25), 284(19), 330(24) and 377(25) in the control, 4, 16 and 32 mg/kg/day groups, respectively.

-26-

Malformations were observed in O(0), O(0), 3(1) and O(0) fetuses (litters) in these same groups and were considered to be spontaneous in origin. An increased incidence of one developmental variation, bent ribs, was observed in the 32 mg/kg/day group and was attributed to the test article.

In conclusion, no maternal toxicity or developmental toxicity was noted at dose levels of 4 and 16 mg/kg/day. Maternal toxicity was expressed at a dose level of 32 mg/kg/day by a reduced mean body weight gain during gestation days 9-12 and reduced food consumption during gestation days 9-12 and 12-16. Developmental toxicity was exhibited by a reduced mean fetal body weight in the 32 mg/kg/day group and by an increased incidence of one skeletal variant (bent ribs) in the 32 mg/kg/day group. Fetal toxicity occurred in conjunction with the moderate maternal toxicity previously noted at this dose level. Based on the results of this study, a dose level of 16 mg/kg/day was considered to be the NOAEL (no observable adverse effect level) for maternal toxicity and developmental toxicity.

5/30/9-

Donald G. Stump, Ph.D. Study_Director

547

-27-

3M MN01062677

VII. KEY STUDY PERSONNEL AND REPORT SUBMISSION

Submitted By:

Donald G. Stump, Ph.D. Staff Toxicologist, Developmental Reproductive and Neurotoxicology Study Director

Report Preparation:

Stephanie B. Gall, B.S.

Report Writer I

Reviewed By:

seph F. Holson, Ph.D.

President, Director

John F. Knapp, B.S.

5/30/97

Date

5/30/97

<130/9

Date

5/30/97

Date

Date

Manager, Developmental, Reproductive

Charlene M. Lindsey, M.A. Manager of Technical Report Writing

1ml lnec

Mark D. Nemec, B.S., D.A.B.T. Director of Developmental and Reproductive Toxicology

L

James L. Schardein, M.S., A.T.S. Senior Vice President, Director of Research

5/30/97

 $\frac{5}{\sqrt{36}/97}$ Date

-28-

548

3M_MN01062678

VII. KEY STUDY PERSONNEL AND REPORT SUBMISSION (continued)

Study Supervisors:

Sally A. Keets, A.S. Daniel W. Sved, Ph.D. Kerin Clevidence, B.S. Manager of Vivarium Director of Metabolism and Analytical Chemistry Group Supervisor of Gross Pathology and Developmental Toxicology Laboratory

-29-

544

Date(s) of Inspection(s)	Phase Inspected	Date(s) Findings Reported to <u>Study Director</u>	Date(s) Findings Reported to <u>Management</u>
12/17/96	Clinical Observations and		
	Body Weights	12/17/96	1/31/97
12/19/96	Animal Care & Equipment	12/19/96	1/31/97
12/23/96	Test Material Preparation/		
	Analysis	12/23/96	1/31/97
1/6/97	Laparohysterectomy/Viscerals	1/6/97	2/26/97
3/20, 21, 24 and 4/4/97	Study Records (I-1)	4/7/97	5/28/97
3/21, 24 and 4/4/97	Study Records (N-1)	4/4/97	5/28/97
4/24, 25 and 28, 29/97	Draft Report (w/o Analytical)	4/29/97	5/28/97
4/28, 29/97	Draft Report (Analytical)	4/29/97	5/28/97

VIII. QUALITY ASSURANCE UNIT STATEMENT

This study was conducted and inspected in accordance with the current EPA, OECD and MAFF Good Laboratory Practice Regulations, the Standard Operating Procedures of WIL Research Laboratories, Inc., and the sponsor's protocol and protocol amendments, with the following exception. The data located in Appendix A were the responsibility of the sponsor. Quality Assurance inspections during the conduct of the study and findings from review of the raw data and draft report are documented and have been reported to the study director. A status report is submitted to management monthly.

Raw data in magnetic form, a retention sample of the test article and the original final report will be retained at WIL Research Laboratories, Inc.

Kille A-towah à

Deborah L. Little Manager of Quality Assurance

<u>S/30/97</u> Date

-30-

IX. <u>REFERENCES</u>

- 1. WIL-157015 (1997) A Dose Range-Finding Developmental Toxicity Study of 313401 in Rats. WIL Research Laboratories, Inc., Ashland, Ohio.
- 2. National Research Council (1996) Guide for the Care and Use of Laboratory Animals. Institute of Laboratory Animal Resources, Commission on Life Sciences. National Academy Press, Washington, D.C.
- 3. Salewski (Köln), V. E. (1964) Farbemethode zum makroskopischen Nachweis von Implantationstellen am Uterus der Ratte. Naunyn - Schm. Archiv. für Exper. Pathologie und Pharm. 247:367.
- 4. Stuckhardt, J.L. and Poppe, S.M. (1984) Fresh visceral examination of rat and rabbit fetuses used in teratogenicity testing. Teratogenesis, carcinogenesis and Mutagenesis 4:181-188.
- 5. Woo, D.C. and Hoar, R.M. (1972) Apparent hydronephrosis as a normal aspect of renal development in late gestation of rats: The effect of methyl salicylate. Teratology 6: 191-196.
- 6. Wilson, J.G. (1965) Embryological consideration in teratology. In: Teratology: Principles and Techniques. (Wilson, J.G. and Warkany, J., eds.) The University of Chicago Press, Chicago, Illinois, pp. 251-277.
- 7. Dawson, A.B. (1926) A note on the staining of cleared specimens with Alizarin Red S. Stain Technol. 1:123-124.
- 8. BMDP (1979) Biomedical Computer Programs. (Dixon, W.J. and Brown, M.B., eds.) University of California Press, Berkeley, CA, pp. 612, 780, 781.

551

3M MN01062681

A Developmental Toxicity Study of 313401 in Rats

TABLES 1-13

-32-552

PROJECT NO.: WIL-157016 A DEVELOPMENTA

A DEVELOPMENTAL TOXICITY STUDY OF 313401 IN RATS SUMMARY OF MATERNAL SURVIVAL AND PRESNANCY STATUS

TABLE 1

-

PAGE

	DOSE GROUP :	1	2	3	4
		NO. %	NO. %	NO. %	NO. %
FEMALES	FEMALES ON STUDY	25	25	25	25
FEMAI OR D	FEMALES THAT ABORTED OR DELIVERED	0 0.0	0.0	0 0.0	0.0
FEMAI	EFMAI PS THAT DIED				
	FEMALES THAT ABORTED				
N	NONGRAVID				
5	GRAVID			0.0	0.0 0.0
FEMAL	FEMALES THAT WERE EUTHANIZED	0 0.0	0 0.0		
	NONGRAVID		0 0.0	0 0.0	
53	GRAVID			0 0.0	0.0
FEMAL	FEMALES EXAMINED AT SCHEDNIE EN MECEDESV	2E 400 0			
		0.001 62		25 100.0	25 100.0
έĊ					0.0 0.0
5		0.001 62			25 100.0
	WITH VIABLE FETUSES	25 100.0	0 0.0 19 100.0	0 0.0 24 100.0	0 0.0 25 100.0
TOTAL FE	TOTAL FEMALES GRAVID	25 100.0	19 76.0	24 96.0	25 100.0

3M_MN01062683

2792.0033

553

ī			•	
i	i			
1	į	ī	í	
1	ç			
1	1		•	
1	l			
•		c	1	l
1	5	ì	2	
į	í			
	5	1	5	1
-	ì	5	i	

-

PAGE

. ...

TABLE 2 (DAILY EXAMINATIONS) A DEVELOPMENTAL TOXICITY STUDY OF 313401 IN RATS SUMMARY OF CLINICAL FINDINGS: TOTAL OCCURRENCE/NO. OF ANIMALS

PROJECT NO.: WIL-157016

			FEMALE	1		
	TABLE RANGE: GROUP:		12-17-96	12-17-96 TO 01-10-97 2	3	4
NORMAL -NO SIGNIFICANT CLINICAL OBSERVATIONS	CAL OBSERVATIONS	49	493/25	497/25	490/25	505/25
DISPOSITION -SENT TO LAB FOR SCHEDULED LAPAROHYSTERECTOMY; GESTATION DAY 20	duled Gestation day 20	-	25/25	25/25	25/25	25/25
						8/3 3/11 8/3
-HAIR LOSS VENTRAL ABDOMINAL -HAIR LOSS LEFT LATERAL ABDOMINAL -HAIR LOSS DORSAL THORACIC -SCABBING DORSAL THORACIC -HAIR LOSS RIGHT HINDLIMB	Dominal al abdominal area racic acic Limb		200000	2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3		897991 997991
EYES/EARS/NOSE -DRIED RED MATERIAL AROUND NOSE	round nose		1/1	1/1	1/1	0 /0
EXCRETA -SOFT STOOL			2/ 1	0 /0	0 /0	0 /0
1- 0 MG/KG/DAY 2	2- 4 MG/KG/DAY	3- 16 MG/KG/DAY	4- 32 MG/KG/DAY	AY		

