M.S.I. Report No. 4B223-4B227

Determination of Physico-chemical Properties of Sample D-1

Submitted to:

SUMITOMO 3M LTD.

Prepared by:

Mitsubishi Chemical Safety Institute Ltd.

February 14, 1996 (The original report was submitted on August 8, 1994)

.....

.

Exhibit 2796	3M_MN01640581
State of Minnesota v. 3M Co., Court File No. 27-CV-10-28862	

Determination of Physico-chemical Properties of Sample D-1 (English version)

Study No.: 4B223-4B227 Determination of Physico-chemical Properties of Sample D-1 Study Title: SUMITOMO 3M LTD. Sponsor:

This test was conducted in Yokohama Laboratory of Mitsubishi Chemical Safety Institute Ltd., 1000 Kamoshida-cho, Aoba-ku, Yokohama 227, Japan.

This report is the English version of the original, which was written in Japanese. The undersigned hereby declare that this version faithfully reflects the original report to the best of our knowledge.

Translated by

Shiro Dwami Date: Feb. 14, 1996

Shiro IWAMI, M.Sc. Environmental Science Division of the Yokohama Laboratory

Approved by

Date: Feb. 14 1996 Jun TORIYA, B.Sc.

Head of the Yokohama Laboratory,

Testing Facility

Study No.: 4B223-4B227

Study Title:Determination of Physico-chemical Properties of Sample D-1Sponsor:SUMITOMO 3M LTD.

Testing Facility:

Yokohama Laboratory, Mitsubishi Chemical Safety Institute Ltd.[†] (M.S.I.), 1000 Kamoshida-cho, Aoba-ku, Yokohama 227, Japan (telephone: 045-963-3541)

[†] The company's name was changed on October 1, 1994. (The former name: Mitsubishi-kasei Institute of Toxicological and Environmental Sciences)

Facility Management:

Jun TORIYA, B.Sc. Head of the Yokohama Laboratory

Study Management:

Tadayoshi SHIGEOKA, Ph.D.Sealed date: August 8, 1994Chief Research Scientist,Environmental Science Division of the Yokohama Laboratory

Study Director:

Takemi NAKANOME, B.Sc.

Sealed date: August 8, 1994

Sealed date: August 8, 1994

Senior Research Scientist, Environmental Science Division of the Yokohama Laboratory

Experimental Scientist:

Akiko TAKEDA, M.Sc. Sealed date: August 8, 1994 Environmental Science Division of the Yokohama Laboratory

Contents

	page
Abstract	5
1 Test Substance	6
1.1 Identification	6
1.2 Source	6
· ·	_
2 Water Solubility [Study No. 4B223]	7
2.1 Materials and Methods	7
2.2 Results and Discussion	9
Tables and Figures	27
· ·	
3 Hydrolysis as a function of pH [Study No. 4B224]	10
3.1 Materials and Methods	10
3.2 Results and Discussion	14
Tables and Figures	35
4 Dissociation Constants in Water [Study No. 4B225]	16
4.1 Materials and Methods	16
4.2 Results and Discussion	18
Figure	
· ·	· .
5 Partition Coefficient (1-octanol/water) by HPLC Method [Study No. 4B220	5]19
5.1 Materials and Methods	19
5.2 Results and Discussion	21
Figures	51
6 Vapor pressure [Study No. 4B227]	22
6.1 Materials and Methods	22
6.2 Results and Discussion	26
Tables and Figures	53
_	

(59 pages in all)

÷ .

3M_MN01640584

.

.4

.

Abstract

Study No.: 4B223-4B227

Study Title:Determination of Physico-chemical Properties of Sample D-1Sponsor:SUMITOMO 3M LTD.

1 Test Substance

Name:	Sample D-1
Chemical name:	2-[N-ethyl-N-perfluoroalkyl (C=1-8) sulfonylamino]
	ethyl acrylate
Structural formula:	$C_nF_{2n+1}SO_2N(C_2H_5)CH_2CH_2OC(=0)CH=CH_2$
	n=1-8 (n=8; approx, 78 %; n=1-7; approx, 21 %)

- 2 Water Solubility [Study No. 4B223]
 - 2.1 Methods: No.105[†] "Water Solubility" (Flask Method)

2.2 Results: Water solubility of the test substance was 0.89 mg/L at 25°C.

3 Hydrolysis as a function of pH [Study No. 4B224]

- 3.1 Methods: No.111⁺ "Hydrolysis as a function of pH", (testing at pH 4, 7, and 9 at 25°C)
- 3.2 Results: At 25°C reaction rate constants of the test substance at pH 4, 7, and 9 were 0.017, 0.020, and 0.046 day-1 with half life time of 42, 35, and 15 days, respectively.

4 Dissociation Constants in Water [Study No. 4B225]

- 4.1 Methods: No.112[†] "Dissociation Constants in Water" (Spectrophotometric Method)
- 3.2 Results: No dissociation constants of the test substance were determined because the spectra of the test substance at different pH did not significantly differ from one another. (But the chemical structure of the test substance suggests that its dissociation potential is very low.)

5 Partition Coefficient (1-octanol/water) by HPLC Method [Study No. 4B226]

- 5.1 Methods: No.117[†] "Partition Coefficient (n-octanol/water), High Performance Liquid Chromatography (HPLC) Method"
- 5.2 Results: The test substance was detected as ten peaks or more by HPLC. The log Pow value of the main component was more than 6.

6 Vapor Pressure [Study No. 4B227]

6.1 Methods: No.104[†] "Vapor Pressure Curve" (Gas Saturation Method)

6.2 Results: Vapor pressure of the test substance was 6.0×10^{-3} Pa at 25°C.

[†] Number in Organization for Economic Cooperation and Development (OECD) Guidelines for Testing of Chemicals

3M_MN01640585

1 Test Substance

1.1 Identification

1)Name[†]:

Sample D-1

Chemical name[†]:

2-[N-ethyl-N-perfluoroalkyl(C=1-8) sulfonylamino]

ethyl acrylate

2)Structural formula⁺: $C_n F_{2n+1} SO_2 N(C_2 H_5) CH_2 CH_2 OC(=0) CH = CH_2$ n=1-8(n=8: approx. 78 %; n=1-7: approx. 21 %)

3)Physico-chemical properties:

Solubility †:	water:	insoluble
	acetone.	
	DMSO:	insoluble
Melting point+:	27-42°C	
Boiling point [†] :	approx. 15	50°C (1 mm Hg)

+ provided by the sponsor

1.2 Source

1)Batch [‡] :	Lot No. 101
2)Supplier:	Misao SHIBA, SUMITOMO 3M LTD.
3)Supplied quantity ‡:	approx. 100 g
4)Purity‡:	99 % or more
5)Appearance:	amber like wax

‡ provided by the sponsor

3M_MN01640586

. ...