2792.0034

554

	וכ	GROUP :	1	2	3	4
DAY	0	MEAN S.D./N	245. 9.9/25	244. 7.5/19	242. 13.2/24	249. 9.7/25
DAY	9	MEAN S.D./N	280. 13.1/25	276. 10.2/19	275. 18.8/24	283. 11.8/25
DAY	2	MEAN S.D./N	281. 12.8/25	279. 9.7/19	277. 18.4/24	284. 12.6/25
DAY	8	MEAN S.D./N	285. 14.1/25	281. 10.7/19	281. 20.0/24	285. 13.1/25
DAY	6	MEAN S.D./N	286. 13.0/25	284. 10.1/19	283. 19.0/24	288. 13.0/25
DAY	10	MEAN S.D./N	292. 14.9/25	288. 11.0/19	286. 19.5/24	289. 13.4/25
DAY	11	MEAN S.D./N	299. 14.6/25	2 94 . 10.9/19	292. 20.5/24	293. 13.9/25
DAY	12	MEAN S.D./N	305. 16.6/25	300. 12.0/19	296. 19.6/24	296. 13.1/25
DAY	13	MEAN S.D./N	309. 16.2/25	304. 12.4/19	299. 20.0/24	299. 12.9/25
DAY	14	MEAN S.D./N	315. 16.4/25	309. 11.4/19	303. * 20.2/24	302.* 13.7/25

3M_MN01062685

2792.0035

555

PAGE

-

A DEVELOPMENTAL TOXICITY STUDY OF 313401 IN RATS

PROJECT NO.: WIL-157016

PAGE 2	4	8.* 25	9. 25	2. 25	
		308.* 13.5/25	319. 14.4/25	392. 17.0/25	
TABLE 3 A DEVELOPMENTAL TOXICITY STUDY OF 313401 IN RATS MEAN BODY WEIGHTS (GRAMS) DURING GESTATION	3	311. 21.0/24	321. 20.0/24	387. 23.1/24	TAILED DUNNETT'S TEST
	2	317. 11.9/19	328. 12.9/19	398. 18.3/19	G/DAY 4- 32 MG/KG/DAY T 0.05 LEVEL USING A TWO-
	1	321. 17.6/25	330. 16.4/25	393. 25.2/25	1- 0 MG/KG/DAY 2- 4 MG/KG/DAY 3- 16 MG/KG/DAY 4- 32 MG/KG/DAY * = SIGNIFICANTLY DIFFERENT FROM CONTROL GROUP 1 AT 0.05 LEVEL USING A TWO-TAILED DUNNETT'S TEST NONGRAVID MEIGHT(S) NOT INCLUDED IN CALCULATION OF MEAN
PROJECT NO.: WIL-157016	GROUP :	DAY 15 MEAN S.D./N	DAY 16 MEAN S.D./N	DAY 20 MEAN S.D./N	1- 0 MG/KG/DAY 2- * = SIGNIFICANTLY DIF NONGRAVID WEIGHT(S) NOT
				r	Ŧ
--------	-----------------	--------	--------	--------	--------
DAY	0- 6 MEAN	35.	31.	33.	34.
	S.D./N	6.5/25	8.0/19	9.5/24	7.0/25
DAY	6- 7 MEAN	1.	3.	2.	1.
	S.D./N	2.7/25	3.8/19	3.2/24	3.4/25
рау	7- 8 MEAN	4.	3.	4.	1.**
	S.D./N	3.3/25	3.6/19	3.4/24	3.7/25
DAY	8- 9 MEAN	1.	3.	2.	3.
	S.D./N	4.1/25	4.0/19	3.1/24	3.9/25
DAY	9- 10 MEAN	6.	4.	4.	2.**
	S.D./N	3.5/25	2.7/19	3.5/24	3.7/25
DAY 10	10- 11 MEAN	7.	6.	6.	4.
	S.D./N	4.2/25	3.3/19	4.1/24	3.3/25
DAY 1	11- 12 MEAN	6.	6.	4.	3.*
	S.D./N	3.8/25	3.5/19	5.1/24	5.0/25
AY 1:	DAY 12- 13 MEAN	3.	4.	2.	3.
	S.D./N	5.9/25	4.5/19	6.6/24	5.5/25
DAY 13	13- 14 MEAN	6.	6.	5.	3.
	S.D./N	6.5/25	5.5/19	6.5/24	4.7/25
11 II	DAY 14- 15 MEAN	6.	8.	8.	5.
	S.D./N	6.4/25	4.8/19	5.1/24	6.6/25

TABLE 4

557

3M_MN01062687

	PROJE	PROJECT NO.:WIL-157016	a developmental Mean Body Weight	TABLE 4 TOXICITY STUDY OF 313401 IN RATS CHANGES (GRAMS) DURING GESTATION	IN RATS SSTATION	PAGE 2
		GROUP :	1	2	3	4
	DAY	DAY 15- 16 MEAN S.D./N	9. 4.6/25	11. 5.5/19	10. 5.6/24	11. 6.1/25
	DAY	DAY 16- 20 MEAN S.D./N	63. 14.2/25	70. 8.8/19	67. 8.8/24	73.** 7.4/25
	DAY	6- 9 MEAN S.D./N	7. 3.1/25	8. 4.0/19	8. 3.7/24	5. 4.5/25
	ДАУ	9- 12 MEAN S.D./N	19. 6.0/25	16. 4.7/19	14,** 5.2/24	8.** 5.5/25
3	DAY	DAY 12- 16 MEAN S.D./N	24. 7.4/25	28. 3.7/19	24. 7.3/24	23. 7.5/25
8	DAY	6- 16 MEAN S.D./N	50. 8.2/25	52. 5.8/19	46. 7.5/24	36.** 9.0/25
	DAY	0- 20 MEAN S.D./N	148. 22.8/25	154. 16.3/19	146. 17.6/24	143. 11.9/25
	1- ** = MEAN NONGR	0 MC/KG/DAY SIGNIFICANTLY DIFFERENCES CAI AVID WEIGHT(S)	1- 0 MG/KG/DAY 2- 4 MG/KG/DAY 3- 16 MG/KG/DAY ** = SIGNIFICANTLY DIFFERENT FROM CONTROL GROUP 1 AT 0.01 MEAN DIFFERENCES CALCULATED FROM INDIVIDUAL DIFFERENCES NONGRAVID WEIGHT(S) NOT INCLUDED IN CALCULATION OF MEAN	Y 4- 32 MG/KG/DAY 01 LEVEL USING A TWO-TAILED DUNNETT'S TEST	ed dunnett's test	

- -

- -

3M_MN01062688

2792.0038

558⁻

	MEAN (SRAVID UTERINE WEIGHT	MEAN GRAVID UTERINE WEIGHTS AND NET BODY WEIGHT CHANGES (GRAMS)	ln kats Ianges (grams)	PAGE
GRC	GROUP:	1	2	£	4
INITIAL MEAN BODY MT. S.D. N	N. N	245. 9.9 25	244. 7.5 19	242. 13.2 24	249. 9.7 25
TERMINAL MEAN	N.	393.	398.	387.	392.
BODY WT. S.D.		25.2	18.3	23.1	17.0
N		25	19	24	25
GRAVID MEAN	N.	75.7	84.1	77.0	82.9
UTERINE WT. S.D.		18.45	8.99	8.10	9.32
N		25	19	24	24
NET BODY MEAN	AN	317.1	314.1	310.2	308.7
WT. S.D.	D.	19.85	12.82	22.75	15.51
N	N	25	19	24	26
NET BODY MEAN	u	71.9	69.8	68.6	59.3**
WT. CHANGE S.D.		15.23	11.90	16.36	9.50
N	N	25	19	24	26

~

= SIGNIFICANTLY DIFFERENT FROM CONTROL GROUP 1 AT 0.01 LEVEL USING A TWO-TAILED DUNNETT'S TEST

•

2792.0039

GROUP	JP :	1	2	£	4
DAY 0- 6	6 mean	22.	21.	22.	23.*
S	s.d./n	1.7/25	1.9/19	2.2/24	2.1/25
DAY 6- 7	7 MEAN	21.	21.	22.	23.
S.	S.D./N	2.2/25	2.6/19	2.7/24	2.4/25
DAY 7- 8	8 mean	22.	22.	22.	21.
S.	s.d./n	2.2/25	2.1/19	3.3/24	3.1/25
DAY 8-9	9 MEAN	21.	21.	22.	22.
	S.D./N	2.3/25	2.2/19	2.4/24	6.8/25
DAY 9- 10 MEAN	IO MEAN	23.	21.	21.	21.
S.D./N	S.D./N	2.5/25	2.7/19	2.9/24	4.1/25
DAY 10- 11 MEAN	11 MEAN	22.	22.	22.	21.*
S.D./N	S.D./N	2.2/25	1.9/19	2.7/24	2.7/25
DAY 11- 12 MEAN	MEAN	25.	23.	23.	21.**
S.D./N	D. /N	6.4/25	1.8/19	2.8/24	3.6/25
DAY 12- 13 MEAN	MEAN	24.	24.	24.	24.
S.D./N	D./N	3.2/24	2.0/19	3.1/24	8.9/25
DAY 13- 14 MEAN	14 MEAN	23.	23.	22.	20.**
S.D./N	S.D./N	2.2/25	2.2/19	2.2/24	4.1/25
DAY 14- 15 MEAN	5 MEAN	23.	23.	23.	20.**
S.D./N	S.D./N	2.5/25	1.9/19	2.7/24	3.1/25