A solution is a homogeneous mixture of different substances in a solvent. The particle sizes of the dispersed substances are of the same magnitude as molecules and ions. Therefore, the smallest volumes which can be obtained from a solution are always of uniform composition.

Solubility in water is a significant parameter because

- the spatial and temporal movement (mobility) of a substance is largely determined by its solubility in water;
- water soluble substances gain ready access to humans and other living organisms;
- the knowledge of the solubility in water is a prerequisite for testing biological degradation and bio-accumulation in water and for other tests.

2.1 Materials and Methods

This study was conducted in accordance with the standard procedure "Water Solubility" (Flask Method) in the OECD[†] Guidelines for Testing of Chemicals No.105 (1981). This method is summarized as follows:

The test substance (Solids must be pulverized.) is dissolved in water at a temperature somewhat above the test temperature. When saturation is achieved the mixture is cooled and kept at the test temperature, stirring as long as necessary to reach equilibrium. Subsequently, mass concentration of the test substance in the aqueous solution, which must not contain any undissolved particles, is determined by a suitable analytical method.

† Organization for Economic Cooperation and Development

2.1.1 Reagents

<i>n</i> -hexane:	Wako Pure Chemical Industries, Ltd.,	guaranteed reagent
acetone:	Wako Pure Chemical Industries, Ltd.,	guaranteed reagent

2.1.2 Apparatus

incubator:	Taitec Corporation,	model M-100
centrifugal separator:	Hitachi Ltd.,	model SCT 15B
gas chromatograph(GC):	Shimadzu Corporation,	model GC-14A
integrator:	Shimadzu Corporation,.	model C-R3A

3M_MN01640587

2.1.3 Test procedure

Two hundred milligrams of the test substance was dissolved in 10 mL of acetone in an Erlenmeyer glass flask. The solvent was evaporated with stirring to deposit a thin layer of the test substance onto inner surface of the flask. The residual solvent was thoroughly removed by stream of nitrogen gas. Four hundred milliliters of distilled water was added to the flask, which was then shaken at 40 ± 0.2 °C over a 3-day period. A 50-mL aliquot of the water phase was sampled after 1, 2, and 3 days. The aliquot was subsequently shaken at 25 ± 0.2 °C for 1 day or more to reach equilibrium of dissolution of the test substance.

The operation by the above procedure was repeated once more.

2.1.4 Analytical methods

The concentration of the test substance was measured by gas chromatography (GC). Prior to GC analysis, each equilibrated aliquot was treated as follows:

The aliquot was centrifuged at 4000 rpm $(3000 \times g)$ at 25°C. Sodium chloride, 1.2 g, was dissolved in the supernatant, to which 4 mL of *n*-hexane was then added. They were shaken for 1 minutes and then centrifuged at 4000 rpm (3000 \times g) at 25°C. The *n*-hexane phase (supernatant) was analyzed by GC under the following conditions:

GC conditions

column:	Shimadzu Corporation, wide bore column CBP20-W25-100,
	0.53 mm i.d., 25 m in length
temperature:	column: 120°C; injector: 200°C; detector: 240°C
carrier:	nitrogen gas (flow rate: 20 mL/min)
detector:	electron capture detector (ECD)
injection volume:	3 µL

As informed by the sponsor, the components of the test substance differ in length of the perfluoroalkyl chain (see \$1.1). In fact, the test substance was detected as four major peaks with retention time of 3.8, 4.5, 5.1, and 6.0 minutes by GC under the conditions described above. Therefore, the concentration of the test substance was based on total area of the four peaks.

2.1.5 Calibration curve

Standard solutions of the test substance were prepared to make concentrations of 0, 0.2, 1.0, and 5.0 mg/L in *n*-hexane. These standard solutions were analyzed by GC under the conditions described in \$2, 1.4. The total peak area of the four peaks _____

·

was calculated and plotted against the concentration of the test substance. The calibration curve yielded a straight line passing through the origin and its correlation coefficient was calculated to be 0.999 by the least square method described in Japanese Industrial Standards (JIS) Z 9041-1968.

[Figure 2.1 and Figure 2.2]

نړ

÷. .

At measurement of the test substance concentration, the standard solution with 1.0 mg/L was analyzed. Concentration in each test sample was calculated from ratio of total peak area for the sample to that for the standard solution.

2.1.6 Recovery

An acetone solution of the test substance was prepared to make a concentration of 483 mg/L. Two milliliters of the solution was dissolved in 1000 mL of distilled water (final concentration of the test substance: 0.97 mg/L).

Sodium chloride, 1.2 g, was dissolved in 4 mL of the water solution, to which 4 mL of *n*-hexane was then added. They were shaken for 1 minutes and then centrifuged at 4000 rpm $(3000 \times g)$ at 25°C. The concentration of the test substance in the *n*-hexane phase (supernatant) was measured by GC under the conditions described in \$2.1.4 to evaluate recovery.

[Table 2.2 and Figure 2.3]

The recovery of the test substance was 94 %. The concentrations of the test substance reported below were corrected by this factor.

2.2 Results and Discussion

Average water solubility of the test substance was 0.89 mg/L at 25 °C.

[Table 2.1 and Figure 2.4.1 to Figure 2.4.3]

The component with GC retention time of 4.5 minutes was rather soluble in water compared with the others. Dissolution of this component at 40°C reached equilibrium within 1 day.

It is suggested that water solubility of each component of the test substance differs from one another.

3 Hydrolysis as a Function of pH [Study No. 4B224]

The testing of substance for hydrolysis is relevant to their persistence. Hydrolysis is one of the most common reactions controlling abiotic degradation and is therefore one of the main degradation paths of substances in the environment.

A procedure to determine hydrolysis is important also in indicating whether other testing should be carried out on a parent compound or its hydrolysis product. It is the degradation products that are crucial.

Hydrolysis behavior needs to be examined at pH values normally found in the environment (pH 4-9) and under more acidic conditions (pH 1-2) for physiological purpose.

Surface-controlled reactions can sometimes predominate over bulk solution hydrolysis, especially in the soil environment. This may result in different degradation rates than would be predicted from this methods based upon rates in homogeneous solutions.

3.1 Materials and Methods

This study was conducted in accordance with the standard procedure "Hydrolysis as a function of pH" in the OECD Guidelines for Testing of Chemicals No.111 (1981).

In the environment, chemicals usually occur in dilute solution, which means that water is present in large excess, and therefore, the kinetics of hydrolysis are generally pseudo-first order at fixed pH and temperature.

The hydrolysis reaction may be influenced by acidic or basic species H_{3O}^+ (H⁺) and OH⁻, in which case it is referred to as specific acid or specific base catalysis.

The concentration of the test substance is determined as a function of time. The logarithms of the concentrations are plotted against time and the slope of the resulting straight line (assuming first-order or pseudo-first order behavior) gives the rate constant.

. .

3.1.1 Reagents and water

zent
gent
gent
gent
gent
ent
gent
gent

3.1.2 Apparatus

incubator:	Taitec Corporation,	model M-100
nH meter:	Toa Electronics Ltd.,	model HM-50S
gas chromatograph(GC):	Shimadzu Corporation,	model GC-14A
Pm our onnes Brit-()	[equipped with an electron	capture detector (ECD)]
integrator:	Shimadzu Corporation,	model C-R3A

3.1.3 Test procedure

3.1.3.1 Preparation of buffer solutions

Buffer solutions were prepared by the following two methods described in the annex of the Guideline No. 111:

- Buffer mixtures of Clark and Lubs
- Citrate buffer of Kolthoff and Vleeschhouwer

Each buffer solution of pH values 4, 7, and 9 was prepared to be 1000 mL using the following reagents:

1) pH 4: 0.1 м monopotassium citrate and 0.1 N sodium hydroxide

2) pH 7: 0.1 M monopotassium phosphate and 0.1 N sodium hydroxide

3) pH 9: 0.1 M potassium chloride, 0.1 M boric acid and 0.1 N sodium hydroxide

The buffer solutions obtained were passed through Millipore[®] filter of pore size 0.25 μ m. The pH values of the filtrates were determined to be 4.05, 7.02, and 9.05 for nominal values of 4, 7, and 9, respectively.

3.1.3.2 Preparation of stock solution of the test substance

The test substance, 80 mg, was dissolved and diluted with acetone to prepare a stock solution with 40 mg/L.

3M MN01640591

3.1.3.3 Preliminary test (at 50 °C)

Four milliliters of the stock solution (prepared in \$3.1.3.2) was added to 400 mL each of the three buffer solutions to prepare test solutions of pH values 4, 7, and 9. The solutions thus prepared were tested under the following conditions:

I) Conditions

pH:	4, 7, and 9
concentration:	0.40 mg/L
temperature:	50.0±0.1°C
testing period:	5 days with continuous shaking
test volume:	400 mL (containing 1 % acetone)
test vessel:	Erlenmeyer glass flask

II) Analytical methods

The concentration of the test substance was measured by GC. Prior to GC analysis, the test solutions were treated by the following procedure:

Sodium chloride, 128 g, was dissolved in each of the three 400-mL solutions, from which the test substance was then extracted with 100 mL of *n*-hexane. The extraction was repeated twice more. The three extracts were combined and concentrated to 50 mL, which was then transferred into a 200-mL glass volumetric flask and filled to 200 mL with *n*-hexane. The hexane solution was analyzed by GC under the following conditions:

GC conditions

column:	Shimadzu Corporation, wide bore column CBP20-W25-100,
	0.53 mm i.d., 25 m in length
temperature:	column: 120°C; injector: 200°C; detector: 240°C
carrier:	nitrogen gas (flow rate: 20 mL/min)
detector:	ECD
injection volume:	3 µL

As described in \$2.1.4, the concentration of the test substance was based on total area of the four peaks detected by GC (retention time: 3.6, 4.3, 4.9, and 5.8 minutes).

III) Recovery

Four milliliters of the stock solution (prepared in \$3.1.3.2) was added to 400 mL of water in an Erlenmeyer glass flask (final concentration: 0.4 mg/L). Sodium chloride, 128 g, was dissolved in this solution, from which the test substance was then extracted with 100 mL of *n*-hexane. The extraction was repeated twice more.

÷. .

The three extracts were combined and concentrated to 50 mL, which was then transferred into a 200-mL glass volumetric flask and filled to 200 mL with *n*-hexane. The concentration of the test substance in the final solution was measured by GC under the conditions described in \$3.1.3.3.II.

Recovery was determined to be 101 %. The concentrations of the test substance reported for this preliminary test were corrected by this factor.

[Table 3.6 and Figure 3.1]

3.1.3.4 Further investigation (at 25 °C)

Four milliliters of the stock solution (prepared in \$3.1.3.2) was added to 400 mL each of the three buffer solutions to prepare test solutions of pH values 4, 7, and 9. Six 5-mL aliquots from each of the test solutions were transferred into glass tubes. These solutions were examined as a function of time under the following conditions:

I) Conditions

pH:	4, 7, and 9
concentration:	0.40 mg/L
temperature:	25.0±0.2°C
testing period:	33 days with no shaking
test volume:	5 mL (containing 1 % acetone)
test vessel:	glass tube

II) Analytical methods

The concentration of the test substance was measured by GC. Prior to GC analysis, the test solutions were treated by the following procedure:

Sodium chloride, 1.6 g, was dissolved in the 5-mL aliquot treated in the tube. Two milliliters of *n*-hexane was added to this solution. They were shaken for 1 minutes and then centrifuged at 3000 rpm. The *n*-hexane phase (supernatant) was analyzed by GC as described in \$3.1.3.3.