	PROJ	PROJECT NO.:WIL-157016	A MEAN FC	TABLE 6 DEVELOPMENTAL TOXICITY STUDY OF 313401 OD CONSUMPTION DURING GESTATION (GRAMS	313401 IN RATS (GRAMS/ANIMAL/DAY)	PAGE 2
		GROUP :	1	2	3	4
	рау	DAY 15- 16 MEAN S.D./N	25. 2.6/25	26. 2.1/19	26. 3.0/24	23. 6.0/25
	DAY	DAY 16- 20 MEAN S.D./N	24. 4.7/25	26. 1.4/19	27. 3.3/24	26. 2.5/25
	рау	6- 9 MEAN S.D./N	21. 1.7/25	22. 1.8/19	22. 2.5/24	22. 2.7/25
	DAY	9- 12 MEAN S.D./N	23. 2.8/25	22. 1.6/19	22. 2.1/24	21.** 2.8/25
	DAY	DAY 12- 16 MEAN S.D./N	24. 2.4/25	24. 1.1/19	24. 2.4/24	22.** 3.1/25
·1 7-1	рау	6- 16 MEAN S.D./N	23. 2.0/25	23. 1.2/19	23. 2.1/24	21.** 2.4/25
	рау	0- 20 MEAN S.D./N	23. 1.6/25	23. 1.2/19	23. 2.0/24	23. 2.0/25
	1- ** = NONG	0 MG/KG/DAY 2 SIGNIFICANTLY DI RAVID WEIGHT(S) NO	1- 0 MG/KG/DAY 2- 4 MG/KG/DAY 3- 16 MG/KG/DAY ** = SIGNIFICANTLY DIFFERENT FROM CONTROL GROUP 1 AT 0.01 NONGRAVID WEIGHT(S) NOT INCLUDED IN CALCULATION OF MEAN	4- 1 LEVEL	32 MG/KG/DAY USING A TWO-TAILED DUNNEIT'S TEST	

3M_MN01062691

2792.0041

_

A DEVELOPMENTAL TOXICITY STUDY OF 313401 IN RATS MEAN FOOD CONSUMPTION DURING GESTATION (GRAMS/KG/DAY) TABLE 7

PROJECT NO.: WIL-157016

66.** 10.0/25 70.** 67.** 87.***** 6.7/25 79. 73. 9.2/25 70. 9.2/25 4. 24.2/25 71. 14.0/25 11.6/25 б<u>г</u> 28.0/25 12.3/25 4 83. 5.0/24 77. 8.0/24 7.3/24 80. 7.6/24 77. 5.9/24 74. 8.7/24 79. 8.0/24 78. 9.8/24 75. 8.2/24 73. 5.9/24 m 32 MG/KG/DAY 6.8/19 9.0/19 6.0/19 7.0/19 8.6/19 6.5/19 77. 5.6/19 75. 5.7/19 81. 79. 75. 7.0/19 6.9/19 76. 74. 76. 2 79. 74. 1 16 MG/KG/DAY 4 7.0/25 77. 6.8/25 74. 6.5/25 5.1/25 78. 6.7/25 76. 5.3/25 83. 20.9/25 76. 79. 7.6/24 5.9/25 73. 6.0/25 33. 8. 4 MG/KG/DAY 2 S.D./N 7 MEAN S.D./N 8 MEAN S.D./N 9 MEAN S.D./N S.D./N MEAN S.D./N S.D.A S.D./N 14 MEAN **10 MEAN 11 MEAN 12 MEAN 13 MEAN** S.D.N 15 MEAN S.D./N O MG/KG/DAY •• GROUP G 4 11-12-13, 14-لى 2 ዋ ዋ 9 DAY 4 42

56.2

3M_MN01062692

USING A TWO-TAILED DUNNETT'S TEST USING A TWO-TAILED DUNNETT'S TEST

DIFFERENT FROM CONTROL GROUP 1 AT 0.05 LEVEL DIFFERENT FROM CONTROL GROUP 1 AT 0.01 LEVEL

SIGNIFICANTLY SIGNIFICANTLY NONGRAVID WEIGHT(S)

и • 11

**

NOT INCLUDED IN CALCULATION OF MEAN

GROUP: 1 2 3 4 15-16 MEAN 5.7725 6.8/19 8.3/24 18.6/25 5.0./N 5.7725 6.8/19 8.3/24 18.6/25 5.0./N 5.7725 6.8/19 8.3/24 18.6/25 5.0./N 5.7725 5.8/19 7.1/24 5.0/25 6- 9 MEAN 12.4/25 3.8/19 7.1/24 5.0/25 6- 9 MEAN 12.4/25 5.3/19 4.9/24 9.0/25 6- 9 MEAN 4.6/25 5.3/19 4.9/24 9.0/25 9.12 MEAN 7.6/25 5.3/19 4.9/24 9.2/25 9.12 MEAN 7.6/25 5.3/19 4.9/24 9.2/25 9.12 MEAN 7.6/25 5.3/19 6.4/24 9.2/25 9.12 MEAN 7.6/25 5.3/19 6.4/24 9.2/25 9.2.14 8.0./N 4.9/19 6.2/24 9.2/25 9.2.14 8.0./N 4.9/19 6.2/24 9.2/25 9.2.14 8.0./N 4.7/26
15- 10 mean S.D./N 6- 9 mean 9- 12 mean S.D./N 12- 16 mean S.D./N 0- 20 mean S.D./N S.D./N

2

3M_MN01062693

2792.0043

ROJECT N	PROJECT NO.:WIL-157016	016	র্ম	a developm Jimmary of M	ENTAL TOXI EAN FETAL	CITY STUDY DATA AT TH	A DEVELOPMENTAL TOXICITY STUDY OF 313401 IN RATS SUMMARY OF MEAN FETAL DATA AT THE SCHEDULED NECROPSY	IN RATS D NECROPSY			PAGE	
GROUP	SEX M F	VIABLE FETUSES	DEAD FETUSES	RESORPTIONS EARLY LAT		POST IMPLANTATION E LOSS	IMPLANTATIC SITES	ON CORPORA LUTEA	IMPLANTATION CORPORA IMPLANTATION SITES LUTEA LOSS	FETAL WEIGHTS IN GRAMS	NO. OF GRAVID FEMALES	
1 TOTAL MEAN S.D.	TOTAL 177 161 MEAN 7.1 6.4 S.D. 2.74 2.27	338 13.5 3.49	0 0.0 0.00	17 0.7 1.03	0.00	17 0.7 1.03	355 355 14.2 3.51	412 16.5 2.18	57 2.3 2.65	NA 3.7 0.30	25	
2 TOTAL MEAN S.D.	TOTAL 132 152 MEAN 6.9 8.0 S.D. 2.12 2.05	284 14.9 1.72	0.0 0.00	6 0.3 0.58	0.0 0.00	6 0.3 0.58	290 15.3 1.45	326 17.2 1.89	36 1.9 1.85	NA 3.7 0.15	19	
3 TOTAL MEAN S.D. 1	TOTAL 170 160 MEAN 7.1 6.7 S.D. 1.86 2.06	330 13.8 1.59	0.0 0.00	23 1.0 0.95	0.0	23 1.0 0.95	353 14.7 1.83	404 16.8 2.60	51 2.1 2.29	NA 3.6 0.22	24	
4 TOTAL 206 MEAN 8.2 S.D. 1.94	TOTAL 206 171 MEAN 8.2 6.8 S.D. 1.94 1.93	377 15.1 1.80	0.0 0.00	19 0.8 1.05	0.0 0.0	19 0.8 1.05	396 15.8 1.40	428 17.1 1.72	32 1.3 1.14	NA 3.5* 0.19	25	
* = SIGN NA = NOT MEAN NUMB	SIGNIFICANTLY NOT APPLICABLE NUMBER OF IMPL.	DIFFERENT ANTATION SI	= SIGNIFICANTLY DIFFERENT FROM CONTROL = NOT APPLICABLE N NUMBER OF IMPLANTATION SITES, MEAN NU	AL AT 0.05 LEVEL	LEVEL XORPORA LUT	TEA AND ME	IN FETAL BO	DY WEIGHTS	* = SIGNIFICANTLY DIFFERENT FROM CONTROL AT 0.05 LEVEL. NA = NOT APPLICABLE MEAN NUMBER OF IMPLANTATION SITES, MEAN NUMBER OF CORPORA LUTEA AND MEAN FETAL BODY MEIGHTS COMPARED USING DUNNETT'S	NG DUNNETT	S TEST	
1- 0 MG	0 MG/KG/DAY	2- 4 MG/KG/DAY	/KG/DAY	3- 16 MG/	16 MG/KG/DAY	4- 32 MG	MG/KG/DAY					ļ