As described in \$2.1.4, the concentration of the test substance was based on total area of the four peaks detected by GC (retention time: 3.6, 4.3, 4.9, and 5.8 minutes).

III) Recovery

Four milliliters of the stock solution (prepared in \$3.1.3.2) was added to 400 mL of water in an Erlenmeyer glass flask (the final concentration: 0.4 mg/L). Sodium

3M_MN01640593

chloride, 1.6 g, was dissolved in a 5-mL sample of this solution, to which two milliliters of *n*-hexane was then added. They were shaken for 1 minutes and then centrifuged at 3000 rpm. The *n*-hexane phase (supernatant) was analyzed by GC under the conditions described in \$3.1.3.3.

Recovery was determined to be 95 %. The concentrations of the test substance reported for this further investigation were corrected by this factor.

[Table 3.7 and Figure 3.3]

3.1.3.5 Calibration curve

The calibration curve prepared in \$2.1.5 (Determination of Water Solubility) was used.

[Figure 2.1 and Figure 2.2]

At measurement of the test substance concentration, the standard solution of the test substance with 1.0 mg/L was analyzed. Concentration in each test sample was calculated from ratio of total peak area for the sample to that for the standard solution.

3.1.3.6 Calculations

Residual percent of the test substance was calculated as follows:

$$r_t = 100 (C_t / C_{to})$$

where

rt:residual percent of the test substance after "t" daysCt:concentration of the test substance after "t" days (mg/L)Cto:initial concentration of the test substance (0.4 mg/L)

Assuming that the logarithms of the residual concentrations are first order as a function of time, their reaction rate constants were calculated as follows:

$$k = t^{-1} ln (100/r_t)$$

where

k:

reaction rate constant of the test substance (day^{-1})

Using the average of these rate constants, half life time of the test substance was calculated as follows:

$$t_{1/2} = k^{-1} \ln 2$$

where

 $t_{1/2}$: half life time of the test substance (days)

3M_MN01640594

٤.,

3.2 Results and Discussion

1) Preliminary test

After 5 days at 50°C the residual percents of the test substance at pH 4, 7, and 9 were 76, 76, and 52, respectively.

[Table 3.5 and Figure 3.2]

On the basis of the results, it is suggested that the test substance is transformed at least by 24 %.

Relating to the preliminary test result, there is the following description in the OECD Guideline:

If less than 10 per cent of the reaction is observed after 5 days ($t_{1/2} > 1$ year), the chemical is considered hydrolytically stable and no additional testing is required.

Therefore, we decided to perform the further investigation described below.

2) Further investigation

At 25 °C the reaction rate constants of the test substance at pH 4, 7, and 9 were 0.017, 0.020, and 0.046 day⁻¹ with half life time of 42, 35, and 15 days, respectively.

[Table 3.1 to Table 3.4 and Figure 3.4]

The chemical structure of the test substance (shown in §2.2) suggests that the reaction rate of each component is similar to each other.

. .

4

Dissociation Constants in Water [Study No. 4B225]

The dissociation of a chemical in water is of importance in assessing its impact upon the environment. It governs the form of the substance which in turn determines its behavior and transport. It may affect the adsorption of the chemical on soils and sediments and adsorption into biological cells.

4.1 Materials and Methods

This study was conducted in accordance with the standard procedure "Dissociation Constants in Water" (Spectrophotometric Method) in the OECD Guidelines for Testing of Chemicals No.112 (1981). General summary of this method is as follows:

A wavelength is found where the ionized and unionized forms of the compound have appreciably different extinction coefficients. The UV-visible absorption spectrum is obtained from solutions of constant concentration under a pH condition where the substance is essentially unionized and fully ionized and at several intermediate pH's. This may be done, either by adding increments of concentrated acid (base) to a relatively large volume of a solution of the compound in a multicomponent buffer, initially at high (low) pH, or by adding equal volumes of a stock solution of the compound in e.g. water, methanol, to constant volumes of various buffer solutions covering the desired pH range. From the pH and absorbance values at the chosen wavelength, a sufficient number of values for the pKa is calculated using data from at least 5 pH's where the compound is at least 10 per cent and less than 90 per cent ionized.

4.1.1 Reagents and water

methanol: 0.1 N hydrochloric acid:	Junsei Chemical Co., Ltd., guaranteed reagent Kishida Chemical Co., Ltd., reagent for titration
	(diluted to 0.01 N with water prior to use)
0.1 /v sodium hydroxide.	(diluted to 0.01 N with water prior to use)
water:	Deionized water was distilled.

4.1.2 Apparatus

UV-visible spectrophotometer: Shimadzu Corporation, Model UV-260

3M_MN01640596

-

4.1.3 Test procedure

4.1.3.1 Preparation of stock solution of the test substance

A stock solution of the test substance with 80 mg/L in methanol was prepared using 20.0 mg of the substance.

4.1.3.2 Preparation of test solutions

For measurement of UV-visible spectra of the test substance, three solutions of the test substance were prepared as follows:

1) Acid solution of the test substance

Two milliliters of the stock solution (prepared in \$4.1.3.1.) and 2.4 mL of 0.01 N hydrochloric acid were transferred into a 200-mL glass volumetric flask, which was then filled to 200 mL with water. (final concentration of the test substance: 0.8 mg/L)

2) Alkaline solution of the test substance

Two milliliters of the stock solution and 2.4 mL of 0.01 N sodium hydroxide were transferred into a 200-mL glass volumetric flask, which was then filled to 200 mL with water. (final concentration of the test substance: 0.8 mg/L)

3) Neutral solution of the test substance

Two milliliters of the stock solution was transferred into a 200-mL glass volumetric flask, which was then filled to 200 mL with water. (final concentration of the test substance: 0.8 mg/L)

4.1.3.3 Measurement of UV-visible spectrum

The UV-visible spectra of the test substance in the solutions of three different pH values were measured with the apparatus shown in \$4.1.2.

3M_MN01640597

· 2.