• •----

3M_MN01062694

2792.0044

44 57:4

Group Munders: 1 2 3 4 Corperond LUTEA Mean 16.5 17.2 16.6 17.1 Corperond LUTEA Mean 16.5 17.2 16.6 17.2 Corperond LUTEA Mean 16.5 17.2 16.6 17.7 S.D. 2.16 16.3 24 25 Mean 3.51 1.42 15.3 14.7 15.6 N.D. 3.51 1.42 15.3 14.7 25 25 S.D. 3.51 1.42 1.43 1.66 26 25 S.D. 5.0 3.51 1.43 1.66 25 25 Matter FERUESS (x) 5.3 5.71 0.00 24 25 25 DEAD FERUESS (x) 0.0 0.00 0.00 0.00 0.00 24 26 24 26 24 26 24 26 24 26 24 26 24 26 24 26 24 26	2 3 3 17.2 16.8 1.89 2.60 1.45 14.7 1.45 14.7 1.45 24 97.8 93.7 4.09 0.0 0.00 0.00 19 24 2,1 4.09 2,4 5.71 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 2.4 0.0 0.00 0.	1 2 3 1 2 17,2 16,8 19 1,99 2,4 25 1,53 1,4,7 26 1,99 2,4 27 19 2,4 28 4,09 5,7 29 1,9 2,4 29 1,9 2,4 29 1,9 2,4 29 1,9 2,4 29 1,9 2,4 20 0,0 0,0 20 0,0 0,0 20 1,9 2,4 21 2,4 2,4 22 1,9 2,4 23 5,71 2,4 24 2,3 2,4 25 1,9 2,4 26 1,9 2,4 27 1,9 2,4 28 4,09 2,4 29 0,00 0,0 20 1,9 2,4 3-16 6,19 2,4 3-16 6,19 2,4 3-16 6,19 2,4 3-16 6,19 2,4 3-16 6,19 2,4 3-16 6,19 2,4	PROJECT NO.:WIL-157016	TABLE 9 A DEVELOPMENTAL TOXICITY STUDY OF 313401 SUMMARY OF MEAN FETAL DATA AT SCHEDULED NECROPSY		IN RATS (% PER LITTER)	PAGE 1
16.5 17.2 16.8 2.18 1.89 2.60 2.51 1.89 2.60 2.51 1.45 1.47 14.2 1.53 1.45 14.2 1.53 1.45 3.51 1.45 1.45 3.51 1.45 1.45 2.5 1.99 2.4 95.4 97.8 93.7 5.89 4.09 5.71 0.0 0.0 0.0 0.0 0.0 0.0 2.8 1.9 5.71 5.8 4.09 5.71 5.8 4.09 5.71 5.8 4.09 5.71 5.9 1.9 5.71 5.9 1.9 5.71 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 0.0 0.0 <td< th=""><th>17.2 16.8 19 2.60 19 2.60 19 2.4 14.7 14.7 14.8 14.7 14.7 14.7 14.8 14.7 14.7 14.3 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.3 14.7 14.3 14.7 14.3 14.7 14.3 14.7 14.7 14.7 14.7 15 24 19 2.4 0.0 0.0 19 2.4 2.2 6.3 4.09 5.71 19 2.4 0.0 0.0 0.0 0.0 19 2.4 2.4 2.4 2.5 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4</th><th>17.2 16.8 1.89 2.60 1.89 2.4 1.45 14.7 1.45 1.83 1.4.7 1.45 2.4 97.8 93.7 4.09 2.4 0.0 0.00 19 2.4 19 2.4 1</th><th>GROUP NUMBER:</th><th>1</th><th>2</th><th>3</th><th>4</th></td<>	17.2 16.8 19 2.60 19 2.60 19 2.4 14.7 14.7 14.8 14.7 14.7 14.7 14.8 14.7 14.7 14.3 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.3 14.7 14.3 14.7 14.3 14.7 14.3 14.7 14.7 14.7 14.7 15 24 19 2.4 0.0 0.0 19 2.4 2.2 6.3 4.09 5.71 19 2.4 0.0 0.0 0.0 0.0 19 2.4 2.4 2.4 2.5 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4	17.2 16.8 1.89 2.60 1.89 2.4 1.45 14.7 1.45 1.83 1.4.7 1.45 2.4 97.8 93.7 4.09 2.4 0.0 0.00 19 2.4 19 2.4 1	GROUP NUMBER:	1	2	3	4
S.D. 5.D. 2.100 1.02 1.00 NELAWTATION SITES 14.2 15.3 1.47 NetAWTATION SITES 14.2 15.3 1.47 NetAWTATION SITES 14.2 15.3 1.47 NetAW 3.D. 3.55 1.45 1.45 Notation 5.4 97.8 93.7 24 Notation 5.3 4.09 5.77 24 Notation 0.0 0.0 0.0 0.0 24 Name 5.5 4.09 5.77 24 S.D. 0.0 0.0 0.0 24 Name 0.0 0.00 0.00 24 Math 2.5 4.09 5.77 24 S.D. 0.00 0.00 0.00 24 Math 0.0 0.00 2.4 24 Math 0.0 0.00 2.4 24 S.D. 2.3 4.09 5.71 24 S.D. 2.3 4.09 5.71 24 S.D. 0	S.D. S.D. T.G. T.G. <tht.g.< th=""> T.G. T.G. <tht< td=""><td>S.D. S.D. D.B.d. D.B.d. INELAWATION SITES 1.4 2.5 1.9 2.6 2.6 INELAWATION SITES 1.4 2.5 1.9 2.6 2.6 2.6 INELAWATION SITES 1.4 2.5 1.4 2.6 2.6 2.6 2.6 2.6 Ream 1.1 2.5 1.4 9.2 1.4 2.4<td>CORPORA LUTEA MEAN</td><td>υ Υ</td><td>0 1 *</td><td></td><td></td></td></tht<></tht.g.<>	S.D. S.D. D.B.d. D.B.d. INELAWATION SITES 1.4 2.5 1.9 2.6 2.6 INELAWATION SITES 1.4 2.5 1.9 2.6 2.6 2.6 INELAWATION SITES 1.4 2.5 1.4 2.6 2.6 2.6 2.6 2.6 Ream 1.1 2.5 1.4 9.2 1.4 2.4 <td>CORPORA LUTEA MEAN</td> <td>υ Υ</td> <td>0 1 *</td> <td></td> <td></td>	CORPORA LUTEA MEAN	υ Υ	0 1 *		
N 25 19 24 Inelawrition stress 14.2 15.3 14.7 24 Healwrition stress 14.2 15.3 14.45 13.51 14.7 Name 3.51 14.2 5.3 14.5 14.5 24 Name 5.0 3.51 1.45 5.3 24 24 Name 5.1 5.2 1.99 5.71 24 24 Dead 5.0 5.3 1.99 5.71 5.71 24 Dead 5.0 0.0 0.0 0.0 0.0 24 24 Dead Ferrencess (x) 0.0 0.0 0.0 0.0 24 27 Man 2.5 1.99 2.2 2.2 2.2 2.2 2.2 Man 2.5 1.99 2.2 2.2 2.2 2.2 2.2 Man 2.5 1.99 2.2 2.2 2.2 <th2.2< th=""> <th2.2< th=""> <th2.2< th=""> <</th2.2<></th2.2<></th2.2<>	N 25 19 24 INELANTATION SITES 14.2 15.3 14.4 5 Net. 3.1 3.55 1.45 1.45 1.47 Net. 3.55 1.4,2 1.5,3 1.4,4 24 No. 3.1 3.55 1.4,5 1.4,5 1.43 24 No. 5.5 97.8 97.8 93.7 24 24 No. 5.30 6.39 4.09 5.77 24 No. 5.35 0.0 0.0 0.0 24 No. 2.5 1.9 2.2 6.3 2.4 No. 0.0 0.0 0.0 0.0 2.4 RAM N 2.5 1.9 2.7 2.7 RAM 0.0 0.0 0.0 0.0 2.7 2.7 RAM N 2.5 1.9 2.7 2.7 RAM N 2.5 1.9 2.7 2.7 <td>N 25 19 24 INFLANTION SITES 14.2 15.3 14.7 No. 3.51 1.4.2 15.3 14.7 No. 52.4 97.8 93.7 571 No. 5.3 1.9 5.71 5.71 No. 5.8 4.09 5.71 5.71 No. 0.0 0.0 0.0 0.0 2.4 No. 0.0 0.0 0.0 2.4 2.7 No. 0.0 0.0 0.0 2.4 2.7 N. 2.5 1.9 2.2 5.7 2.4 N. 0.0 0.0 0.0 2.4 2.7 N. 0.0 0.0 0.0 2.4 2.4 N. 0.0 0.</td> <td>S.D.</td> <td>2.18</td> <td>1.89</td> <td>10.8 2.60</td> <td>17.1</td>	N 25 19 24 INFLANTION SITES 14.2 15.3 14.7 No. 3.51 1.4.2 15.3 14.7 No. 52.4 97.8 93.7 571 No. 5.3 1.9 5.71 5.71 No. 5.8 4.09 5.71 5.71 No. 0.0 0.0 0.0 0.0 2.4 No. 0.0 0.0 0.0 2.4 2.7 No. 0.0 0.0 0.0 2.4 2.7 N. 2.5 1.9 2.2 5.7 2.4 N. 0.0 0.0 0.0 2.4 2.7 N. 0.0 0.0 0.0 2.4 2.4 N. 0.0 0.	S.D.	2.18	1.89	10.8 2.60	17.1
INELANTATION SITES 14.2 15.3 14.7 NEM 14.2 15.3 14.5 14.7 NAME 14.2 15.3 14.5 14.5 14.7 NAME 1 3.51 14.5 14.5 14.7 24 NAME FEINES 5.71 97.8 97.8 93.7 24 NAME 5.0. 5.31 93.7 5.71 5.71 5.71 DEAD FETUSES (X) 0.0 0.0 0.0 0.00	Inel.Antiant on stress Man 14.2 15.3 14.7 Main 3.51 1.45 1.45 1.47 Main 3.51 1.45 1.45 1.43 Na 3.51 1.46 2.4 2.4 Virable Ferruses (x) 95.4 97.8 93.7 2.4 Main 5.5 4.09 5.71 2.4 Bean Ferruses (x) 95.4 97.8 5.71 Bean Ferruses (x) 95.4 97.8 5.71 S.D. 5.3 1.9 5.71 5.71 Min 2.5 4.09 5.71 5.71 Main 0.0 0.00 0.00 2.4 Main 2.5 1.9 5.71 2.71 Main 2.5 1.9 5.71	Inellativity 14.2 15.3 14.7 Main 3.5 1.4	N	25	19	24	Ő
14.2 15.3 14.7 3.51 1.45 1.45 1.45 25 1.99 24 95.4 97.8 93.7 6.89 4.09 5.71 0.0 0.0 0.0 0.00 0.00 0.00 0.00 0.00 24 19 2.2 5.71 19 2.2 5.71 19 2.2 6.3 6.89 4.09 5.71 6.89 4.09 5.71 6.89 4.09 5.71 0.0 0.0 24 25 19 2.2 0.0 0.0 2.4 25 1.9 2.4 25 2.4 2.4 25 2.4 2.4 26 2.3 2.4 27 2.4 2.4 25 2.4 2.4 26 2.9 2.4 26	MEM 14.2 15.3 14.7 N.D. 3.51 1.42 15.3 14.7 N.D. 3.51 1.45 1.45 1.83 VIABLE FETURES (X) 95.4 97.8 93.7 24 MEM 5.D. 5.89 93.7 24 S.D. 5.89 97.8 93.7 24 BEAD FETURES (X) 0.0 0.0 0.0 24 S.D. 0.0 0.0 0.0 24 M.N 2.5 1.9 24 S.D. 0.0 0.00 24 M.N 2.2 5.71 S.D. 0.0 0.0 24 M.N 2.2 4.09 5.71 S.D. 0.0 0.0 24 S.D. 0.0 0.0 0.0 N.D. 2.6 1.9 2.71 S.D. 0.0 0.0 2.7 S.D. 0.0 0.0 2.7	MAN 14.2 15.3 14.7 N.D. 25.1 1.45 1.47 N.D. 25.4 97.8 93.7 MARE FETUSES (X) 95.4 97.8 93.7 MARE FETUSES (X) 95.4 97.8 93.7 MARE FETUSES (X) 95.4 97.8 93.7 Man 5.0 97.8 93.7 S.D. 5.30 4.09 5.71 BAD FETUSES (X) 0.0 0.0 0.0 N 25 4.09 5.71 BAD FETUSES (X) 0.0 0.0 0.0 S.D. 25 1.9 5.71 BAL RESORFTIONS (X) 4.6 2.2 6.3 M.D. 2.5 1.9 2.4 MAR 0.0 0.0 0.0 N.D. 2.5 1.9 2.7 LATE RESORFTIONS (X) 0.0 0.0 2.4 MAR 0.0 0.0 0.0 N.D. 2.4 0.	IMPLANTATION SITES				