4.2 **Results and Discussion**

No dissociation constants of the test substance were determined because the spectra of the test substance at different pH did not significantly differ from one another.

[Figure 4.1]

The water solubility of the test substance is too low to find an ionized and unionized forms of the test substance. We did not investigate its constants further by either "Titration Method" or "Conductometric Method" in the OECD Guideline because the both methods are considered not suitable for the substance having such a low solubility (0.89 mg/L, reported in \$2.2).

But the chemical structure of the test substance (shown in \$1.1.2) suggests that its dissociation potential is very low.

3M_MN01640598

÷.,

5 Partition Coefficient (1-octanol/water) by HPLC Method [Study No. 4B226]

The partition coefficient (P) is defined as the ratio of the equilibrium concentrations of a dissolved substance in a two-phase system consisting of two largely immiscible solvents. In case of 1-octanol and water,

$$P_{ow} = C_o / C_w$$

where

Pow:1-octanol/water partition coefficientCo:concentration in 1-octanol phaseCw:concentration in water phase

The partition coefficient being the quotient of two concentrations is usually given in the form of its logarithm to base ten (log Pow).

Pow is a key parameter in studies of the environmental fate of chemical substances. A highly-significant relationship between the Pow of substances and their bioaccumulation in fish has been shown. It has also been shown that Pow is a useful parameter in the prediction of adsorption on soil and sediments and for establishing quantitative structure-activity relationships for a wide range of biological effects.

5.1 Materials and Methods

This study was conducted in accordance with the standard procedure "Partition Coefficient (n-octanol/water), High Performance Liquid Chromatography (HPLC) Method" in the OECD Guidelines for Testing of Chemicals No.117(1989). Principle of this method is as follows:

HPLC is performed on analytical columns packed with a commercially available solid phase containing long hydrocarbon chains (e.g. C_8 , C_{18}) chemically bound onto silica.

Chemicals injected onto such a column move along it by partitioning between the mobile solvent phase and the hydrocarbon stationary phase. The chemicals are retained in proportion to their hydrocarbon-water partition coefficient, with water soluble chemicals eluted first and oil-soluble chemicals last. This enables the relationship between the retention time on a reverse-phase column and the 1-octanol/water partition coefficient to be established.

3M MN01640599

2

5.1.1 Reference compounds

As reference compounds whose Pow values are well known, we selected five substances: methyl benzoate, bromobenzene, diphenyl, dibenzyl, and DDT. In addition, thiourea was used for determination of the dead time. A mixture of the six substances was prepared in acetonitrile.

5.1.2 Correlation between retention time and Pow

The mixture of the reference compounds (shown in \$5.1.1) was analyzed by high performance liquid chromatography (HPLC) under the conditions described below:

HPLC conditions

GL Sciences Inc., Inertsil ODS-2
4.6 mm i.d., 250 mm in length
(C ₁₈ chemically bound onto silica)
acetonitrile/water = $75/25 (v/v)$
1.0 mL/min.
210 nm
25 °C

The HPLC retention time of the reference compounds were corrected as follows:

 $\mathbf{Rt} = \mathbf{Rt}' - \mathbf{Rt}_0$

where

Rt:	corrected retention time of the compound (minutes)
Rt':	retention time of the compound (minutes)
Rto:	retention time of thiourea (minutes)

Correlation equation between the corrected retention time of the five compounds and their corresponding Pow was computed by the least square method, resulting in the following equation:

 $log P_{ow} = 5.274 log Rt - 0.0219 (r = 0.973)$

[Figure 5.1 and Figure 5.2]

5.1.3 Retention time of the test substance

A mixture of the test substance and thiourea was prepared in acetonitrile. The mixture was analyzed by HPLC under the conditions described in \$5.1.2. Based on the chromatogram, retention time (Rt', minutes) were determined for components of the test substance.

.....

5.2 Results and Discussion

The test substance was detected as ten peaks or more by HPLC.

The corrected retention time (Rt) of the main component was determined to be 29.245 minutes, while that of DDT (Log Pow is reported to be 6.20.) was 13.263 minutes.

Based on the correlation equation shown in \$5.1.2, the log Pow value of the main component was more than 6.

[Figure 5.2]

3M_MN01640601

٤.,

The environmental relevance of vapor pressure is accounted for by the following reasons:

- The vapor pressure gives an indication of the probability of the phase transitions, liquid/gas and solid/gas.
- The vapor pressure, together with the solubility in water, is the major auxiliary variable for calculating the volatility of a substance from an aqueous solution.
- Vapor pressure is thus a significant factor for predicting atmospheric concentrations.
- The vapor pressure of a substance can furthermore be useful as a basis for deciding whether or not a photochemically induced degradation study (in the homogeneous gas phase or in an absorbed phase) is necessary.

6.1 Materials and Methods

This study was conducted in accordance with the standard procedure "Vapor Pressure Curve" (Gas Saturation Method) in the OECD Guidelines for Testing of Chemicals No.104 (1981). This method is summarized as follows:

A stream of inert carrier gas (nitrogen gas) is passed over the substance in such a way that it becomes saturated with vapor of the substance and the vapor is then collected in a trap adsorbent. Measurement of the amount of material transported by a known amount of carrier gas is used to calculate the vapor pressure at a given temperature.

6.1.1 Reagents

acetonitrile:	Wako Pure Chemical Industries, Ltd.,	reagent for HPLC
adsorbent:	GL Sciences Inc.,	Tenax GC [®] , 60-80 mesh

3M_MN01640602

.....

6.1.2 Apparatus

saturator column:	Sibata Scientific Technology Ltd.,		
	12 mm i.d., 150 mm ir	n length	
adsorbent column:	Sibata Scientific Technology Ltd.,		
	12 mm i.d., 150 mm in length		
glass head:	Iuchi Seieido Co., Ltd.,	1 mm in diameter	
flow meter:	Shinagawa Corporation,	model NWK-IC	
gas chromatograph:	Shimadzu Corporation,	model GC-14A	
data processor.	Shimadzu Corporation,	model C-R3A	

6.1.3 Vapor pressure measuring apparatus

For measurement of vapor pressure of the test substance, an apparatus shown in Figure 6.5 was assembled and set in a room air-conditioned at $25\pm1^{\circ}$ C.

[Figure 6.5]

The glass beads coated with the test substance were packed into the saturator column up to 7 cm in length. Nitrogen gas, kept at a constant flow rate by the pressure controller and the flow gauge, was introduced to this column.

The nitrogen gas saturated with vapor of the test substance was delivered to the Tenax $GC^{\textcircled{B}}$ -packed column to trap the test substance. Total amount of the nitrogen gas which passed through this trap column was measured by the flow meter.

Preparation of saturator column

- 1) Ten milligrams of the test substance was dissolved in 10 mL of acetonitrile in a 100-mL round bottom glass flask.
- 2) Eight milliliters of glass beads was added into the flask. The solvent was removed by rotary evaporation. The residual solvent was thoroughly eliminated with a vacuum pump at room temperature. (The test substance was thus coated onto the glass beads.)
- 3) The glass beads coated with the test substance was packed into the saturator column up to 7 cm in length. Both open sides of the column were held by quartz glass wool, which was then incorporated in the vapor pressure measuring apparatus.

nitrogen gas

Nitrogen gas was delivered into the vapor pressure measuring apparatus for 70 hours. Total volume of the carrier gas was measured with the flow meter and determined to be 1.017 m³. (average flow rate: 242 mL/min)

3M MN01640603

.....

2) The total volume of the gas was corrected as follows:

$$V = Vr [(273/T)(760-P) / 760]^{1/2}$$

where

V: total gas volume corrected (m³)

Vr: amount of the gas measured by the flow meter (1.017 m³)

T: temperature of the nitrogen gas (298 °K)

P: pressure difference between at the flow meter and at the absorber-packed column (0.4 mm Hg)

The total volume of the carrier was thus corrected by factors of the temperature and pressure difference, resulting in 0.973 m^3 .

Adsorbent column

- 1) Eight milliliters of the adsorbent (Tenax GC[®]) was packed into the absorbent column. Both open sides of the column were retained with quartz glass wool. The column thus prepared was connected to the saturator column.
- 2) The test substance trapped by the Tenax GC[®] was desorbed by the procedure described in \$6.1.4.

6.1.4 Analytical methods

The test substance trapped by the adsorbent was desorbed as follows:

- 1) The adsorbent packed in the column was transferred into a glass filter. The inside of the vacant column was rinsed with 20 mL of acetonitrile, which was then transferred in the glass filter. The rinse of the Tenax GC[®] was repeated twice more with 20 mL and 10 mL each of acetonitrile.
- 2) The three filtrates were combined and transferred into a 50-mL volumetric glass flask, which was then filled to 50 mL with acetonitrile. An aliquot of the solution was diluted 50 fold in volume.
- 3) The concentration of the test substance in the final solution was measured by GC under the following conditions:

GC conditions

column:Shimadzu Corporation, wide bore column CBP20-W25-100,
0.53 mm i.d., 25 m in lengthtemperature:column 120 °C, injector 200 °C, detector 240 °Ccarrier:nitrogen gas (flow rate: 20 mL/min)detector:ECDinjection volume:3 μL

Calibration curve

Standard solutions of the test substance were prepared to make concentrations of 0, 0.25, 0.5, and 1.0 mg/L in acetonitrile. They were analyzed by GC under the above conditions. A calibration curve prepared by the method described in \$2.1.5 generated a straight line which crosses the origin and its correlation coefficient was calculated to be 0.999.

[Figure 6.1 and Figure 6.2]

At measurement of the test substance concentration, the standard solution with 1.0 mg/L was analyzed. Concentration in each test sample was calculated from ratio of total peak area for the sample to that for the standard solution.

Desorption efficiency (Recovery)

Desorption efficiency of the test substance from Tenax $GC^{\textcircled{D}}$ was determined according to the following procedure:

- 1) Twenty five milliliters of the solution of the test substance with 1 mg/L in acetonitrile (mass of the test substance: 25 μ g) was added to 4 mL of the adsorbent in a 50-mL round bottom glass flask. The solvent was removed by rotary evaporation to adsorb the test substance onto the Tenax GC[®].
- 2) The test substance adsorbed on the Tenax GC[®] was recovered by the desorption procedure described above (except that the substance was extracted with 10, 10, and 5 mL of acetonitrile and the filtrates were transferred into 25-mL volumetric glass flask, which was then filled to 25 mL). The concentration of the test substance in the final solution was measured by GC to evaluate desorption efficiency.

The desorption efficiency was determined to be 97 %. For measurement of vapor pressure, the concentration of the test substance was corrected by this factor.

[Table 6.3 and Figure 6.3]

3M_MN01640605

· 2

6.1.5 Calculation of vapor pressure

Vapor pressure of the test substance was calculated as follows:

$$\mathbf{P} = (\mathbf{W}/\mathbf{M})(\mathbf{R}\mathbf{T}/\mathbf{V})$$

where

- P: vapor pressure (Pa)
- W: amount of the test substance trapped (g)
- M: molecular weight of the test substance (g mole⁻¹)
- R: gas constant (8.31 Pa m^3 mole⁻¹ K⁻¹)
- V: total volume of the carrier gas corrected (m³)
- T: temperature (°K)

6.2 Results and Discussion

Vapor pressure of the test substance was 6.0×10^{-3} Pa.

[Table 6.1 to Table 6.2, and Figure 6.4]

But the chemical structure of the test substance (shown in \$1.1.2) suggests that vapor pressure of each component is different from one another.

Vapor pressure of benzoic acid (a reference substance in the OECD Guideline) was 0.10 Pa (24 °C) under the conditions employed in this study.

Table 2.1 Calculation of concentration of the test substance dissolved in water

Measurement No. 1	·			
time at 40 °C, days	•	1	2	3
conc. in Std.; mg/L	Å	1.01	1.01	1.01
peak area, µV∙sec				
Std.	В	2589644	2717449	2732276
test solution	С	2030738	2414771	2230296
concentration factor	D	1	1	1
conc. of the substance, mg/L	E	0.84	0.95	0.88

Calculation equation

. .