N.U. 5.31 beam 1.45 5.89 1.45 97.8 1.83 29.7 VIABLE FETURES (X) MEAN 95.4 97.8 93.7 1.83 24 VIABLE FETURES (X) N 0.0 0.89,4 97.8 93.7 1.83 24 DEAD FETURES (X) N 0.0<	N.U. 5.21 1.45 1.43 WIABLE FETURES (X) 95.4 97.8 93.7 VEAM 95.4 97.8 93.7 REAM 95.4 97.8 93.7 S.D. 0.39 4.09 5.71 B.D. 0.0 0.0 0.0 0.0 REAM 0.0 0.0 0.0 0.0 0.0 REAM 0.0 0.0 0.0 0.0 0.0 0.0 REAM 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S.D. 6.89 4.09 5.71 1.9 2.4 1.9 2.4 LATE RESORFTIONS (X) 4.6 2.2 4.09 2.7 2.4 2.4 BARM 0.0 0.00 0.00 0.00 2.4 2.4 I.T. RESORFTIONS (X) A.66 2.2 4.09 5.71 2.4 2.4 I.T. RESORFTIONS (X) A.66 A.09 <td>N.U. 5.31 1.45 1.83 VIABLE FETURES (X) 95.4 97.8 93.7 1.83 VIABLE FETURES (X) 95.4 97.8 93.7 24 VALA FEMINE 5.0 1.9 25 1.33 VIABLE FETURES (X) 95.4 97.8 97.8 93.7 24 S.D. 5.8 0.0 0.0 0.0 0.0 0.0 24 93.7 24 Main 0.0 0.0 0.00 0.0 <</td> <td>MEAN</td> <td>14.2</td> <td>15.3</td> <td>14.7</td> <td>15.8</td>	N.U. 5.31 1.45 1.83 VIABLE FETURES (X) 95.4 97.8 93.7 1.83 VIABLE FETURES (X) 95.4 97.8 93.7 24 VALA FEMINE 5.0 1.9 25 1.33 VIABLE FETURES (X) 95.4 97.8 97.8 93.7 24 S.D. 5.8 0.0 0.0 0.0 0.0 0.0 24 93.7 24 Main 0.0 0.0 0.00 0.0 <	MEAN	14.2	15.3	14.7	15.8
VIABLE FETURES (1) 95.4 97.8 93.7 93.7 MEAN 95.4 97.8 93.7 93.7 93.7 N 5.D. 6.89 4.09 5.71 5.71 5.71 S.D. 0.0<	VIABLE FETURES (X) 95.4 97.8 93.7 93.7 Name 5.0 5.89 97.8 93.7 5.71 S.D. 5.10 5.89 4.00 5.71 5.71 DEAD FETURES (X) 0.0 0.0 0.0 0.0 0.0 0.0 MEAN 0.0	VIABLE FETURES (X) 95.4 93.7 93.7 REM 5.7 19 5.7 <td>N.U.C</td> <td>25 25</td> <td>1.45 19</td> <td>1.83 24</td> <td>1.40</td>	N.U.C	25 25	1.45 19	1.83 24	1.40
MEM 95.4 97.8 93.7 N 25 19 5.71 S.D. 5.80 4.09 5.71 S.D. 5.00 0.00 5.71 MEM 0.0 0.0 0.00 N 2.5 0.0 0.00 S.D. 0.00 0.00 0.00 S.D. 0.00 0.00 0.00 S.D. 6.89 4.09 5.71 N 25 19 5.71 MEM 25 19 5.71 N 25 19 5.71 N 25 19 5.71 N 25 19 2.4 MEM 0.0 0.00 0.00 N 25 19 2.4 MEM 0.00 0.00 0.00 N 25 19 2.4 I- 0 MA/KG/DM 2- 4 MA/KG/DM 2.4 2.4	HEMI 95.4 97.8 93.7 S.D. 5.3 19 5.71 5.71 S.D. 5.5 4.09 5.71 5.71 BEAD FETURES (X) 0.0 0.0 0.0 0.0 MEAN 0.0 0.0 0.0 0.0 MEAN 2.5 119 2.4 MEAN 4.6 2.2 6.3 MEAN 4.6 2.2 6.3 N.D. 2.5 1.9 2.4 MEAN 6.89 4.09 5.71 N.D. 2.5 1.9 2.4 MEAN 0.0 0.0 2.7 N.D. 2.5 1.9 2.7 S.D. 0.00 0.00 2.4 MEAN 0.0 0.0 2.7 N.D. 2.5 1.9 2.7 S.D. 0.00 0.00 2.4 S.D. 0.00 0.00 2.7 MAN 0.00	MEM 95.4 97.8 93.7 S.D. S.D. 5.89 4.09 5.71 DEAD FERUSS (1) 0.0 0.0 0.0 24 DEAD FERUSS (2) 0.0 0.0 0.0 0.0 N 25 0.0 0.0 0.0 REMN 0.0 0.0 0.0 0.0 N 25 1.9 2.4 2.4 REMN 4.6 2.2 6.3 5.71 N 2.5 4.09 2.4 2.4 REMN 0.0 0.0 0.0 2.4 S.D. 5.9 4.09 5.71 2.4 Marketone (x) 0.0 0.0 2.0 2.4 LATE RESORPTIONS (X) 0.0 0.0 2.4 2.7 S.D. 5.0 1.9 5.71 2.4 LATE RESORPTIONS (X) 0.0 0.0 0.0 2.4 S.D. 5.0 1.9 5.71 2.7	VIABLE FETUSES (2)				ł
S.D. 6.89 4.09 5.71 N 25 19 5.71 DEAD FETUSES (\$) 0.0 0.0 0.0 MEAN 0.0 0.0 0.0 0.0 N 2.1 0.0 0.0 0.00 0.00 S.D. 2.1 0.00 0.00 0.00 0.00 S.D. 2.5 19 2.2 6.3 5.71 MEAN 4.6 2.2 4.09 5.71 5.71 N 2.5 19 2.2 5.71 5.71 N 2.5 1.9 5.71 5.71 5.71 N 2.5 1.9 5.71 5.71 5.71 N 2.5 0.0 0.0 5.4 5.71 LATE RESORFTIONS (\$) 0.0 0.0 0.0 5.4 LATE RESORFTIONS (\$) 0.0 0.0 0.0 5.4 LATE RESORFTIONS (\$) 0.0 0.0 0.0 5.4	S.D. 6.89 4.09 5.71 N 25 19 5.71 PEAD FETUSES (X) 0.0 0.0 0.0 MAN 0.0 0.0 0.0 0.0 MEAN 0.0 0.0 0.0 0.0 0.0 S.D. 0.0 0.00 0.00 0.00 0.00 0.00 S.D. 2.0 19 2.2 6.3 5.71 2.4 EARLY RESORPTIONS (X) 4.6 2.2 6.3 5.71 2.4 A.D. 2.9 4.09 5.77 2.4 2.4 A.D. 2.5 1.9 5.77 2.4 A.D. 0.0 0.00 0.00 0.00 0.00 S.D. 0.0 0.00 0.00 0.00 2.4 I.T. 0.0 0.00 0.00 0.00 2.4 S.D. 0.0 0.00 0.00 0.00 2.4 S.D. 0.00 0.00	S.D. 6.89 4.09 5.71 N 25 19 5.71 DEAD FETURES (X) 0.0 0.0 0.0 MEAN 0.0 0.0 0.0 0.0 MEAN 0.0 0.0 0.0 0.0 0.0 MEAN 0.0 0.00 0.00 0.00 0.00 0.00 N.D. 25 19 2.2 6.3 5.71 5.71 MEAN 4.6 2.2 6.3 5.71 5.71 5.71 LATE RESORFTIONS (X) 4.6 2.2 6.3 5.71 5.71 N 2.5 1.9 5.71 5.71 5.71 LATE RESORFTIONS (X) 0.0 0.00 5.00 5.71 N 2.5 1.9 5.71 5.71 5.71 LATE RESORFTIONS (X) 0.0 0.00 0.00 5.4 5.71 N 2.5 0.9 9.9 5.4 5.71 5.71	MEAN	95.4	97.8	93.7	КO
DEAD FETUSES (\$) 0.0 0.0 0.0 0.0 MEAN 0.0 0.00 0.00 0.00 24 N 2.5 19 0.00 24 S.D. 0.00 0.00 0.00 24 BARLY RESORPTIONS (\$) 4.6 2.2 6.3 MEAN 4.6 2.2 5.71 N 2.5 19 24 LATE RESORPTIONS (\$) 4.6 2.2 5.71 N 2.5 19 2.2 5.71 N 2.5 19 2.4 0.0 S.D. 0.0 0.0 0.0 0.0 N 2.5 19 2.4 2.4 DATKG/DAY 2.4 A.KG/DAY 4.3 2.4	DEAD FETUSES (X) 0.0 0.0 0.0 0.0 MEAN N 25 0.00 0.00 0.00 N 2.1 0.00 0.00 0.00 0.00 N 2.5 0.00 0.00 0.00 0.00 REARY RESORPTIONS (X) 4.6 2.2 5.71 2.4 MEAN 4.6 2.2 5.71 5.71 N 25 1.9 2.4 5.71 N 2.5 1.9 2.4 2.4 M 2.5 0.00 0.00 2.4 MEAN 0.00 0.00 0.00 2.4 LATE RESORPTIONS (X) 0.00 0.00 2.4 M 2.5 1.9 2.4 2.4 LATE RESORPTIONS (X) 0.00 0.00 2.4 <	DEAD FETUSES (X) 0.0	S.D. N	6.89 25	4.09	5.71	
DEAD FETIOSES (X) 0.0	DEAD FETURES (1) 0.0	DEAD FENDISES (x) 0.0 0		Ì	K 1	24	N
) 4.6 0.00 0.00 0.00 24 24 2.71 2.2 6.3 6.3 5.71 25 0.0 0.00 24 24 2.71 25 0.0 0.00 24 24 2.71 25 19 2.71 25 19 2.71 2.4 MG/KG/DAY 4- 32 MG/KG/MG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG/KG	0.00 19 2.2 4.09 19 2.4 4.09 0.0 0.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.0 0.00 19 2.2 4.09 19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	DEAD FETUSES (χ)				
) 4.6 2.2 6.3 5.71 6.89 4.09 5.71 25 19 24 0.0 0.0 0.0 0.0 0.0 25 19 24 2- 4 MG/KG/DAY 3- 16 MG/KG/DAY 4- 32 MG/KG/DAY	2.2 6.3 4.09 2.4 19 5.71 0.0 0.0 19 0.00 19 0.00 19 2.4 2.4	¹⁹ ^{2.2} ^{4.09} ^{4.09} ¹⁹ ^{0.0} ^{0.00} ^{0.00} ^{0.00} ^{0.00} ^{0.00} ^{0.00} ^{2.4} ^{2.71} ^{2.71} ^{2.71} ^{2.71} ^{2.71} ^{2.71} ^{2.71} ^{2.71} ^{2.71} ^{2.71} ^{2.71} ^{2.71} ^{2.71} ¹⁹ ^{2.71} ¹⁹ ^{2.71} ¹⁹ ^{2.71} ¹⁰ ¹¹ ¹	S. D.		0.0	0.0	0.0
) 4.6 6.89 25 6.89 4.09 25 19 0.0 0.000 0.00	2.2 6.3 4.09 5.71 19 2.4 0.0 0.00 0.00 0.00 19 2.4	2.2 6.3 4.09 5.71 19 2.4 24 0.0 0.00 19 0.00 0.00 19 2.4 1- 32 M5/KG/DAY	N	25	19	24	000
4.6 2.2 6.3 6.89 4.09 5.71 25 19 5.71 0.0 0.0 0.0 0.00 0.00 0.00 25 19 24 24 25 19 2 19 24 0.0 0.00 0.00 25 19 24 2- 4 M5/KG/DAY 3- 16 M5/KG/DAY 4- 32 M5/KG/DAY	2.2 6.3 4.09 5.71 19 5.71 24 24 0.00 0.00 19 2.4	2.2 4.09 19 0.0 0.0 0.00 19 2.4 2.4 1- 32 M5/KG/DAY TEST	CADI V DESODDITIONIS (%)				i
6.89 4.09 5.71 25 19 5.71 24 0.0 0.0 0.0 0.0 25 19 0.00 0.00 0.00 25 4 M5/KG/DAY 4- 32 M5/KG/DAY	4.09 19 5.71 0.0 0.0 0.00 0.00 19 24 1- 32 M5/KG/DAY	4.09 5.71 19 2.4 0.0 0.00 19 2.4 1- 32 MJ/KG/DAY TEST	EANLI RESOLUTIONS (A) MEAN	4.6	с с	ر ع ا	•
25 19 24 0.0 0.00 0.00 0.00 0.00 25 4 MG/KG/DAY 4- 32 MG/KG/DAY	19 24 0.0 0.00 0.00 0.00 19 24 H- 32 M5/KG/DAY	19 24 0.0 0.00 0.00 0.00 19 24 1- 32 M5/KG/DAY TEST	S.D.	6.89	4.09	0.3 7 71	4
0.0 0.00 25 2- 4 MG/KG/DAY 4- 32 MG/KG/DAY 0.0 24 29	0.0 0.00 19 0.00 24 - 32 MG/KG/DAY	0.0 0.00 19 2. MG/KG/DAY TEST	N	25	19	24	0.0
0.00 0.00 25 2- 4 MG/KG/DAY 3- 16 MG/KG/DAY 4- 32 MG/KG/DAY 0.00 2- 4 MG/KG/DAY 4- 32 MG/KG/DAY	0.0 0.00 19 24 - 32 M5/KG/DAY	0.0 0.00 19 0.00 1- 32 MJ/KG/DAY TEST	LATE RESORPTIONS (%)				
S.D. 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 19 2. MG/KG/DAY	0.00 19 2. MG/KG/DAY TEST	MEAN	0.0	0.0	0.0	
N 24 O MG/KG/DAY 2- 4 MG/KG/DAY 3- 16 MG/KG/DAY 4- 32 MG/KG/DAY	19 24 - 32 MG/KG/DAY	19 24 1- 32 MG/KG/DAY TEST	S.D.	0.00	0.00	0.0	
0 MG/KG/DAY 2- 4 MG/KG/DAY 3- 16 MG/KG/DAY 4-			Ν	25	19	24	25
	PROPORTIONAL (X) DATA COMPARED USING THE RRUSKAL-WALLIS TEST	PROPORTIONAL (%) DATA COMPARED USING THE KRUSKAL-WALLIS TEST CORPORA LUTEA AND IMPLANTATION SITES COMPARED USING DUNNETT'S TEST NONE SIGNIFICANTLY DIFFERENT FROM THE CONTROL GROUP	0 MG/KG/DAY 2-	Ψ			