•• • • •

E = A(C/B)(1/D)(1/0.94)

Measurement No. 2				
time at 40 °C, days		1	2	3
conc. in Std.; mg/L	٨	1.01	1.01	1.01
peak area, µV∙sec				
Std.	В	2589644	2717449	2732276
test solution	C	2115067	2319263	2293546
concentration factor	D	1	1	1
conc. of the substance, mg/L	E	0.88	0.92	0.90

Calculation equation

E = A(C/B)(1/D)(1/0.94)

average water solubility: 0.89mg/1

...

· · · · · ·

.....

-Table 2.2 Calculation of recovery

	conc. of the substance added, mg/L	- A	0.97
	conc. in Std., mg/L	. В	1.01
	peak area, μV sec		
	Std.	C	2723221
	test solution	D	2456907
	concentration factor	E	1
	conc. of the substance recovered, r	mg/L	0.91
	recovery (%)	F.	94
1			l .

Calculation equation F=B(D/C)(1/E)(100/k)

•

3M_MN01640609

3M_MN01640610

Figure 2.3 GC chromatograms of the test substance

Std. 1.008mg/1

test solution

AREA NK

		11056	• .
2	3.792	69258	٧
3	4.517	580303	ų
4	5.13	1628500	٧
5	6.005	478240	s۷
	-		
	TOTAL	2467957	

33 3642

TINE

3.368 3.792 4.518

5.137 6.012

TOTAL

39.<u>3#\$</u>?

7.69 005

TIME

PKNO

ркно

ŕ

7.088 9.228

•

137

AREA MK

+3

2735141

3M_MN01640611

•

;

ł

ļ

PKNO	TINE	AREA	НК
1		39793 -	
2	3.763	16505	Ŷ
3	4.477	1039350	Ŷ
4	5.077	859751	۷
5	5,953	199461	Ŷ
6	-7:947-		-
7			-
	TOTAL	2303814.	
			ŕ

PKNO

1

8

3 4 5

-£

.7

ł

i

ł

5

3M_MN01640612

÷, •

ł

\$

i

3M_MN01640613

•

. ... **.**...

1

ţ

۱

3M_MN01640614

Table 3 Calculations of reaction rate constant and half life time of the test substance (Table 3.1-Table 3.3)

Table 3.1 (pH 4 at 25°C)

time, days (t)	residual percent of the substance, mg/L (C)	rate constant, day ⁻¹ (k)
5	89.7	0.022
8 I	87.3	0.017
15	77.0	0.017
19	76.8	0.014
26	68.3	0.015
33	62.1	0.014
		0 017dex

average rate constant $0.017 day^{-1}$ half life time ($t_{1/2}$) 42 days

calculation equations $\begin{array}{c} k=1/t \times \ln 100/c \\ t_{1/2}=1/k \times \ln 2 \end{array}$

Table 3. (pH 9 at 25°C)

time, days (t)	residual percent of the substance, mg/L (C)	rate constant, day ⁻¹ (k)
2	92.4	0.040
5	78.4	0.049
8	69.0	0.046
12	57.1	0.047
15	50.2	0.046
19	37.7	0.051

average	rate constant	0.046day ⁻¹
-	t1/2	15 days

Table 3.2 (pH 7 at 25°C)

time,	residual percent	rate constant,
days	of the substance,	day ⁻¹
(t)	mg/L (C)	(k)
5	88.6	0.024
8	86.9	0.018
15	74.1	0.020
19	69.5	0.019
26	59.9	0.020
33	53.8	0.019
L	average rate constant $t_1 > 2$	0.020day ⁻¹ 35 days

. .

3M_MN01640615

.....

للمحجج الجاليمين بالمت

.

•.....

Table 3.4 Calculations of residual concentration of the test substance --- for *Further investigation* (at $25.0 \pm 0.2^{\circ}$ C) ---

		peak area	, μV+sec		
time		Std	test. solution	test soln.	percent
days	pН	В	C		D
2	9	2889193	2523765	0.371	92.4
	4	2951466	2502799	0.361	89.7
5	7 9	2951466	2473261	0.356	88.6
		2001400			10.4
	4	2968192	2449526	0.351	87.3
8	· 7 0	2968192	2439536	0.350	86.9
		2900192	1930000	0.278	69.U
12	9.	2939623	1585436	0.229	57.1
	4	2871668	2089210	0.309	77.0
15	7	2871668	2011015	0.298	74.1
	9	2871668	1361482	0.202	50.2
	4	2871088	2084603	0.309	76.8
19	7	2871088	1886031	0.279	69.5
	9	2871088	1022942	0.152	37.7
	4	2962788	1912723	0.275	68.3
26	7	2962788	1676378	0.241	59.9
•	4	2928913	1718699	0.250	62.1
33	7	2928913	1490039	0.216	53.8

concentration of the standard solution (A): 1.01 mg/L concentration factor (E): 2.5 initial concentration of the test substance(F): 0.402 mg/L recovery(G): 95 %

calculation equation:

$D = A(C/D) + E^{-1} + F^{-1}(100/G) + 100$

3M_MN01640616

.....

2796.0036

-- - --- -

		рҢ 4	рН 7	рН 9
initial concentration of the test substance, mg/L	Å	0.402	0.402	0.402
conc. in:Std:, mg/L peak area, µV+sec	В	1.00	1.00	1.00
Std.	C	3022269	3022269	3022269
test solution	D	1867539	1876183	1264465
concentration factor	E	2	2	2
conc. in the test solution.		0.306	0.307	0.207
residual percent of the test substance	F	76	76	52

Table 3.5 Calculations of residual concentration of the test substance for *Preliminary test* (after 5 days at $50.0 \pm 0.1^{\circ}$ C) ---

calculation equation

.

. .

F = B(D/C)(1/E)(1/A)(1/1.01)100

.

· .

Table 3.6 Calculation of recovery

. .