GROUP NUMBER:				
	1	2	3	4
IUIAL RESORFIIUNS (%)	7 7	c		
s.D.	6.89	4.09	6.3 5.71	4.9 6.60
2	25	19	24	
PRE-IMPLANTATION LOSS (χ)				
MEAN	14.2	10.4	11.6	7
N.	16.62 25	9.81 10	11.16	6.14
)	6T	74	7
POST-IMPLANTATION LOSS (%)				
MEAN	4.6	2.2	6 3	7
S.D.	6.89	50 · 7	0.0 1	- , (- , (
N	25	19	24	0.00 25
MALES (%)				ú
	0.0c	40.4	51.6	54.7
	10.04	12.54	13.52	11.27
:	67	19	24	25
FEMALES (%)				
MEAN	50.0	53.6	48.4	YE .
S.D.	16.64	12.54	13.52	C.LT TC 11
N	25	19	24	25
MALE FETAL WEIGHTS (2)				i
MEAN	3,8	2 R	ſ	
S.D.	0.21		3./	3.6
N	24	0.20 19	0.21	0.20
	و بر و برواند		F 3	57
1- 0 MG/KG/DAY 2- 4 MG/KG/DAY	3/DAY 3- 16 MG/KG/DAY	4- 32 MG/KG/DAY	*******************	

2792.0046

_ _ . _

_

- -

Stele

GROUP NUMBER: 1 2 3 4 FEMALE FETAL WEIGHTS (g) 3:6 3:6 3:5 3:4 FEMALE FETAL WEIGHTS (g) 3:6 3:6 3:5 3:4 Nean 0.31 0.17 0.20 0.19 24 N 25 19 24 25 0.19 25 COMBINED FETAL WEIGHTS (g) 3.7 3.7 0.16 24 25 N 25 0.30 0.16 0.20 0.19 25 COMBINED FETAL WEIGHTS (g) 3.7 3.7 0.26 0.19 25 N 25 0.30 0.16 0.22 3.5 0.19 N 25 0.16 0.26 0.26 0.19 25 1- 0.07/KG/DAY 2- 4.8/KG/DAY 4- 22 0.19 24 25 0.19	PROJECT NO.:WIL-157016 St	A DEVELOPMENTAL TO MMARY OF MEAN FETAL DATA	TABLE 9 A DEVELOPMENTAL TOXICITY STUDY OF 313401 IN RATS SUMMARY OF MEAN FETAL DATA AT SCHEDULED NECROPSY (% PER LITTER)	ATS ER LITTER)	PAGE 3
1,6 3.5 17 0.20 19 24 24 16 0.22 19 24 16 0.22 16 0.22	group number:	1	2	3	4
1.6 3.5 17 0.20 19 24 19 3.6 16 0.22 19 24 6/KG/DAY	Female Fetal Weights (r)				
19 0.22 19 24 16 0.22 19 24 6/KG/DAY	MEAN S.D.	3.6 0.31	3.6	3.5	3.4*
1.7 3.6 16 0.22 19 24 B/KG/DAY	N	25	19	24	0.19 25
16 0.22 19 24 B/KG/DAY	combined fetal weights (g) mean	3.7	3.7	2 E	
G/KG/DAY	S.D. N	0.30 25	0.16	0.22 24	0.19 25
	1- 0 MG/KG/DAY 2- 4 MG/KG/L	AY 3- 16 MG/KG/DAY	4- 32 MG/KG/DAY		

* = SIGNIFICANTLY DIFFERENT FROM THE CONTROL GROUP AT THE 0.05 LEVEL

47 547

2792.0047

£υ	
5	

£1
F 7
≍.

	PROJECT NO.:WIL-157016	TABLE 10 A DEVELOPMENTAL TOXICITY STUDY OF 313401 IN RATS NUMBER OF FETUSES AND LITTERS WITH MALFORMATIONS - SUN	TA OXICITY LITTERS	TABLE 10 TY STUDY RS WITH 1	OF 31: MALFOR	3401 IN RATS AATIONS - SUMMARY					PAGE 1
											DAY 20
			μ.	ല	S E S			LITT	ERS		
		DOSE GROUP:	-	2	m	4		2	۳ ا	4	
	NUMBER EXAMINED EXTERNALLY		338	284	330	377	25	19	24	25	
	NUMBER WITH FINDINGS		0	0	0	0	0	0	0	0	
	NUMBER EXAMINED VISCERALLY NUMBER UTTU FINDINGS		338	284	330	377	25 2	19	24	22	
	SONITINITY UITH VOCIDIN		þ	þ	0	D	0	0	0	0	-
	NUMBER EXAMINED SKELETALLY		338	284	330	377	25	19	24	25	
	UUSTAL CAKTILAGE ANUMALY VERTEBRAL ANOMALY WITH OR WITHOUT ASSOCI	UT ASSOCIATED RIB ANOMALY	。 。	0 c	∽ ~	0 0	00	00	-	0,0	
	TYTTAL NIMBER WITH MALEORNATIONS			,	1)	>	>	4	>	
	EXTERNAL :		0	0	0	0	0	0	0	0	
			0	0	0	0	0	0	0	0	
48 <	SKELETAL :		0	0	m	0	0	0	7	0	
78	COMBINED :		0	0	ŝ	0	0	0	1	0	
	1- 0 MG/KG/DAY 2- 4 MG/KG/DAY	DAY 3- 16 MG/KG/DAY	4	32 MG	32 MG/KG/DAY						

PAGE 1 DAY 20	2 3 4	25 0	
	3	24 0	
ATS MARY		19 0	
TABLE 11 A DEVELOPMENTAL TOXICITY STUDY OF 313401 IN RATS EAN LITTER PROPORTIONS OF MALFORMATIONS - SUMMARY % PER LITTER	DOSE GROUP: 1	25 0	4- 32 MG/KG/DAY
A DEVELOPMENTAL TOXIC MEAN LITTER PROPORTION X	DOSE GROUP:		1- 0 MG/KG/DAY 2- 4 MG/KG/DAY 3- 16 MG/KG/DAY 4- 32 MG/KG/DAY NONE SIGNIFICANTLY DIFFERENT USING THE MANN-WHITNEY U TEST
316		KAMINED EXTERNALLY ITH FINDINGS	2- 4 MG/KG/DAY DIFFERENT USING THE
PROJECT NO.:WIL-157016		NUMBER OF LITTERS EXAMINED EXTERNALLY NUMBER OF LITTERS WITH FINDINGS	1- 0 MG/KG/DAY 2- 4 MG/KG/DAY NONE SIGNIFICANTLY DIFFERENT USING TH

.

57-9

PROJECT NO.:WIL-157016	TABLE 11 A DEVELOPMENTAL TOXICITY STUDY OF 313401 IN RATS MEAN LITTER PROPORTIONS OF MALFORMATIONS - SUMMARY % PER LITTER	TABLE 11 (ICITY STUDY OF 313401 IN R (ONS OF MALFORMATIONS - SUM % PER LITTER	ATS MARY		PAGE 2 DAY 20
	DOSE GROUP:	1 2 3 4	2	3	4
NUMBER OF LITTERS EXAMINED VISCERALLY NUMBER OF LITTERS WITH FINDINGS	25 19 24 0 0 0	25 0	19 0	24 0	25 0
1- 0 MG/KG/DAY 2- 4 MG/KG/DAY	3- 16 MG/KG/DAY	4- 32 MG/KG/DAY	* * * 2 * 2 * 2 * 2 * 2 * 2		به من به هم هم به به من من من به به من

1- 0 MG/KG/DAY 2- 4 MG/KG/DAY 3- 16 MG/KG/DAY 4-NONE SIGNIFICANTLY DIFFERENT USING THE MANN-MHITNEY U TEST

50

570

3M_MN01062700

2792.0050

PROJECT NO.:WIL-157016	TABLE 11 A DEVELOPMENTAL TOXICITY STUDY OF 313401 IN RATS MEAN LITTER PROPORTIONS OF MALFORMATIONS - SIMMARY	TABLE 11 ICITY STUDY ONS OF MALF(OF 313401 IN ORMATIONS - SU	RATS MMARY		PAGE 3
		X PER LITTER	R			DAY 20
	DOSE GROUP:		1	2	3	4
NUMBER OF LITTERS EXAMINED SKELETALLY		4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	25	19	24	25
COSTAL CARFILAGE ANOMALY		MEAN S.D.	0.0 0.00	0.0 0.00	0.9 4.37	0.0
VERTEBRAL ANOMALY WITH OR WITHOUT ASSOCIATED RIB ANOMALY	CIATED RIB ANOMALY	MEAN S.D.	0.0	0.0 0.00	0.3 1.46	0.0
1- 0 MG/KG/DAY 2- 4 MG/KG/DAY 3- 16 MG/KG/DAY NONE SIGNIFICANTLY DIFFERENT USING THE MANN-MHITNEY U TEST	3- 16 MG/KG/DAY MANN-WHITNEY U TEST	4- 32 MG/KG/DAY	/KG/DAY			

51

571

2792.0051

PROJECT NO.:WIL-157016 A DEV MEAN I	TABLE 11 A DEVELOPMENTAL TOXICITY STUDY OF 313401 IN RATS MEAN LITTER PROPORTIONS OF MALFORMATIONS - SUMMAR	TABLE 11 21TY STUDY O VS OF MALFOR	? 313401 IN RATS ATTONS - SUMMARY			PAGE 4
	*	% PER LITTER				DAY 20
DOSE	DOSE GROUP:		Ţ	2	ŝ	4
NUMBER OF LITTERS EXAMINED			25	19	24	25
TOTAL MALFORMATIONS						
PERCENT PER LITTER WITH EXTERNAL MALFORMATIONS	SNOI	MEAN S.D.	0.0	0.0	0.0	0.0
PERCENT PER LITTER WITH SOFT TISSUE MALFORM	FORMATIONS	MEAN S.D.	0.0	0.0	0.0	0.0
PERCENT PER LITTER WITH SKELETAL MALFORMATIONS	SNOI	MEAN S.D.	0.0	0.0	0.9 4.37	0.0
TOTAL PERCENT PER LITTER WITH MALFORMATIONS	8	MEAN S.D.	0.0	0.0	0.9 4.37	0.0
1- 0 MG/KG/DAY 2- 4 MG/KG/DAY 3- 16 MG/KG/DAY NONE SIGNIFICANTLY DIFFERENT USING THE MANN-WHITNEY U TEST	3- 16 MG/KG/DAY ANN-WHITNEY U TEST	4- 32 MG/KG/DAY	3/DAY			