• • •

 --- for Preliminary test ---

conc. of the test substance added, mg/L	٨	0.402
conc. in Std., mg/L	B	1.00
peak area, μV +sec		
Std.	С	2977220
test solution	D	2420272
concentration factor	E	2
conc. of the test substance recovered, mg/L		0.406
recovery, %	F	101

calculation equation

F = B(D/C)(1/E)(1/A)100

Table 3.7 Calculation of recovery --- for Further investigation ---

conc. of the test substance added, mg/L	Å	0.402
conc. in Std.; mg/L	В	1.01
peak area, μ V+sec		
Std.	С	2782217
test solution	D	2639636
concentration factor	E	2.5
conc. of the test substance recovered, mg/L		0.383
recovery, %	F	95

calculation equation

F = B(D/C)(1/E)(1/A)100

٤.

2796.0038

• • • • • • •

í

ş

ł

÷

í

3M_MN01640619

11.

3M_MN01640620

.

ŕ

•

!

ţ

- 1

3M_MN01640621

Figure 3.3 GC chromatograms of the test substance

. . .

Figure 3.4 GC chromatograms of the test substance ---- for measurement of concentration in water in *Further investigation* --- [1] *after 2 days*

:

1

ŝ

i t

PKNO	TIME	AREA	MK
1	3.613	69455	۷
2	4.382	241338	Ŷ
3	4.948	1738036	¥
4	5.822	474936	ų
- Ş			Ŷ
	-		
	TOTAL	2542849	

3M_MN01640622

2796.0042

3M_MN01640623

1968049 TOTAL

:

1

\$

í

•

3M_MN01640624

.

ł

4

3M_MN01640625

ľ

_____ 1378387

ŗ

TOTAL

.

1

4

2099453

3M_MN01640626

Figuré 3.4 (continued)

ច

after 15 days

ļ

1

ł

ŝ

3M_MN01640627

3.5% 14.842 25

:

1

ş

PKNO	TIME	AREA	ΗK	IDNO
1	3.54	54270	v	
5	4.308	130219	۷	
3	4.842	1100240	۷	
4	5.692	391650	Ŷ	
	-			
	τοται	1676378		

PKNO

4

.

2

331834 6.687 657

IDNO TIME AREA MK 2.12 11819-86807 ۷ 3.52 4.245 338231 ۷

1970817

-000-

Ý

566933 SV 5.657 _____ 2974607 TOTAL

4.803

PKNÖ 3.527 58084 Ŷ 1 ۷ 4.28 152256 5 1349836 V 3 4.823 4 5.667 352547 SV --------TOTAL 1912723

3M_MN01640628

Figure 3.4 (continued)

[7] after 26 days

.

Std. 1.01mg/1

PH

4

ľ

;

Ì

ł

Ş

į

• [

TOTAL 1718699

3M_MN01640629

Figure 4.1 UV spectrum of the test substance in acidic, neutral, and alkaline solutions

.

concentration of the test substance 0. 8mg/L

3M_MN01640630

Figure 5.1 Correlation between HPLC retention time and Pow

Curve Fitting [Least Square Method]

 $Y = -2.1919 \times 10^{-2} + 5.1282 \times X^{1}$ r = 0.97258

3M_MN01640631

:,

Figure 5.2 HPLC chromatograms of the reference compounds and the test substance

•• :

.

.

.

Pcaks	Rel Time	Турс	Width	Arca		RL-Rt.	log Ri	log Pow
1	2.633	PV	0.069	2559	thiourea			
2	6.144	VV	0.236	53.99	0	3.511	0.545	2.77
3	7.555	vv	0.199	90.03	Ō	4. 922	0.692	3.75
4	9.502	ev	0.261	138.64	3	6, 869	0.837	4.27
5	12.304	9V	0.255	79.43	(Í)	9.671	0, 985	5.03
6	1E.445	VV	0.377	214.84	· (5)	13.812	1. 140	5.82
7	22.562	BV	0.416	67.83	6	19, 929	1.299	6.64
8	26.308	BV	0.462	168.18	Ø	23.675	1.374	7.02
9	27.359	VV	0.751	359.48	(8)	24.726	1. 393	7.12
10	28.722	V V	0.482	371.23	9	26, 089	1.416	7.24
11	31.878	8V.	0.669	2576	0	29. 245	1.466	7.50

3M_MN01640632

• • •

Table 6.1	Calculation	of vapor	pressure
			F

.

;

trapped test substance (corrected mass), g	¥	1.47×10 ⁻³
molecular weight of the test substance	м	625
gas constant, Pa+m³+mole-1+K-1	R	8.31
corrected total volume of the carrier gas, m ³	Ŷ	0.973
temperature, °K	Ť	298
vapor pressure, Pa	Р	6.0×10 ⁻³

calculation equations P = (W/W)(RT/V)

Table 6.2 Calculation of mass of the trapped test substance

conc., in:Std.;. mg/L	- A	1.006
peak area, µv +sec)
Std.	В	2489067
test solution	C	1412087
conc. in the test solution, mg/L		0.571
final volume, mL	D	50
dilution factor	E	50
trapped test substance as <i>measured</i> mass, g		1.43×10 ⁻³
as <i>corrected</i> mass, g	¥	1.47×10 ⁻³
		-

calculation equation

W = A(C/B)E(D/1000)(1/0.97)(1/1000)

3M_MN01640633

· ...

2796.0053

conc. of the test substance	Å	0.02515
conc. in Std., mg/L	Β.	1.006
peak area, µV∗sec		
Std.	С	2451409
test solution	D	2372240
final volume. mL		25
conc. of the test substance recovered, mg/L	E	0.02434
desorption efficiency, %	F	97
		1

Table 6.3 Calculation of desorption efficiency

•***

.

calculation equations E = B(D/C)(25/1000)

F = (E/A)100

3M_MN01640634

Figure 6.1 Calibration curve of the test substance

Concentration		Peak Area	
0.	X(mg/1)	Y(µV·sec)	
1	0	0	
2	0.252	602790	
3	0.503	1234186	
4	1.003	2475687	

 $Y = -9.1506 \times$

r = 0.99997

Curve Fitting [Least Square Method]

3M_MN01640635

3M_MN01640636

ė

;

•

ŝ

į

Ì

1

÷

İ

1

3M_MN01640637

:

1

TOTAL

-

3M_MN01640638

Figure 6.5 Vapor pressure measuring apparatus

3M_MN01640639