2792.0052

52

	PROJECT NO.:WIL-157016	TAE A DEVELOPMENTAL TOXICITY NUMBER OF FETUSES AND LITTERS	TABI OXICITY S	TABLE 12 TY STUDY ERS WITH		OF 313401 IN RATS VARIATIONS - SIMMARY					PAGE 1
											DAY 20
		DOSE GROUP:		FETU 2	1 S E S	4	1	1 T T 2	ы С С С С С С	4	
	NUMBER EXAMINED EXTERNALLY NUMBER WITH FINDINGS		338 0	284 0	330 330	377 0	25 0	19 0	24 0	25 0	
	NUMBER EXAMINED VISCERALLY NUMBER WITH FINDINCS		338 0	284 0	330 0	377 0	25 0	0 0	24 0	0 23	
53	NUMBER EXAMINED SKELETALLY CERVICAL CENTRUM #1 OSSIFIED 14TH RUDIMENTARY RIB(S) STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED 14TH FULL RIB(S) 27 PRESACRAL VERTEBRAE 7TH CERVICAL RIB(S) 27 PRESACRAL VERTEBRAE 7TH CERVICAL RIB(S) REDUCED OSSIFICATION OF THE VERTEBRAL ARCHES REDUCED OSSIFICATION OF THE 13TH RIB(S) BENT RIB(S) HYOID UNOSSIFIED STERNEBRA(E) #1, #2, #3 AND/OR #4 UNOSSIFIED STERNEBRA(E) #1, #2, #3 AND/OR #4 UNOSSIFIED	ED ML ARCHES (B(S) (DDERATE) (SSIFIED	89 89 89 7 9 0 0 0 0 0 8 8 7 8 7 8 9 7 8 9 7 8 7 8 9 7 8 7 8 7	2 444 2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	01111000773300 25500 0111100000000000000000000000000	33 24 25 25 25 25 25 25 25 25 25 25 25 25 25	880100000-01-	011 8 / 0 0 1 0 1 4 4 1 V	40010000440	1167211322	
	1- 0 MG/KG/DAY 2- 4 MG/KG/DAY	3- 16 MG/KG/DAY	4-	32 MG.	32 MG/KG/DAY	۲					

2792.0053

PROJECT NO.:WIL-157016 A	DEVELOPMENTAL EAN LITTER PROP	TABLE 13 A DEVELOPMENTAL TOXICITY STUDY OF 313401 IN RATS TEAN LITTER PROPORTIONS OF VARIATIONS - SUMMARY % PER LITTER	ATS 24		PAGE 1 DAY 20
	DOSE GROUP:	1 2 3 4	2	3	4
NUMBER OF LITTERS EXAMINED EXTERNALLY NUMBER OF LITTERS WITH FINDINGS	25 0	25 0	19 0	24 0	25 0
1- 0 MG/KG/DAY 2- 4 MG/KG/DAY	3- 16 MG/KG/DA	Y 4- 32 MG/KG/DAY			

NONE SIGNIFICANTLY DIFFERENT USING THE MANN-WHITNEY U TEST

2792.0054

PROJECT NO.:WIL-157016 A	TABLE 13 A DEVELOPMENTAL TOXICITY STUDY OF 313401 IN RATS MEAN LITTER PROPORTIONS OF VARIATIONS - SUMMARY % PER LITTER	TABLE 13 ITY STUDY OF 313401 IN RAI NS OF VARIATIONS - SUMMARY PER LITTER	8		PAGE 2 DAY 20
	DOSE GROUP: 1 2 3 4	1	2	3	4
NUMBER OF LITTERS EXAMINED VISCERALLY NUMBER OF LITTERS WITH FINDINGS	25 19 0 0	25 0	19 0	24 0	25 0
1- 0 MG/KG/DAY 2- 4 MG/KG/DAY	3- 16 MG/KG/DAY	4- 32 MG/KG/DAY			

NONE SIGNIFICANTLY DIFFERENT USING THE MANN-WHITNEY U TEST

3M_MN01062705

2792.0055

55

		MEAN LITTER PROPORTIONS OF VARIATIONS - SUMMARY % PER LITTER	TONS OF VARI % PER LITTER	AN LITTER PROPORTIONS OF VARIATIONS - SUMMARY % PER LITTER	MARY		c dat 20 DAY 20
i		DOSE GROUP:			2	S	4
M	NUMBER OF LITTERS EXAMINED SKELETALLY			25	19	24	25
-	CERVICAL CENTRUM #1 OSSIFIED		MEAN S.D.	21.2 22.48	16.0 19.77	15.8 14.00	19.4 16.77
	14TH RUDIMENTARY RIB(S)		MEAN S.D.	2.2 4.86	6.6 10.14	13.1** 17.36	11.3** 14.78
-1	STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED		MEAN S.D.	5.3 8.03	3.8 5.69	6.6 8.29	8.5 9.37
••	14TH FULL RIB(S)		MEAN S.D.	0.0	0.0	1.0 2.71	1.2 4.68
	27 PRESACRAL VERTEBRAE		MEAN S.D.	0.0 0.00	0.0	1.3 4.68	1.2 3.80
	7TH CERVICAL RIB(S)		MEAN S.D.	0.0	0.4 1.64	1.0 2.71	0.3 1.43
	REDUCED OSSIFICATION OF THE VERTEBRAL ARCHES	ARCHES	MEAN S.D.	0.0	0.0	0.0	0.3 1.25
<u>14</u>	REDUCED OSSIFICATION OF THE 13TH RIB(S)		MEAN S.D.	1.3 3.70	0.3 1.43	0.9 3.37	0.5 1.70
ш	BENT RIB(S)		MEAN S.D.	0.8 3.75	2.0 4.38	0.8 2.80	6.3 12.68
11	HYOID UNOSSIFIED		MEAN S.D.	1.1 3.14	1.9 4.33	1.6 3.84	2.8 5.99

576

3M_MN01062706

A DEVELOPMENTAL TOXICITY STUDY OF 313401 IN RATS MEAN LITTER PROPORTIONS OF VARIATIONS - SUMMARY % PER LITTER DAY 20	ROUP: 1 2 3 4	25 19 24 25	MEAN 0.2 0.4 0.3 0.3 S.D. 1.00 1.64 1.57 1.25	MEAN 0.2 0.8 0.0 0.2 [*] S.D. 1.18 2.45 0.00 1.18	MG/KG/DAY 4- 32 MG/KG/DAY TNEY U TEST
PROJECT NO.:WIL-157016 A DEVELOPMENTAL T MEAN LITTER PROPO	DOSE GROUP:	NUMBER OF LITTERS EXAMINED SKELETALLY	STERNEBRA(E) MALALIGNED(SLIGHT OR MODERATE)	STERNEBRA(E) #1,#2,#3 AND/OR #4 UNOSSIFIED	1- 0 MG/KG/DAY 2- 4 MG/KG/DAY 3- 16 MG/KG/DAY NONE SIGNIFICANTLY DIFFERENT USING THE MANN-MHITNEY U TEST

. ~

	PROJECT NO.:WIL-157016	TABLE 13 A DEVELOPMENTAL TOXICITY STUDY OF 313401 IN RATS MEAN I TITLEP DEVENDENTONS OF VARIANTONS	TABLE 13 ICITY STUDY	OF 313401 IN	RATS		PAGE 5
			X PER LITTER	R	TVH		DAY 20
		DOSE GROUP:		1	2	3	4
	NUMBER OF LITTERS EXAMINED			25	19	24	25
	TOTAL VARIATIONS						
	PERCENT PER LITTER WITH EXTERNAL VARIATIONS	LATIONS	MEAN S.D.	0.0 0.00	0.0	0.0	0.0
	PERCENT PER LITTER WITH SOFT TISSUE VARIATIONS	VARIATIONS	MEAN S.D.	0.0	0.0	0.0	0.0
	PERCENT PER LITTER WITH SKELETAL VARIATIONS	IATIONS	MEAN S.D.	30.2 21.87	28.6 22.47	35.2 19.84	41.8 20.50
58	TOTAL PERCENT PER LITTER WITH VARIATIONS	SNOI	MEAN S.D.	30.2 21.87	28.6 22.47	35.2 19.84	41.8 20.50
	1- 0 MG/KG/DAY 2- 4 MG/KG/DAY 3- 16 MG/KG/DAY NONE SIGNIFICANTLY DIFFERENT USING THE MANN-WHITNEY U TEST	3- 16 MG/KG/DAY 2 MANN-WHITNEY U TEST	4- 32 MG/KG/DAY	/KG/DAY			

.....

.

-

3M_MN01062708

•

2792.0058